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ABSTRACT

Eight nitrogen heterocycles, mono and disubstituted tetrazoles and oxadiazoles, were

synthesized from methyl D-glucopyranoside anomers. The monosubstituted tetrazoles

resulted from the reaction of 6-cyanoglucopyranoside derivatives with sodium azide.

By alkylation of the monosubstituted tetrazoles, the 1,5 and 2,5 disubstituted tet-

razoles were obtained. The monosubstituted tetrazoles were reacted with acetic an-

hydride to give the oxadiazoles.
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INTRODUCTION

Tetrazoles are an increasingly popular structural unit, often used as metabolically

stable surrogates for carboxylic acid groups, and as convenient lipophilic spacers in

pharmaceuticals.[1] This unit also has roles in coordination chemistry as a ligand, and in

various material science applications, including in specialty explosives.[2] There have

been considerable achievements in the practical application of tetrazoles, especially in

medicine and biochemistry.[3 – 5] Recent publications include the use of tetrazoles as

inhibitors of monoamine oxidase,[6] as antiviral and antibacterial agents,[7,8] and an-

tagonists of cerebellum-specific GABAA receptors[9] and angiotensin II.[10] The oxa-

diazoles also display biological activities such as fungicidal,[11] antibacterial[12] and

glycosidase inhibitors.[13] We are interested in the synthesis of heterocycles using car-

bohydrates as starting materials, a strategy that offers the possibility of synthesis of

compounds possessing chiral centers with the necessary enantiomeric purity required

for active biological compounds. In this context, we synthesized some heterocycles

using carbohydrates as starting materials.[14 – 17]

RESULTS AND DISCUSSION

The initial work centered on the preparation of methyl 2,3,4-tri-O-benzyl-6-cyano-6-

deoxy-D-glucopyranoside anomers 1 and 1 in five conventional synthesis steps starting

from methyl a(b)-D-glucopyranosides (Scheme 1). The starting materials were protected

as 4,6-di-O-benzylidene derivatives[18] and then the C-2 and C-3 hydroxyl groups were

O-benzylated.[19] Removal of the benzylidene group under LiAlH4 reduction con-

ditions[20] and replacement of the hydroxy group at C-6 by iodine[21] afforded the methyl

2,3,4-tri-O-benzyl-6-deoxy-6-iodo-a(b)-D-glucopyranosides (4 and 4 ). Treatment of

4 and 4 with potassium cyanide in DMF[22] gave nitriles 1 and 1 , respectively.

After the preparation of these compounds, we went on to obtain the target tetrazoles.

Several methods of tetrazole synthesis are known,[2,4,5,23] but the most conve-

nient method of synthesis of substituted tetrazoles involves the reaction of nitriles

with salts of hydrazoic acid.[2,5] Thus, products 1 and 1 were submitted to reaction

with sodium azide and ammonium chloride in DMF[16,17] to give 5-(methyl a/b-

2,3,4-tri-O-benzyl-6-deoxy-D-glucopyranos-6-yl)tetrazole 2 and 2 in 81% and 73%

yields, respectively.

Distinct oxadiazoles can be obtained by many methods.[12,24] In this work, we

synthesized 1,3,4-oxadiazoles 3 and 3 in 84% and 60% yields, respectively, by the

reaction of tetrazoles 2 and 2 with acetic anhydride and pyridine[12,16,17] at 110�C.

To construct disubstituted tetrazoles, the alkylation reactions of tetrazole anions are

often used.[25] However, due to the existence of the tetrazole tautomeric forms, al-

kylation gives mixtures of N(1)- and N(2)-alkylation isomers.[25] The ratio of these

regioisomers is affected by the electronic and steric effect of the substituent.[25] Due to

the two tautomeric forms of tetrazole, tetrazole 2 when reacted with iodine derivative

4 in the presence of anhydrous potassium carbonate in acetone,[6,17] gave a mixture of

the two alkylated tetrazoles: 2,5-bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-a-D-glucopyra-

nos-6-yl)-2H-tetrazole (5 ) (31%) and 1,5-bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-a-D-
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glucopyranos-6-yl)-1H-tetrazole (6 ) (34%) in an approximate 1:1 ratio. Tetrazole 2
by reaction with 4 under the same conditions described for 2 gave the regioisomers

5 (50%) and 6 (25%) in a 2:1 ratio. In a preliminary systematic conformational

research (Hyperchem Pro 6.0 – Molecular Mechanics), it was observed that when the

anomeric methoxy group is in the b position, there is a steric repulsion with the

nucleophilic glycoside moiety, and the alkylation on the tetrazolic ring occurs

preferentially at position 2. In contrast, when the anomeric methoxy group is a, the

cited repulsive interaction is absent, and alkylation occurs at positions 1 and 2 in the

same ratio (Scheme 1).

