This article was downloaded by: [Florida Atlantic University] On: 15 November 2014, At: 05:19 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK # Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20 # SYNTHESIS OF POLYDENTATE LIGANDS CONTAINING AMIDES AND THIOLS FOR BIOMIMETIC METAL COMPLEXES Laurent Heinrich $^{\rm a}$, Jean-Claude Chottard $^{\rm a}$ & Yun Li $^{\rm b}$ ^a Université René Descartes , Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (CNRS UMR8601), 45 rue des Saints Péres, Paris Cedex 06, 75270, France b Université René Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (CNRS UMR8601), 45 rue des Saints Péres, Paris Cedex 06, 75270, France Published online: 09 Nov 2006. To cite this article: Laurent Heinrich , Jean-Claude Chottard & Yun Li (2001) SYNTHESIS OF POLYDENTATE LIGANDS CONTAINING AMIDES AND THIOLS FOR BIOMIMETIC METAL COMPLEXES, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 31:9, 1323-1333, DOI: 10.1081/SCC-100104041 To link to this article: http://dx.doi.org/10.1081/SCC-100104041 Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions ## SYNTHESIS OF POLYDENTATE LIGANDS CONTAINING AMIDES AND THIOLS FOR BIOMIMETIC METAL COMPLEXES Laurent Heinrich, Jean-Claude Chottard, and Yun Li* Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (CNRS UMR8601), Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France #### ABSTRACT Three pentadentate " N_2S_3 " and one tetradentate " N_2S_2 " new ligands with "N" = CONH and "S" = SH have been synthesized. The key step is the direct diamide formation from the malonyl diester and the amines in the presence of trimethylaluminum. Nitrile hydratases (NHases) are metalloenzymes that contain a non-heme iron(III) or a non-corrinoid cobalt(III) and catalyze the hydration of nitriles to amides. ¹⁻³ Recent x-ray crystallographic structures of NHases from *Rhodococcus* sp.R312 and *Rhodococcus* sp.N771 indicated that the iron(III) is coordinated to two nitrogen atoms from peptide bonds of the main chain and three cystein sulfur atoms, two of which are post-translationally oxidized to cystein sulfinic (RSO₂) and sulfenic (RSO) moieties. ^{4,5} Despite the structural information brought by x-ray diffraction data, post-translational oxidation of bound cysteins remains to be ^{*} Corresponding author. understood and it is not yet clear how NHases work. The study of relevant mimetic complexes should help to answer these questions. As part of our research program directed toward the synthesis of biomimetic complexes of NHases, different iron(III) and cobalt(III) complexes with thiolato and N-carboxamido ligands were to be studied. Recently, some model complexes of NHases have been reported, $^{6-8}$ but none of them has the N_2S_3 (with "N" = CONH and "S" = SH) coordination sphere present in the enzyme metal center. One of the major reasons for this lack is probably the synthetic difficulty to accede to N_2S_3 ligands. To our knowledge, the synthesis of polydentate ligands containing two amide and three thiol groups has not been reported so far. Only a N_2S_2 ligand similar to 4 has been prepared in low yield (37%). In this paper we report the synthesis of the following three N_2S_3 ligands **1–3** and the N_2S_2 ligand **4** (Fig. 1). Our first route to the formation of the diamide moiety consisted of a classical double-coupling reaction between a diacid and two equivalents of an amino compound. The diacid **8** was prepared in good yield by condensation of diethyl 2-methylmalonate (**6**) with benzylchloromethylsulfide (**5**) in anhydrous DMF in the presence of sodium hydride, followed by a double saponification (Scheme 1). **5** was prepared by a smooth and high-yielding method from bromochloromethane, benzyl mercaptan, and potassium hydroxide using triethylbenzylammonium chloride (TEBAC), ¹⁰ as phase-transfer catalyst. It was more satisfactory than using benzyl mercaptan and 1,3,5-trioxane in the presence of hydrogenchloride (gas). ¹¹ Figure 1. N_2S_3 and N_2S_2 ligands Scheme 1. The diacid **8**, converted in situ into the dicarbonylchloride (SOCl₂) and then treated with **9**¹² in the presence of Et₃N in CH₂Cl₂ at 25°C gave the desired diamide **10** in 53% yield; surprisingly, the side-product **11**, resulting from the fragmentation of the malonic function was also formed in 18% yield (Scheme 2); Lower temperature (0°C) gave the mixture **10**:11 in a 85:15 ratio. Other conventional coupling reagents¹³ such as 1,3-diclohexylcarbodiimide (DCC) and DCC / 1-hydroxybenzotriazole (HOBt) gave similar results. Carbonyldiimidazole (CDI) gave the monoamide **11** (65% yield) as the only isolable product. All efforts to separate the diamide **10** from the monoamide **11** failed. Even after total deprotection of the thiol groups, the two compounds remained unseparable. Since we needed highly pure ligands for metal complexation, the presence of the monoamide was not acceptable. Another strategy was then adopted. The direct amidation of the diester 7 by the amine 9 in the presence of trimethylaluminum¹⁴ in anhydrous CH₂Cl₂ at 40°C afforded the diamide 10 as the unique product in 80% yield (Scheme 3). This reaction is very sensitive to higher temperature: the use of toluene at 80°C for 72 h gave exclusively the monoamide 11 in 60% yield. Scheme 3. The procedure was successfully applied to the diester 12 and the amine 9 to afford the diamide 13 in 82% yield. The corresponding monoamide 16 (vide infra) was also obtained when the reaction was conducted in toluene at 80°C. A third diamide 15 was prepared from 7 and 14 in good yield following the same methodology. The three N_2S_3 ligands 1, 2, and 3 were obtained, respectively, by debenzylation of 10, 13, and 15 with sodium in liquid ammonia and anhydrous THF in good yields (Scheme 3). The formation of the monoamides 11 and 16 is tentatively assigned to a fragmentation of the malonic diamide under basic conditions assisted by aluminum (Scheme 4). Scheme 4. Finally, the preparation of the N_2S_2 ligand 4 was rather straightforward from dimethylmalonyl dichloride (17) and 1-amino-2-methyl-2-propanethiol hydrochloride (18) with triethylamine in anhydrous CH_2Cl_2 in 91% yield (Scheme 5). No trace of monoamide was detected under these conditions. Scheme 5. Preliminary results using these ligands are already interesting: ligand 1, upon deprotonation and complexation with Fe(III), followed by spontaneous air oxidation, afforded a pentacoordinated complex, with one sulfinato ligand (RSO₂) $[(N_2S_2S\{O\}O)Fe]^{2-}$. It is the first example of an O-sulfinato-iron(III) complex obtained by O_2 oxidation of a thiolato ligand. Ligand 4, upon deprotonation and complexation with Co(III), gave a rather rare, tetracoordinated, square-planar $[(N_2S_2)Co]^-$ complex. Other iron(III) or cobalt(III) complexes using 1–4 as ligands are currently under investigation. #### **EXPERIMENTAL** Benzylchloromethylsulfide (BnSCH₂Cl) (5): To a solution of benzylthiol (15.6 g, 0.126 mol) in CH₂ClBr (1 L) were added