Synthesis of new multi-functionalised 1,1'-carbonylbispyrazole derivatives

Manijeh Mohadeszadeh, Hossein Eshghi*, Sattar Saberi and Mostafa Gholizadeh

Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, PO Box 91775-1436, Mashhad, Iran

A new series of multi-functionalised 1,1'-carbonylbispyrazole derivatives were synthesised through cyclisation of pyrazole carbohydrazides with some substituted methylene malononitriles in very good yields. The structures of all synthesised compounds were established on the basis of NMR, IR, MS and elemental analysis.

Keywords: pyrazole carbohydrazide, hetero-cyclisation, substituted methylene malononitrile, secondary amines, Michael addition, multifunctionalised 1,1'-carbonylbispyrazoles

Recent research into the synthesis of bis-heterocyclic compounds, which have various practical applications, have attracted the attention of scientists.¹ Bis-pyrazole derivatives have been used as excellent inhibitors of corrosion for many metals and alloys (1, Fig. 1).²⁻⁵ They are also used as efficient ligands in palladium-catalysed C-O and C-N cross-coupling reactions.⁶⁻⁹ The bispyrazole derivatives have coordination properties to metals and are useful as catalysts,¹⁰ for example, heteroscorpionate [RR'C(pz),] ligands derived from bis(pyrazol-1-yl)methane (2, Fig. 1).11 The high fluorescence quantum yield of pyrazoline rings add to their wide application in selective recognition of metal ions (3, Fig. 1).¹² Bis-pyrazoles have been used in the treatment of Alzheimer's disease, brain ischaemia, heart diseases, gastrointestinal diseases, cancer, ageing and inflammation.13-16 These compounds are also antibacterial and antifungal agents (4, Fig. 1).¹⁷ In addition, palladium and platinum complexes of 5,5'-dimethyl-3,3'-bipyrazole and some poly substituted 1,1'-carbonylbispyrazoles have been reported as potential anti-tumour agents (5, Fig. 1).^{18,19}

Recently, we have investigated a new versatile route for the synthesis of 1,1'-carbonylbispyrazole derivatives²⁰. In an extension of this work, we are undertaking related studies employing bispyrazole derivatives derived from pyrazole carbohydrazides. We now consider the nature of some nucleophiles and the properties of substituted methylene malonitriles which react through Michael addition–cyclisation with the subsequent construction of bis-heterocyclic compounds.

Results and discussion

Ethyl hydrazinecarboxylate **6** reacted with substituted methylene malonitriles **7a–c** in absolute ethanol to give ethyl 5-amino-4-cyano-1*H*-pyrazole-1-carboxylate **8a** and ethyl 5-amino-4-cyano-3-methyl-1*H*-pyrazole-1-carboxylate **8b** which have been reported previously,²⁰ and ethyl 5-amino-4-cyano-3-(methylthio)-1*H*-pyrazole-1-carboxylate **8c**. They were prepared in 80–85% yield, respectively (Scheme 1). The

formation of compound **8a–c** was confirmed by the presence of the C=O band around 1771 cm⁻¹ in the IR spectrum. The ¹H NMR spectrum of **8c** showed a triplet signal at $\delta = 1.53$ and a quartet signal at $\delta = 4.53$ ppm corresponding to an ethoxy group, a singlet signal at $\delta = 2.58$ corresponding to the thiomethyl group and a broad singlet at $\delta = 6.18$ corresponding to an NH₂ group.

Nucleophilic displacement of the ethoxy group with hydrazine hydrate, a bis-nucleophile instead of a simple amine, was carried out using absolute ethanol as the solvent to afford 5-amino-4cyano-1*H*-pyrazole-1-carbohydrazide (9a), 5-amino-4-cyano-3-methyl-1*H*-pyrazole-1-carbohydrazide (9b) and 5-amino-4cyano-3-(methylthio)-1*H*-pyrazole-1-carbohydrazide (**9c**). The IR spectrum of 9c showed absorption bands at 3400–3245, 3010, 2770, 2210, 1718 and 1634 cm⁻¹ indicating the presence of NH₂ and NH, cyano and C=O groups, respectively. The ¹H NMR spectrum of **9c** showed a signal at $\delta = 2.47$ ppm corresponding to the thiomethyl group. Moreover, the disappearance of the characteristic pattern of the ethoxy group in addition to the presence of two singlets corresponding to two NH₂ and NH protons at $\delta = 5.90$ and $\delta = 11.85$ ppm confirmed the structure of the product. Compounds 7d-f have been prepared from the substitution of one thiomethyl group of 2-(bis(methylthio) methylene)malononitrile 7c with secondary amines in absolute ethanol at room temperature. The mass spectrum of 2-((methylthio)(pyrrolidin-1-yl)methylene)malononitrile (7d) showed a molecular ion signal at m/z 209 [M⁺] corresponding to the molecular formula C₀H₁₁N₃OS. Compound 9a reacted with 7d under different reaction conditions. The excellent conversion of this compound (9a) into the product 10a was achieved within 8 h in refluxing pyridine. Under the optimised conditions, the cyclo-condensation of a range of pyrazole carbohydrazides carrying substituents on their aromatic rings, with 7d-f, proceeded smoothly and gave the corresponding multi-substituted 1,1'-carbonylbispyrazole derivatives (10a-i) in very good yields (Scheme 1).