The structures of all the compounds obtained were confirmed by NMR

spectroscopy. However, it is interesting to remark on the unequivocal characterization

of the isomeric tetrazoles 5 and 6. The literature reports that tetrazole isomers with

methyl or alkyl substituents at positions 1 and 2 are readily distinguished by the 1H and
13C chemical shifts of the N-alkyl group. Alkyl groups bonded to N-1 are more shielded

by ca. 0.15–0.35 ppm in the 1H spectra and by ca. 2–6 ppm in the 13C spectra relative

to their corresponding N-2 isomers. However, HMBC experiments were carried out for

confirmation and revealed that the cross correlation of H6@ with tetrazolic carbon

occurs solely in derivatives 6 because of the 3J coupling constant.

Scheme 1. Reagents, conditions and yields: i, NaN3, DMF, NH4Cl, 95�C, 192 h (a) and 144 h (b),

81% (a) and 73% (b); ii, acetic anhydride, pyridine, 110�C, 96 h (a) and 144 h (b), 84% (a) and

60% (b); iii, K2CO3, acetone, compounds 2 and 4 , 70�C, 120 h, 5 (31%), 6 (34%);

compounds 2 e 4 , 70�C, 64 h, 5 (50%) and 6 (25%).

Synthesis of Nitrogen Heterocycles 435
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EXPERIMENTAL

General procedures. Melting points were determined on a Mettler FP80HT

apparatus and are uncorrected. Optical rotation was determined with a Perkin-Elmer

341 Polarimeter at 25�C. 13C and 1H NMR spectra were recorded on a Bruker Avance

DRX-400 spectrometer. Chemical shifts are reported in d units downfield from Me4Si.

Elemental analyses were carried out using a Perkin-Elmer 2400 CHN apparatus.

Column chromatography was performed with silica gel 60, 70-230 mesh (Merck). The

term ‘‘standard work-up’’ means that the organic layer was washed with satd NaCl

solution, dried over anhydrous Na2SO4, filtered, and the solvent was removed under

reduced pressure. Dry solvents were prepared as follows. DMF was dried over

potassium hydroxide and stirred for 24 hours at room temperature. The solution was

filtered and distilled under reduced pressure. Dry pyridine was prepared after agitation

with KOH for 17 h at room temperature, and then distilled. Potassium permanganate

was added to refluxing acetone until its color remained purple. The solution was

refluxed for 6 h more and distilled. Dry acetone was collected under desiccated K2CO3.

Methyl 2,3,4-tri-O-benzyl-6-cyano-6-deoxy- -D-glucopyranoside 1 .[22] To a

solution of methyl 2,3,4-tri-O-benzyl-6-deoxy-6-iodo-b-D-glucopyranoside (4 ) (1.00

g, 1.74 mmol) in dry DMF (25 mL), KCN (0.38 g, 5.85 mmol) was added and the

reaction mixture stirred at rt for 65 h. DMF was removed under reduced pressure,

giving a residue. Water was added, the aqueous solution extracted with CH2Cl2
(4 � 30 mL), and the combined organic extracts submitted to standard work-up. The

crude product was purified by column chromatography (10% EtOAc in hexane,

gradually increasing the percentage of EtOAc) to give product 1 (0.61 g, 74%) as a

white solid: [a]D + 32 (c 1.3, CHCl3); mp 69–73�C; 1H NMR (CDCl3, 400 MHz): d
7.37–7.23 (m, 15H, Ar), 4.96 (d, 1H, Jgem 10.9 Hz, 1 � PhCH2), 4.92 (d, 1H, Jgem

11.0 Hz, 1 � PhCH2), 4.91 (d, 1H, Jgem 11.2 Hz, 1 � PhCH2), 4.78 (d, 1H, Jgem 10.9

Hz, 1 � PhCH2), 4.70 (d, 1H, Jgem 11.0 Hz, 1 � PhCH2), 4.60 (d, 1H, Jgem 11.2 Hz,

1 � PhCH2), 4.35 (d, 1H, J1,2 7.8 Hz, H1), 3.65 (t, 1H, J3,4 9.1 Hz, H3), 3.58 (s, 3H,