successively triethylbenzylammonium chloride (TEBAC, 3.05 g, 0.013 mol) and a fine powder of potassium hydroxide (10.2 g, 0.182 mol) under argon. After vigorous stirring at room temperature for 1 h, a saturated aq. solution of NH₄Cl was added to the mixture to reach pH \cong 7, the organic layer was washed with water (100 mL), dried (Na₂SO₄), and evaporated to afford BnSCH₂Cl (5) as a pure (NMR), colorless oil (21.8 g, 100%). This product was used in the next step without further purification. ¹H NMR (250 MHz, CDCl₃): δ 7.34–7.26 (m, 5 H, Ar), 4.54 (s, 2H, SCH₂Cl), 3.89 (s, 2H CH₂Ph). Diethyl 2-(benzylthiomethyl)-2-methylmalonate (7): NaH (60% in mineral oil, 556 mg, 13.9 mmol) was added in small portions under Ar to a solution of BnSCH₂Cl (5) (2.168 g, 12.6 mmol) and diethyl 2-methylmalonate (6) (2.19 g, 12.6 mmol) in anhydrous DMF (55 mL) cooled to -10° C. After 1.5 h at -10° C and 16 h at 25°C, aq. HCl 1M was added to reach pH \cong 7 and the solvents were evaporated under reduced pressure. Water (30 ml) was added and the mixture extracted with Et₂O (3 × 30 mL). The organic layer was washed with water $(2 \times 20 \text{ mL})$ dried (Na_2SO_4) , and evaporated. The crude product was purified by chromatography over silica gel (1:9 EtOAc-cyclohexane) to afford 7 as a colorless oil (2.93 g, 75%). ¹H NMR (250 MHz, CDCl₃): δ 7.29–7.19 (m, 5H, Ar), 4.15 (q, 4H, J=7.1 Hz, OCH_2CH_3), 3.70 (s, 2H, SCH_2Ph), 2.97 (s, 2H, CH_2S), 1.45 (s, 3H, CH_3), 1.21 (t, 6H, OCH₂CH₃); 13 C NMR (63 MHz, CDCl₃): δ 171.06 (CO), 138.01 (Ar-C), 128.87 (Ar-CH), 128.45 (Ar-CH), 127.05 (Ar-CH), 61.48 (OCH_2CH_3) , 54.81 $(C(CO)_2)$, 37.95 (SCH_2Ph) , 37.11 (SCH_2) , 19.72 (CH_3) , $13.94 (OCH_2CH_3)$; MS (CI/NH_3) : 311 (MH^+) , 328 $(M+NH_4^+)$; IR $(CHCl_3)$: ν 1730 cm⁻¹ (CO); Anal. calc. for C₁₆H₂₂O₄S (310.42): C 61.91, H 7.14. Found: C 61.98, H 7.28. 2-methyl-2-(benzylthiomethyl)-malonic diacid (8): Aq. 2M potassium hydroxide solution (58 mL) was added to a solution of the diester 7 (1.085 g, 3.5 mmol) in ethanol (95%, 80 ml). After 3 days at 25°C, ethanol was evaporated and aq. 1M HCl was added at 0°C to reach pH \cong 1. The mixture was extracted with Et₂O (3 × 100 mL). The organic layer was washed with aq. saturated NaCl (50 ml), dried (Na₂SO₄), and evaporated to afford 8 as a pure (NMR), colorless solid (882 mg, 99%). ¹H NMR (250 MHz, CDCl₃): δ 8.96 (s br., 2H, D₂O exchangeable, OH), 7.29–7.17 (m, 5H, Ar), 3.73 (s, 2H, SCH₂Ph), 2.98 (s, 2H, SCH₂), 1.52 (s, 3H, CH₃); ¹³C NMR (63 MHz, CDCl₃): δ 177.03 (CO), 137.61 (Ar-C), 128.94 (Ar-CH), 128.56 (Ar-CH), 127.24 (Ar-CH), 55.18 (C(CO)₂), 38.05 (SCH₂Ph), 36.51 (SCH₂), 19.66 (CH₃); MS (SCI/NH₃): 228 (M-CO₂+NH₄⁴); IR (CHCl₃): ν 3680, $3500~cm^{-1}$ (OH), 1710, 1720 cm^{-1} (CO); Anal. calc. for $C_{12}H_{14}O_4S$ (254.31): C 56.68, H 5.55, S 12.61. Found: C 56.71, H 5.59, S 12.41. Diethyl 2-(2-benzylthioethyl)-2-methylmalonate (12): NaH (60% in mineral oil, 1 g, 25 mmol) was added in small portions under Ar to a solution of benzylthiol (2.912 g, 23.5 mmol) in anhydrous DMF (20 mL) cooled to -10° C (ice-NaCl bath). After 0.5 h at -10° C, the mixture was added dropwise to a solution of the diethyl 2-(2-bromoethyl)-2-methylmalonate¹⁷ (6.504 g, 23.1 mmol) in anhydrous DMF (20 mL) at 0°C. After 16 h at 25°C, aq. HCl 1M was added to the reaction to reach pH \cong 1 and the solvents were evaporated under reduced pressure. Water (50 mL) was added and the mixture extracted with EtOAc (2 × 100 mL). The organic layer was washed with water (2 × 