* Correspondent. E-mail: heshghi@um.ac.ir

The structure assignment of compounds 10a-i was based on spectroscopic and microanalytical data. For example, the IR spectrum of 10f revealed the presence of an additional cyano band at 2220 cm⁻¹. The ¹H NMR spectrum of **10f** showed the presence of a singlet signal at $\delta = 2.45$ ppm corresponding to a methyl group, the multiplet signals in the range of $\delta =$ 1.79-1.89 ppm and a triplet signal at 3.89 ppm correspond to the piperidinyl protons. Whereas ¹H NMR spectrum of 9b in CDCl₂ showed the signals corresponding to NH₂ and NH at δ = 6.82 and δ =12.09 ppm, respectively, which disappeared on addition of D₂O, the ¹H NMR spectrum of the cyclised product 10f did not show these resonances. Instead, an exchangeable broad singlet at $\delta = 5.99$ ppm in CDCl₃ confirmed that heterocyclisation had occurred. The ¹³C NMR spectrum of 10f revealed the appearance of two signals at $\delta = 113.9$ and δ = 115.9 ppm, attributed to the two cyano groups confirming that heterocyclisation with 2-[(methylthio)(piperidin-1-yl) methylene]malononitrile (7f) had occurred. The carbonyl carbon interfacing the two pyrazole rings of 10f appeared as a resonance at $\delta = 156.33$ ppm. Moreover, the chemical shift of the methyl group and the piperidinyl carbons in 10f were reported at δ 13.7 ppm and δ 23.7, 26.2 and 52.5 ppm respectively. The mass spectrum of **10f** showed a molecular ion signal at m/z339 [M⁺] corresponding to the molecular formula $C_{15}H_{17}N_0O$. Moreover, this compound gave satisfactory elemental analysis.

Conclusion

In summary, a new series of multi-functionalised 1,1'-carbonylbispyrazole derivatives (**10a**–**i**) has been successfully synthesised in good yields through cyclisation of pyrazole carbohydrazides (**9a**–**c**) with different methylene malonitriles (**7d**–**f**), through a related procedure which has been reported.²⁰ Moreover, the presence of functionalities such as NH₂, CH₃, SCH₃, CN and cyclic amines like pyrrolidinyl, morpholinyl and piperidinyl on the pyrazole rings are expected to be of interest because of their potential relevance to biological activity and drug research.

Experimental

All reagents were purchased from Merck Company and used without further purification. The melting points were recorded on an Electrothermal type 9100 melting point apparatus. The IR spectra were obtained on an Avatar 370 FT-IR Thermo Nicolet and only noteworthy absorptions are listed. The ¹H NMR (400 MHz) and the ¹³C NMR (100 MHz) spectra were recorded on a Bruker Avance, using DMSO-d₆ or CDCl₃ as solvents. Chemical shifts are reported in ppm downfield from TMS as internal standard; coupling constants *J* are given in Hertz. The mass spectra were scanned on a Varian Mat CH-7 at 70 eV. Elemental analyses were performed on a Thermo Finnigan Flash EA microanalyser.