MeO), 3.49 (ddd, 1H, J5,4 9.1, J5,6@ 7.7, J5,6’ 3.2 Hz, H5), 3.45 (dd, 1H, H2), 3.36 (t,

1H, H4), 2.70 (dd, 1H, Jgem 16.8 Hz, H6’), 2.43 (dd, 1H, H6@); 13C NMR (CDCl3, 100

MHz): d 138.3, 138.2, 137.5 (3 � C ipso), 128.6, 128.4, 128.3, 128.2, 128.1, 127.9,

127.7 (15 � Ar), 116.8 (CN), 104.6 (C1), 84.2 (C3), 82.2 (C2), 79.8 (C4), 75.6, 75.2,

74.8 (3 � PhCH2), 70.5 (C5), 57.2 (MeO), 21.0 (C6).

Anal. Calcd for C29H31NO5: C, 73.55; H, 6.60; N, 2.96. Found: C, 73.14; H, 6.59;

N, 2.86.

Treating the epimer 4 (3.15 g, 6.79 mmol) with KCN as described above for 4 ,

product 1 (2.36 g, 91%) was obtained as a whitish oil: [a]D + 46.8 (c 1.1, CHCl3); 1H

NMR (CDCl3, 400 MHz): d 7.36–7.24 (m, 15H, Ar), 5.01 (d, 1H, Jgem 10.9 Hz,

1 � PhCH2), 4.93 (d, 1H, Jgem 11.2 Hz, 1 � PhCH2), 4.80 (d, 1H, Jgem 10.9 Hz,

1 � PhCH2), 4.79 (d, 1H, Jgem 12.1 Hz, 1 � PhCH2), 4.65 (d, 1H, Jgem 12.1

Hz, 1 � PhCH2), 4.60 (d, 1H, Jgem 11.2 Hz, 1 � PhCH2), 4.57 (d, 1H, J1,2 3.6 Hz,

H1), 3.98 (t, 1H, J3,4 9.6 Hz, H3), 3.79 (ddd, 1H, J5,4 9.6, J5,6’ 7.0, J5,6@ 3.4 Hz, H5),

3.55 (dd, 1H, H2), 3.39 (s, 3H, MeO), 3.33 (t, 1H, H4), 2.62 (dd, 1H, Jgem 16.8 Hz,

H6’), 2.42 (dd, 1H, H6@); 13C NMR (CDCl3, 50 MHz): d 138.3, 137.7, 137.5 (3 � C

ipso), 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7 (15 � Ar), 116.9 (CN),
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98.0 (C1), 81.5 (C3), 79.8 (C2 or C4), 79.7 (C2 or C4), 75.6, 75.1, 73.4 (3 � PhCH2),

66.2 (C5), 55.4 (MeO), 20.7 (C6).

Anal. Calcd for C29H31NO5: C, 73.55; H, 6.60; N, 2.96. Found: C, 72.95; H, 6.59;

N, 2.99.

5-(Methyl 2,3,4-tri-O-benzyl-6-deoxy- -D-glucopyranos-6-yl)tetrazole 2 .[16,17]

To a solution of methyl 2,3,4-tri-O-benzyl-6-cyano-6-deoxy-b-D-glucopyranoside (1 )

(0.17 g, 0.36 mmol) in dry DMF (10 mL), NaN3 (0.28 g, 4.31 mmol) and NH4Cl (0.23

g, 4.30 mmol) were added. The solution was stirred at 95�C for 144 h. DMF was

removed under reduced pressure, giving a residue. Aqueous H2SO4 (3 mol.L� 1) was

added until pH 1 was reached. Water was added, the aqueous solution extracted with

CH2Cl2 (4 � 25 mL), and the combined organic extracts submitted to standard work-

up. The crude product was purified by column chromatography (30% EtOAc in hexane,

gradually increasing the percentage of EtOAc) to give product 2 (0.14 g, 73%) as a

white solid: [a]D + 2 (c 1.2, Me2SO); mp 217–219�C; 1H NMR (Me2SO-d6, 400

MHz): d 16.03 (br s, 1H, NH), 7.89–7.26 (m, 15H, Ar), 4.83 (d, 1H, Jgem 11.1 Hz,

1 � PhCH2), 4.82 (d, 1H, Jgem 11.1 Hz, 1 � PhCH2), 4.78 (d, 1H, Jgem 11.5 Hz,

1 � PhCH2), 4.73 (d, 2H, Jgem 11.1 Hz, 2 � PhCH2), 4.62 (d, 1H, Jgem 11.5

Hz, 1 � PhCH2), 4.32 (d, 1H, J1’,2’ 7.8 Hz, H1’), 3.72 (td, 1H, J5’,6@ 9.1, J5’,6’ 3.0 Hz,