Synthesis of pyrazoles (8a-c); general procedure

A 50 mL round-bottomed flask was charged with a mixture of hydrazinecarboxylic acid ethyl ester (6, 2.13 g, 20.5 mmol) and **7a–c** (20 mmol) in absolute EtOH (30 mL) and the reaction mixture was refluxed for 4 h. After this time, the mixture was cooled to room temperature and stayed in the refrigerator overnight; the precipitate was filtered and washed with cold Et_2O to afford **8** as colourless needles. Ethyl 5-amino-4-cyano-1*H*-pyrazole-1-carboxylate (**8b**) are well known.²⁰

Ethyl 5-amino-4-cyano-3-(methylthio)-*I*H-pyrazole-1-carboxylate (**8c**): Yield 85%; m.p. 194°C; IR (KBr, v_{max} /cm⁻¹): 3481, 3275, 3210, 3110, 2207, 1772, 1634. ¹H NMR (400 MHz, CDCl₃) δ 1.53 (t, *J*=7.6 Hz, 3H, CH₂CH₃), 2.58 (s, 3H, SCH₃), 4.53 (q, *J*=7.6 Hz, 2H, CH₂CH₃), 6.48 (br.s, 2H, NH₂). Anal calcd for C₈H₁₀N₄O₂S: C, 42.47, H, 4.46, N, 24.76, S, 14.17; found: C, 42.27, H, 4.13, N, 24.12, S, 14.61%.

Synthesis of IH-pyrazole-1-carbohydrazides (**9a–c**); general procedure

A mixture of **8a–c** (15 mmol) and hydrazine monohydrate (3 mL, 62 mmol) in absolute ethanol (10 mL) was refluxed for 3 h. After completion of the reaction (TLC), the excess of solvent was distilled off, and the crude product obtained was poured into ice water, then the products were removed from water. The product obtained is sufficiently pure for further reaction. 5-Amino-4-cyano-1*H*-pyrazole-1-carbohydrazide (**9a**) and 5-amino-4-cyano-3-methyl-1*H*-pyrazole-

1-carbohydrazide (9b) are well known.²⁰ Compound 9c is a known compound²¹ but we have synthesised it in a new pathway.

*5-Amino-4-cyano-3-(methylthio)-1*H-*pyrazole-1-carbohydrazide* (9c): Yield 87%; m.p. 230 °C (lit.²¹ not reported) IR (KBr, v_{max} /cm⁻¹): 3429, 3403, 3344, 3245, 3010, 2770, 2210, 1718, 1634; ¹H NMR (100 MHz, CD₃COCD₃): 2.47 (s, 3H, SCH₃), 5.90 (br. s, 4H, 2NH₂), 11.85 (br. s, 1H, NH). Anal calcd for C₆H₈N₆OS: C, 33.96, H, 3.80, N, 39.60; found: C, 33.58, H, 4.03, N, 39.78%.

Synthesis of 1,1'-carbonyl-bispyrazole derivatives (10a–i); general procedure

A mixture of compound **9** (5 mmol) and compound **7d–f** (5 mmol) was stirred under reflux in dry pyridine (25 mL) for 8–10 h. The mixture was cooled to room temperature, then H_2O (5mL) was added, and the mixture was neutralised by HCl. The collected solid was purified by preparative TLC (1:15 MeOH:CHCl₃). The crude product was rinsed in MeOH and the organic layer phase was filtered and evaporated under reduced pressure to give the pure product.

 $\begin{array}{l} 5\text{-}Amino\text{-}I\text{-}(5\text{-}amino\text{-}4\text{-}cyano\text{-}I\text{H}\text{-}pyrazole\text{-}I\text{-}carbonyl)\text{-}3\text{-}(pyrrolidin-I-yl)\text{-}I\text{H}\text{-}pyrazole\text{-}4\text{-}carbonitrile (10a): Yield 75\%; white solid; m.p. >300°C (dec.); ¹H NMR (400 MHz, DMSO-d_6): <math>\delta$ 1.94 (t, J=6.4 Hz, 4H, 2CH₂), 4.15 (t, J=6 Hz, 4H, 2CH₂), 7.35 (br.s, 4H, NH₂, D₂O exchangeable), 8.23 (s, 1H, CH); ¹³C NMR (100 MHz, DMSO-d_6): δ 22.8, 22.8, 54.6, 54.6, 65.2, 76.1, 114.9, 117.7, 145.9, 149.7, 154.5, 160.9, 162.9. *m/z* calcd for C₁₃H₁₃N₉O [M]⁺: 311.12, found: 311.0. Anal. calcd for C₁₃H₁₃N₉O: C, 50.16; H, 4.21; N, 40.49; found: C, 50.66; H, 4.40; N, 40.61\%. \end{array}

 $\begin{array}{l} 5\text{-}Amino\text{-}1\text{-}(5\text{-}amino\text{-}4\text{-}cyano\text{-}1\text{H}\text{-}pyrazole\text{-}1\text{-}carbonyl)\text{-}3\text{-}morpholino\text{-}1\text{H}\text{-}pyrazole\text{-}4\text{-}carbonitrile} (\textbf{10b}): Yield 70\%; white solid; m.p. 260\text{-}261^{\circ}\text{C} (dec.); IR (KBr, \upsilon_{max} (cm^{-1}): 3455, 3318, 3100, 2970, 2859, 2214, 1659, 1608. {}^{1}\text{H} \text{NMR} (400 \text{ MHz, DMSO-}d_{6}): \delta 3.78\text{-}3.84 (m, 8\text{H, morpholine}), 7.65 (br.s, 4\text{H}, NH_2, D_2O exchangeable), 8.39 (s, 1\text{H}, aromatic); {}^{13}\text{C} \text{NMR} (100 \text{ MHz, DMSO-}d_{6}): 51.4, 51.4, 66.3, 66.3, 70.9, 76.8, 114.7, 116.1, 147, 153.4, 154.1, 160.3.$ *m* $/z calcd for C_{13}\text{H}_{13}\text{N}_9\text{O}_2 [M]^{+:} 327.12, found: 327.0. Anal. calcd for C_{13}\text{H}_{13}\text{N}_9\text{O}_2$: C, 47.71; H, 4.00; N, 38.52; found: C, 47.24; H, 4.08; N, 39.08\%. \end{tabular}

5-Amino-1-(5-amino-4-cyano-1H-pyrazole-1-carbonyl)-3-(piperidin-1-yl)-1H-pyrazole-4-carbonitrile (**10c**): Yield 73%; pale yellow solid; m.p. 234 °C (dec.); ¹H NMR (400 MHz, DMSO- d_6): δ 1.7 (br. s, 6H, 3CH₂), 3.77 (br. s, 4H, 2CH₂), 7.58–7.74 (br.s, 4H, 2NH₂, D₂O exchangeable), 8.40 (s, 1H, aromatic); ¹³C NMR (100 MHz, DMSO- d_6): δ 23.5, 26.3, 26.3, 52.3, 52.3, 70.4, 76.7, 114.8, 116.2, 146.8, 146.8, 153.7, 154.2, 160.3. *m/z* calcd for C₁₄H₁₅N₉O [M]⁺: 325.14, found: 325.0. Anal. calcd for C₁₄H₁₅N₉O: C, 51.69; H, 4.65; N, 38.75; found: C, 51.36; H, 4.51; N, 38.98%.

5-*Amino-1*-(5-*amino-4*-*cyano-3*-(*pyrrolidin-1*-*y*l)-*1*H-*pyrazole-1carbonyl*)-3-*methyl*-*1*H-*pyrazole-4*-*carbonitrile* (**10d**): Yield 60%; white solid; m.p. 286-287 °C (dec.); IR (KBr, v_{max} /cm⁻¹): 3462, 3303, 3248, 3164, 2987, 2217, 2196, 1641, 1603; ¹H NMR (400 MHz, DMSO-*d*₆): δ 1.92 (t, *J*=6.5 Hz, 4H, 2CH₂), 2.43 (s, 3H, CH₃), 3.85 (t, *J*=6.5 Hz, 4H, 2CH₂), 6.95 (b, 4H, NH₂, D₂O exchangeable), 8.23 (s, 1H, CH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 12.7, 23.6, 23.6, 53.8, 53.8, 62.9, 75.4, 113.9, 116.6, 145.7, 150.6, 153.7, 161.2, 162.7. *m/z* calcd for C₁₄H₁₅N₉O [M]⁺: 325.14, found: 324.0. Anal. calcd for C₁₄H₁₅N₉O: C, 51.69; H, 4.65; N, 38.75; found: C, 51.91; H, 4.29; N, 39.09%.

5-Amino-1-(5-amino-4-cyano-3-methyl-1H-pyrazole-1-carbonyl)-3morpholino-1H-pyrazole-4-carbonitrile (**10e**): Yield 65%; white solid; m.p. 268 °C (dec.); white solid, ¹H NMR (400 MHz, DMSO- d_6): δ 2.32 (s, 3H, CH₃), 3.77–3.82 (m, 4CH₂, 8H, morpholine), 7.52 (br.s, 4H, NH₂, D₂O exchangeable); ¹³C NMR (100 MHz, DMSO- d_6): δ 13.8, 46.9, 51.3, 51.3, 66.7, 66.7, 70.3, 77, 114.8, 116.3, 152.8, 154.5, 156.2, 160.2. *m/z* calcd for C₁₄H₁₅N₉O₂ [M]⁺: 341.13, found: 341.0. Anal. calcd for C₁₄H₁₅N₉O₂: C, 49.26; H, 4.43; N, 36.93; found: C, 49.49; H, 4.56; N, 37.37%.