H5’), 3.65 (t, 1H, J3’,4’ 9.1 Hz, H3’), 3.42 (t, 1H, H4’), 3.36 (dd, 1H, Jgem 15.1 Hz, H6’),
3.29–3,25 (m, 1H, H2’), 3.25 (s, 3H, MeO), 3.09 (dd, 1H, H6@); 13C NMR (Me2SO-d6,

100 MHz): d 153.0 (C5), 138.5, 138.4, 138.1 (3 � C ipso), 128.2, 128.1, 128.0, 127.9,

127.8, 127.6, 127.5, 127.3 (15 � Ar), 103.3 (C1’), 83.5 (C3’), 81.6 (C2’), 80.6 (C4’),
74.4, 74.0, 73.5 (3 � PhCH2), 71.7 (C5’), 56.0 (MeO), 25.8 (C-6’).

Anal. Calcd for C29H32N4O5: C, 67.43; H, 6.24; N, 10.85. Found: C, 67.13; H,

6.36; N, 11.25.

Treatment of product 1 (2.21 g, 4.66 mmol) as described above for 1 gave

product 2 (1.94 g, 81%) as a white solid: [a]D + 13.6 (c 1.2, CHCl3); mp 218–223�C;
1H NMR (CDCl3, 400 MHz): d 13.23 (br s, 1H, NH), 7.34–7.24 (m, 15H, Ar), 4.97 (d,

1H, Jgem 10.9 Hz, 1 � PhCH2), 4.89 (d, 1H, Jgem 11.0 Hz, 1 � PhCH2), 4.80 (d, 1H,

Jgem 10.9 Hz, 1 � PhCH2), 4.76 (d, 1H, Jgem 12.0 Hz, 1 � PhCH2), 4.65 (d, 1H, Jgem

11.0 Hz, 1 � PhCH2), 4.62 (d, 1H, Jgem 12.0 Hz, 1 � PhCH2), 4.60 (d, 1H, J1’,2’ 3.6

Hz, H1’), 4.00–3.93 (m, 1H, H5’), 3.99 (t, 1H, J3’,4’ 9.7 Hz, H3’), 3.56 (dd, 1H, H2’),
3.48 (dd, 1H, Jgem 15.3, J6’,5’ 3.6 Hz, H6’), 3.22 (s, 3H, MeO), 3.19 (t, 1H, J4’,5’ 9.7 Hz,

H4’), 3.14 (dd, 1H, J6@,5’ 9.7 Hz, H6@); 13C NMR (CDCl3, 50 MHz): d 153.3 (C5),

138.3, 137.8, 137.6 (3 � C ipso), 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9,

127.8, 127.7 (15 � Ar), 98.0 (C1’), 81.5 (C3’), 80.3 (C4’), 79.9 (C2’), 75.7, 75.1, 73.3

(3 � PhCH2), 67.9 (C5’), 55.4 (MeO), 25.9 (C6’).
Anal. Calcd for C29H32N4O5: C, 67.43; H, 6.24; N, 10.85. Found: C, 67.19; H,

5.99; N, 10.89.

2-Methyl-5-(methyl 2,3,4-tri-O-benzyl-6-deoxy- -D-glucopyranos-6-yl)-1,3,4-
oxadiazole 3 .[12,16,17] To a stirred solution of 5-(methyl 2,3,4-tri-O-benzyl-6-deoxy-

b-D-glucopyranos-6-yl)tetrazole (2 ) (0.15 g, 0.29 mmol) in dry pyridine (3 mL), acetic

anhydride (9 mL, 99.10 mmol) was added. The solution was stirred at 110�C for 144 h,

then cooled to rt and cold aq HCl (19 mL, 3 mol.L� 1) was added. Water was added,

the aqueous solution extracted with CH2Cl2 (4 � 25 mL), and the combined organic

Synthesis of Nitrogen Heterocycles 437
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extracts submitted to standard work-up. The crude product was purified by column

chromatography (40% EtOAc in hexane, gradually increasing the percentage of EtOAc)

to give product 3 (0.09 g, 60%) as a white solid: [a]D + 13.2 (c 0.6, CHCl3); mp 101–