5-Amino-1- (5-amino-4-cyano-3-(piperidin-1-yl)-1H-pyrazole-1carbonyl)-3-methyl-1H-pyrazole-4-carbonitrile (**10f**): Yield 65%; white solid; m.p. 230–231°C, IR (KBr, v_{max} /cm⁻¹): 3463, 3309, 3163, 3115, 2986, 2884, 2218, 2220, 1640, 1603, 1561; ¹H NMR (400 MHz, DMSO- d_6): δ 1.79–1.81 (m, 2H, CH₂), 1.83–1.89 (m, 4H, 2CH₂), 2.45(s, 3H, CH₃), 3.89 (t, *J*=5.6 Hz, 4H, 2CH₂), 5.99 (br.s, 4H, NH₂, D₂O exchangeable); ¹³C NMR (100 MHz, DMSO- d_6): δ 13.7, 23.7, 26.2, 26.2, 52.5, 52.5, 69.6, 79, 102, 113.95, 115.9, 152.5, 154.1, 156.8, 159.3. *m/z* calcd for $C_{15}H_{17}N_9O$ [M]⁺: 339.16, found: 337.0. Anal. calcd for $C_{15}H_{17}N_9O$: C, 53.09; H, 5.05; N, 37.15; found: C, 53.49; H, 5.20; N, 37.40%.

5-Amino-1-(5-amino-4-cyano-3-(methylthio)-1H-pyrazole-1carbonyl)-3-(pyrrolidin-1-yl)-1H-pyrazole-4-carbonitrile (**10g**): Yield 63%; white solid; m.p. 270 °C (dec.), ¹H NMR (400 MHz, DMSO- d_6): δ 1.94 (t, J=6.4 Hz, 4H, 2CH₂), 2.56 (s, 3H, SCH₃), 4.15 (t, J=6.4 Hz, 4H, 2CH₂), 7.35 (br.s, 4H, 2NH₂, D₂O exchangeable). ¹³C NMR (100 MHz, DMSO- d_6): δ 13.3, 25.8, 25.8, 54.4, 54.4, 64.7, 75.1, 114.1, 117.7, 124.5, 148.7, 155.1, 155.4, 161.1. *m/z* calcd for C₁₄H₁₅N₉OS [M]⁺: 357.11, found: 357.0. Anal. calcd for C₁₄H₁₅N₉OS: C, 47.05; H, 4.23; N, 35.27; found: C, 47.35; H, 4.35; N, 35.48%.

5-*Amino-1*-(5-*amino-4*-*cyano-3*-(*methylthio*)-*I*H-*pyrazole-1carbonyl*)-*3*-*morpholino-I*H-*pyrazole-4*-*carbonitrile* (**10h**): Yield 60%, pale yellow solid; m.p. 243 °C; IR (KBr, v_{max} /cm⁻¹): 3477, 3452, 3315, 3204, 2974, 2929, 2872, 2212, 1646, 1614, 1552; 'H NMR (400 MHz, DMSO-*d*₆): δ 2.59 (s, 3H, SCH₃), 3.82–3.83 (m, 8H, 4CH₂ morpholine), 7.65 (br.s, 4H, 2NH₂, D₂O exchangeable); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 13.1, 51.3, 51.3, 66.7, 66.7, 69.8, 75.6, 113.9, 116.1, 124.5, 152.2, 155.1, 156.6, 160.4. *m/z* calcd for C₁₄H₁₅N₉O₂S [M]⁺: 373.11, found: 372.0. Anal. calcd for C₁₄H₁₅N₉O₂S: C, 45.03; H, 4.05; N, 33.76; found: C, 45.28; H, 4.14; N, 34.07%.

5-Amino-1- (5-amino-4-cyano-3-(methylthio)-1H-pyrazole-1carbonyl)-3-(piperidin-1-yl)-1H-pyrazole-4-carbonitrile (10i): Yield 55%; white solid; m.p. >300 °C (dec.); ¹H NMR (400 MHz, DMSO-*d*₀): δ 1.72 (m, 6H, 3CH₂ piperidine), 2.61 (s, 3H, SCH₃), 3.74 (m, 4H, 2CH₂ piperidine), 7.60 (br.s, 4H, 2NH₂, D₂O exchangeable); ¹³C NMR(100 MHz, DMSO-*d*₀): δ 13.1, 23.5, 26.2, 26.2, 52.2, 52.22, 69.4, 75.5, 114.1, 116.3, 152.4, 155.2, 156.4, 160.5. *m/z* calcd for C₁₅H₁₇N₉OS [M]⁺: 371.11, found: 371.0. Anal. calcd for C₁₅H₁₇N₉OS: C, 48.51; H, 4.61; N, 33.94; found: C, 48.72; H, 4.47; N, 33.76%.

Received 17 February 2015; accepted 11 March 2015 Paper 1503211 doi: 10.3184/174751915X14271377629065 Published online: 13 April 2015

References

- 1 B.F. Abdel-Wahaba and K.M. Dawood, Arkivoc, 2012 (i) 491.
- 2 M. Bouklah, M. Kaddouri, Y. Toubi, B. Hammouti, S. Radi and E.E. Ebenso, Int. J. Electrochem. Sci., 2013, 8, 7437.
- 3 M. Benabdellah, R. Touzani, A. Aouniti, A. Dafali, S. El Kadiri, B. Hammouti and M. Benkaddour, *Mater. Chem. Phys.*, 2007, **105**, 373.
- 4 K. Tebbji, H. Oudda, B. Hammouti, M. Benkaddour, S.S. Al-Deyab, A. Aouniti, S. Radi and A. Ramdani, *Res. Chem. Intermed.*, 2011, 37, 985.
- 5 M. Bouklah, B. Hammouti, M. Benkaddour, A. Attayibat and S. Radi, *Pigm. Resin Tech.*, 2005, 34, 197.
- 6 S. Gowrisankar, A.G. Sergeev, P. Anbarasan, A. Spannenberg, H. Neumann and M. Beller, J. Am. Chem. Soc., 2010, 132, 11592.
- 7 B.J. Kotecki, D.P. Fernando, A.R. Haight and K.A. Lukin, Org. Lett., 2009, 11, 947.
- 8 A. Porzelle, M.D. Woodrow and N.C.O. Tomkinson, Org. Lett., 2009, 11, 233.
- 9 S. Yu, A. Haight, B. Kotecki, L. Wang, K. Lukin and D.R. Hill, J. Org. Chem., 2009. 74, 9539.
- 10 D. Beaudoin and J.D. Wuest, Tetrahedron Lett., 2011, 52, 2221.
- 11 A. Otero, J. Fernández-Baeza, A. Antiñolo, J. Tejeda and A. Lara-Sánchez, Dalton Trans., 2004, 1499.
- 12 T. Ren, J. Wang, G. Li and Y. Li, J. Fluoresc., 2014, 24, 1149.
- 13 E.M. Kosower and E. Hershkowitz, Isr. Patent ISXXAQIL 94658; Chem. Abstr., 1994, 122, 214 077.
- 14 T. Igarashi, K. Sakurai, T. Oi, H. Obara, H. Ohya and H. Kamada, Free Radical Biol. Med., 1999, 26, 1339.
- 15 H. Ohara, T. Igarashi, K. Sakurai and T. Oshii, US 6121305, 2000; Chem. Abstr., 2000, 133, 232875.
- 16 H. Ohara, T. Igarashi, K. Sakurai and T. Oshii, JP 10306077, 1998; Chem. Abstr., 1999, 130, 38378.
- 17 S. Ujjwal, B. Dhanya, A.K. Seth, A.K. Sen, S. Kumar, Y.C. Yadov, T.C. Ghelani and R. Chawla, *Curr. Pharma Res.*, 2010, 2, 82.
- 18 N. Saha and A. Misra, J. Inorg. Biochem. 1995, 59, 234.
- 19 S.A.F. Rostom, Bioorg. Med. Chem., 2010, 18, 2767.
- 20 S. Saberi, H. Eshghi, M. Rahimizadeh and Kh. Abnous, Synlett, 2014, 889.
- 21 B. Harald, O. Gisela and P. Klaus, Naturwissenschaftliche Reihe 1984, 33, 67.

Copyright of Journal of Chemical Research is the property of Science Reviews 2000 Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.