105�C; 1H NMR (CDCl3, 400 MHz): d 7.34–7.25 (m, 15H, Ar), 4.95 (d, 1H, Jgem 10.9

Hz, 1 � PhCH2), 4.93 (d, 1H, Jgem 11.5 Hz, 1 � PhCH2), 4.90 (d, 1H, Jgem 11.7 Hz,

1 � PhCH2), 4.78 (d, 1H, Jgem 10.9 Hz, 1 � PhCH2), 4.69 (d, 1H, Jgem 11.7 Hz,

1 � PhCH2), 4.66 (d, 1H, Jgem 11.5 Hz, 1 � PhCH2), 4.30 (d, 1H, J1’,2’ 7.8 Hz, H1’),
3.75 (td, 1H, J5’,6@ 8.8 Hz, J5’,6’ 3.8, H5’), 3.68 (t, 1H, J3’,4’ 8.8 Hz, H3’), 3.45 (s, 3H,

MeO), 3.45–3.39 (m, 1H, H2’), 3.41 (t, 1H, H4’), 3.26 (dd, 1H, Jgem 15.4 Hz, H6’),
2.93 (dd, 1H, H6@), 2.43 (s, 3H, Me); 13C NMR (CDCl3, 100 MHz): d 164.2 (C5),

163.7 (C2), 138.5, 138.4, 137.9 (3 � C ipso), 128.5, 128.4, 128.3, 128.1, 128.0, 127.9,

127.8, 127.7 (15 � Ar), 104.5 (C1’), 84.5 (C3’), 82.4 (C2’), 80.7 (C4’), 75.7, 74.9, 74.7

(3 � PhCH2), 72.0 (C5’), 56.9 (MeO), 28.3 (C6’), 10.8 (Me).

Anal. Calcd for C31H34N2O6: C, 70.17; H, 6.46; N, 5.28. Found: C, 69.97; H, 6.29;

N, 5.32.

The treatment of tetrazole 2 (0.20 g, 0.39 mmol) as described above for 2 gave

product 3 (0.17 g, 84%) as a whitish oil: [a]D + 42.7 (c 1.2, CHCl3); 1H NMR

(CDCl3, 400 MHz): d 7.36–7.25 (m, 15H, Ar), 5.01 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2),

4.95 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2), 4.81 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2), 4.78

(d, 1H, Jgem 12.2 Hz, 1 � PhCH2), 4.66 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2), 4.63 (d,

1H, Jgem 12.2 Hz, 1 � PhCH2), 4.50 (d, 1H, J1’,2’ 3.6 Hz, H1’), 4.12–4.02 (m, 1H,

H5’), 4.01 (t, 1H, J3’,4’ 9.6 Hz, H3’), 3.50 (dd, 1H, H2’), 3.34 (t, 1H,J4’,5’ 9.6 Hz, H4’),
3.29 (s, 3H, MeO), 3.19 (dd, 1H, Jgem 15.4, J6’,5’ 3.7 Hz, H6’), 2.89 (dd, 1H, J6@,5’ 8.4

Hz, H6@), 2.42 (s, 3H, Me); 13C NMR (CDCl3, 50 MHz): d 164.2 (C5), 163.6 (C2),

138.4, 137.9, 137.8 (3 � C ipso), 128.3, 128.0, 127.9, 127.8, 127.7, 127.6 (15 � Ar),

97.8 (C1’), 81.7 (C3’), 80.6 (C4’), 79.8 (C2’), 75.6, 74.8, 73.2 (3 � PhCH2), 67.5 (C5’),
55.2 (MeO), 27.9 (C6’), 10.7 (Me).

Anal. Calcd for C31H34N2O6: C, 70.17; H, 6.46; N, 5.28. Found: C, 69.98; H, 6.44;

N, 5.33.

2,5-Bis(methyl 2,3,4-tri-O-benzyl-6-deoxy- -D-glucopyranos-6-yl)-2H-tetrazole
5 and 1,5-Bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-bb-D-glucopyranos-6-yl)-1H-tetra-
zole 6 .[6,17] To a solution of 5-(methyl 2,3,4-tri-O-benzyl-6-deoxy-b-D-glucopyranos-

6-yl)tetrazole (2 ) (0.35 g, 0.68 mmol) and methyl 2,3,4-tri-O-benzyl-6-deoxy-6-iodo-

b-D-glucopyranoside (4 ) (0.39 g, 0.68 mmol) in dry acetone (120 mL), anhydrous

K2CO3 (0.94 g, 6.81 mmol) was added. The solution was stirred at 70�C for 64 h in a

pressure reactor. After cooling to rt, the solvent was removed, water was added, the

aqueous solution was extracted with EtOAc (4 � 20 mL) and the combined organic

extracts were submitted to standard work-up. The crude product was purified by

column chromatography (10% EtOAc in hexane, gradually increasing the percentage of

EtOAc) to give product 5 (0.33 g, 50%) and 6 (0.16 g, 25%) as white solids.

Compound 5 : [a]D + 18 (c 1.0, CHCl3); mp 122–123�C; 1H NMR (CDCl3, 400

MHz): d 7.32–7.27 (m, 30H, Ar), 4.95 (d, 1H, Jgem 10.9 Hz, 1 � PhCH2), 4.94 (d, 1H,

Jgem 10.9 Hz, 1 � PhCH2), 4.93 (d, 1H, Jgem 10.9 Hz, 1 � PhCH2), 4.92 (d, 1H, Jgem

11.2 Hz, 1 � PhCH2), 4.88 (d, 1H, Jgem 11.1 Hz, 1 � PhCH2), 4.86 (d, 1H, Jgem 11.1

Hz, 1 � PhCH2), 4.78 (d, 2H, Jgem 10.9 Hz, 2 � PhCH2), 4.73 (dd, 1H, J6b@,6a@ 13.9,

J6b@,5@ 3.1 Hz, H-6b@), 4.72 (d, 1H, Jgem 11.2 Hz, 1 � PhCH2), 4.71 (d, 1H, Jgem 10.9
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Hz, 1 � PhCH2), 4.67 (d, 1H, Jgem 11.1 Hz, 1 � PhCH2), 4.65 (d, 1H, Jgem 11.1 Hz,

1 � PhCH2), 4.56 (dd, 1H, J6a@,5@ 7.6 Hz, H-6a@), 4.27 (d, 1H, J1,2 7.8 Hz, H1’ or H1@),
4.21 (d, 1H, J1,2 7.7 Hz, H1’ or H1@), 3.86–3.80 (m, 2H, H5’, H-5@), 3.68 (t, 1H, J3,4

9.1 Hz, H3’ or H3@), 3.67 (t, 1H, J3,4 9.1, H3’ or H3@), 3.48 (t, 1H, J4’,5’ 9.1 Hz, H4’),
3.47 (t, 1H, J4@,5@ 9.1 Hz, H4@), 3.42–3.34 (m, 2H, H2’, H2@), 3.38 (s, 3H, MeO’ or

MeO@), 3,35 (dd, 1H, J6b’,6a’ 15.3, J6b’,5’ 3.6 Hz, H6b’), 3.32 (s, 3H, MeO’ or MeO@),
3.08 (dd, 1H, J6a’,5’ 8.1 Hz, H6a’); 13C NMR (CDCl3, 100 MHz): d 163.4 (C-5), 138.6,

138.4, 138.3, 138.2, 137.8 (6 � C ipso), 128.6, 128.5, 128.4, 128.3, 128.2, 128.1,

128.0, 127.9, 127.8, 127.7, 127.6, 127.5 (30 � Ar), 104.5, 104.4 (C1’, C1@), 84.7, 84.5

(C3’, C3@), 82.5, 82.2 (C2’, C2@), 81.0, 78.4 (C4’, C4@), 75.7, 75.6, 75.0, 74.9, 74.7

(6 � PhCH2), 72.6 (C5’), 72.4 (C5@), 56.8, 56.7 (MeO’, MeO@), 53.5 (C6@), 28.2 (C6’).
Anal. Calcd for C57H62N4O10: C, 71.08; H, 6.49; N, 5.82. Found: C, 69.97; H,

6.29; N, 5.32.

Compound 6 : [a]D + 14 (c 0.9, CHCl3); mp 110–114�C; 1H NMR (CDCl3, 400

MHz): d 7.36–7.25 (m, 30H, Ar), 4.97 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2), 4.96 (d, 1H,

Jgem 10.8 Hz, 1 � PhCH2), 4.95 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2), 4.94 (d, 1H, Jgem

10.5 Hz, 1 � PhCH2), 4.87 (d, 1H, Jgem 11.0 Hz, 1 � PhCH2), 4.86 (d, 1H, Jgem 11.0

Hz, 1 � PhCH2), 4.81 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2), 4.79 (d, 1H, Jgem 10.5 Hz,

1 � PhCH2), 4.78 (d, 2H, Jgem 10.8 Hz, 2 � PhCH2), 4.71 (dd, 1H, J6b@,6a@ 14.5, J6b@,5@

2.8 Hz, H6b@), 4.67 (d, 1H, Jgem 11.0 Hz, 1 � PhCH2), 4.66 (d, 1H, Jgem 11.0 Hz,

1 � PhCH2), 4.38 (dd, 1H, J6a@,5@ 7.5 Hz, H6a@), 4.22 (d, 1H, J1’,2’ 7.9 Hz, H1’), 4.18

(d, 1H, J1@,2@ 7.9 Hz, H1@), 3.74 (ddd, 1H, J5’,4’ 9.7, J5’,6a’ 8.2, J5’,6b’ 3.2 Hz, H5’), 3.72–

3.66 (m, 1H, H5@), 3.69 (t, 1H, J3,4 9.0 Hz, H3’ or H3@), 3.68 (t, 1H, J3,4 9.1 Hz, H3’ or

H3@), 3.47 (dd, 1H, J6b’,6a’ 15.1 Hz, H6b’), 3.45–3.34 (m, 4H, H2’, H2@, H4’, H4@), 3.33

(s, 3H, MeO’ or MeO@), 3.29 (s, 3H, MeO’ or MeO@), 3.07 (dd, 1H, H6a’); 13C NMR

(CDCl3, 100 MHz): d 153.8 (C5), 138.4, 138.3, 138.2, 138.1, 138.0, 137.8 (6 � C

ipso), 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5

(30 � Ar), 104.6, 104.5 (C1’, C1@), 84.4, 84.3 (C3’, C3@), 82.2, 82.0, 80.2, 78.1 (C2’,
C2@, C4’, C4@), 75.6, 74.9, 74.8, 74.7 (6 � PhCH2), 73.4 (C5@), 73.1 (C5’), 57.0

(MeO’), 57.0 (MeO@), 47.7 (C6@), 25.7 (C6’).
Anal. Calcd for C57H62N4O10: C, 71.08; H, 6.49; N, 5.82. Found: C, 70.60; H,

6.31; N, 5.76.

By treatment of tetrazole 2 (1.00 g, 1.94 mmol) with 4 (1.10 g, 1.92 mmol) as

described above for 2 , product 5 (0.57 g, 31%) and 6 (0.64g, 34%) were obtained

as whitish oils.

Compound 5 : [a]D + 47.1 (c 1.0, CHCl3); 1H NMR (CDCl3, 400 MHz): d 7.33–

7.28 (m, 30H, Ar), 5.00 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2), 4.98 (d, 1H, Jgem 10.8 Hz,

1 � PhCH2), 4.96 (d, 1H, Jgem 11.1 Hz, 1 � PhCH2), 4.95 (d, 1H, Jgem 11.7 Hz, 1 �
PhCH2), 4.81 (d, 1H, Jgem 10.8 Hz, 1 � PhCH2), 4.80 (d, 1H, Jgem 10.8 Hz,

1 � PhCH2), 4.75 (d, 1H, Jgem 12.1 Hz, 1 � PhCH2), 4.74 (d, 1H, Jgem 12.0 Hz, 1 �
PhCH2), 4.72 (d, 1H, Jgem 11.1 Hz, 1 � PhCH2), 4.71 (d, 1H, Jgem 11.7 Hz,

1 � PhCH2), 4.70 (dd, 1H, J6b@,6a@ 14.7, J6b@,5@ 2.8 Hz, H6b@), 4.61 (d, 1H, Jgem 12.1

Hz, 1 � PhCH2), 4.59 (d, 1H, Jgem 12.0 Hz, 1 � PhCH2), 4.57 (dd, 1H, J6a@,5@ 8.3 Hz,

H6a@), 4.44 (d, 1H, J1@,2@ 3.5 Hz, H1@), 4.43 (d, 1H, J1’,2’ 3.5 Hz, H1’), 4.17–4.07 (m,

2H, H5’ and H5@), 4.01 (t, 1H, J3@,4@ 9.4 Hz, H3@), 4.00 (t, 1H, J3’,4’ 9.4 Hz, H3’), 3.45

(dd, 1H, H2@), 3.41 (dd, 1H, H2’), 3.35 (t, 1H, J4’,5’ 9.4 Hz, H4’), 3.37–3.31 (m, 1H,

H4@), 3.30 (dd, 1H, J6b’,6a’ 14.7, J6b’,5’ 3.4 Hz, H6b’), 3.19 (s, 3H, MeO’ or MeO@), 3.11
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(s, 3H, MeO’ or MeO@), 3.00 (dd, 1H, J6a’,5’ 8.5 Hz, H6a’); 13C NMR (CDCl3, 100

MHz): d 163.5 (C5), 138.6, 138.3, 138.2, 138.0, 137.8 (6 � C ipso), 128.6, 128.5,

128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4 (30 � Ar), 97.8

(C1’ or C1@), 97.7 (C1’ or C1@), 81.9 (C3@), 81.8 (C3’), 81.0 (C4’), 80.0 (C2’), 79.7

(C2@), 78.3 (C4@), 75.8, 75.7, 74.9, 74.8, 73.4, 73.3 (6 � PhCH2), 68.4 (C5’), 68.2

(C5@), 55.2 (MeO’ or MeO@), 55.1 (MeO’ or MeO@), 53.4 (C6@), 27.9 (C6’).
Anal. Calcd for C57H62N4O10: C, 71.08; H, 6.49; N, 5.82. Found: C, 70.89; H,

6.32; N, 5.65.

Compound 6 : [a]D + 51.3 (c 1.0, CHCl3); 1H NMR (CDCl3, 400 MHz): d 7.34–

7.26 (m, 30H, Ar), 4.99 (d, 1H, Jgem 10.9 Hz, 1 � PhCH2), 4.98 (d, 1H, Jgem 11.0 Hz,

1 � PhCH2), 4.96 (d, 1H, Jgem 12.3 Hz, 1 � PhCH2), 4.95 (d, 1H, Jgem 12.5 Hz,

1 � PhCH2), 4.81 (d, 1H, Jgem 10.9 Hz, 1 � PhCH2), 4.80 (d, 1H, Jgem 11.0 Hz, 1 �
PhCH2), 4.76 (d, 1H, Jgem 11.7 Hz, 1 � PhCH2), 4.74 (d, 1H, Jgem 11.7 Hz,

1 � PhCH2), 4.73 (d, 1H, Jgem 12.3 Hz, 1 � PhCH2), 4.72 (d, 1H, Jgem 12.5 Hz,

1 � PhCH2), 4.63 (d, 1H, Jgem 11.7 Hz, 1 � PhCH2), 4.60 (d, 1H, Jgem 11.7 Hz, 1 �
PhCH2), 4.48 (dd, 1H, J6b@,6a@ 14.4, J6b@,5@ 2.5 Hz, H6b@), 4.39 (d, 1H, J1’,2’ 3.6 Hz,

H1’), 4.38 (d, 1H, J1@,2@ 3.6 Hz, H1@), 4.15 (dd, 1H, J6a@,5@ 8.0 Hz, H6a@), 4.00–3.86 (m,

2H, H5’ and H5@), 3.96 (t, 2H, J3’,4’ 9.4 Hz, H3’ and H3@), 3.43 (dd, 1H, H2’), 3.40 (dd,

1H, H2@), 3.32–3.23 (m, 3H, H4’, H4@ and H6b’), 3.09 (s, 3H, MeO’ or MeO@), 2.98 (s,

3H, MeO’ or MeO@), 2.81 (dd, 1H, J6a’,6b’ 15.1, J6a’,5’ 8.8 Hz, H6a’); 13C NMR (CDCl3,

100 MHz): d 153.7 (C5), 138.5, 138.3, 138.2, 138.0, 137.9, 137.8 (6 � C ipso), 128.6,

128.5, 128.4, 128.3, 128.0, 127.9, 127.8, 127.7, 127.6 (30 � Ar), 97.8 (C1’ or C1@),
97.7 (C1’ or C1@), 81.8 (C3’ and C3@), 80.3 (C4’), 79.8 (C2’ or C2@), 79.7 (C2’ or C2@),
78.1 (C4@), 75.7, 75.6, 74.7, 74.6, 73.3, 73.2 (6 � PhCH2), 69.1 (C5@), 68.7 (C5’), 55.1

(MeO’ or MeO@), 55.0 (MeO’ or MeO@), 47.5 (C6@), 25.3 (C6’).
Anal. Calcd for C57H62N4O10: C, 71.08; H, 6.49; N, 5.82. Found: C, 70.91; H,

6.35; N, 5.72.
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