50 mL), dried (Na₂SO₄), and evaporated. The crude product was purified by chromatography on silica gel (1:1 CH₂Cl₂-cyclohexane) to afford **12** as a colorless oil (5.781 g, 77%). ¹H NMR (250 MHz, CDCl₃): δ 7.29–7.20 (m, 5H, Ar), 4.13 (q, 4H, J=7.1 Hz, OC H_2 CH₃), 3.70 (s, 2H, SCH₂Ph), 2.37–2.31 (m, 2H, CH₂CH₂S), 2.10–2.15 (m, 2H, CH₂CH₂S), 1.35 (s, 3H, CH₃), 1.20 (t, 6H, OCH₂CH₃); 13 C NMR (63 MHz, CDCl₃): δ 171.73 (CO), 138.19 (Ar-C), 128.84 (Ar-CH), 128.44 (Ar-CH), 126.96 (Ar-CH), 61.31 (OCH₂CH₃), 53.39 (C(CO)₂), 35.96, 35.63 (SCH₂Ph, SCH₂), 26.01 (CH₂CH₂S), 19.89 (CH₃), 13.94 (OCH₂CH₃); MS (CI/NH₃): 342 $(M+NH_4^+)$, 325 (MH^+) ; IR $(CHCl_3)$: ν 1728 cm⁻¹ (CO); High Resolution MS calc. for $C_{17}H_{25}O_4S$ (M⁺): 325.1474. Found: 325.1478. ### General Procedure for the Synthesis of Diamides A solution of trimethylaluminum in heptane (2M, 7.2 mL, 14.4 mmol) was added dropwise under argon to a solution of the amino compound (11 mmol) in anhydrous CH_2Cl_2 (5 mL) cooled to $-15^{\circ}C$. After stirring at 25°C until no more methane evolved, the reaction was cooled to $0^{\circ}C$ and a solution of the starting diester (3.7 mmol) in anhydrous CH_2Cl_2 (3 mL) was added. After 48 h at $40^{\circ}C$ (bath), the mixture cooled to $-15^{\circ}C$ was carefully acidified by conc. HCl (pH \cong 1), extracted with EtOAc (3 \times 40 mL), and the combined organic layers were washed with satured aq. NaHCO₃ (to pH 8), and water (2 \times 20 mL), dried (MgSO₄) and evaporated. The crude product was purified by chromatography on silica gel (1:4 EtOAc-cyclohexane) to afford the corresponding diamide as a colorless oil. All of the following compounds were prepared according to this procedure. N,N'-bis-(2-benzylthio-2-methylpropyl)-2-(benzylthiomethyl)-2-methylmalonyl diamide (**10**): from **7** (450 mg, 1.45 mmol) and amine **9** (850 mg, 4.4 mmol); yield 706 mg (80%); ¹H NMR (250 MHz, CDCl₃): δ 7.31–7.19 (m, 17H, Ar+NH), 3.72 (s, 2H, SC H_2 Ph), 3.69 (s, 4H, 2 × SC H_2 Ph), 3.25 (d, 4H, J = 5.7 Hz, 2 × CH₂N), 2.97 (s, 2H, CH₂S), 1.48 (s, 3H, CH₃), 1.26 (s, 12H, 4 × CH₃); ¹³C NMR (63 MHz, CDCl₃): δ 171.58 (CO), 137.87 (Ar-C) 137.80 (Ar-C), 128.77 (CH-Ar), 128.63 (CH-Ar), 128.37 (CH-Ar), 126.83 (CH-Ar), 54.18 (C(CO)₂), 47.61 (NCH₂), 46.35 (Me₂CS), 39.72 (CH₂S), 37.70 (CH₂SCH₂Ph), 32.72 (Me₂CSCH₂Ph), 26.48 (4 × CH₃), 19.76 (CH₃); MS (CI/NH₃): 609 (MH⁺); High Resolution MS (CI/CH₄): m/z calc. for C₃₄H₄₅N₂O₂S₃ (MH⁺): 609.2643, found: 609.2641. N, N'-bis-(2-benzylthio-2-methylpropyl)-2-(2-benzylthioethyl)-2methylmalonyl diamide (13): from 12 (1.192 g, 3.7 mmol) and amine 9 (2.112 g, 11 mmol); yield 1.872 g (82%); ${}^{1}H$ NMR (250 MHz, CDCl₃): δ 7.35–7.20 (m, 15H, Ar), 7.02 (t, 2H, J = 6.8 Hz, D_2O exchangeable, NH), 3.67 (s, 4H, $2 \times SCH_2Ph$), 3.66 (s, 2H, SCH_2Ph), 3.20 (d, 4H, CH_2N), 2.33– 2.27 (m, 2H, CH₂CH₂S), 2.12–2.06 (m, 2H, CH₂CR₂S), 1.32 (s, 3H, CH₃), 1.22 (s, 12H, $4 \times \text{CH}_3$); ¹³C NMR (63 MHz, CDCl₃): δ 172.32 (CO), 138.17 (Ar-C), 128.90 (CH-Ar), 128.80 (CH-Ar), 128.62 (CH-Ar), 128.44 (CH-Ar), 127.07 (CH-Ar), 126.94 (CH-Ar), 53.23 (C(CO)₂), 47.71 (NCH₂), 46.58 (Me_2CS) , 39.07 (CH_2S) , 36.09 (CH_2CH_2S) , 32.72 (SCH_2Ph) , 26.69 $(4 \times CH_3)$, 18.90 (CH₃); MS (CI/NH₃): 623 (MH⁺); IR (CHCl₃): ν MS (CI/CH_4) : (CO); High Resolution m/z calc. $C_{35}H_{47}N_2O_2S_3$ (MH⁺): 623.2800. Found: 623.2802. N,N'-bis-(2-benzylthioethyl-2-(benzylthiomethyl)-2-methylmalonyl diamide (15): from 7 (500 mg, 1.61 mmol) and amine 14 (685 mg, 4.10 mmol); yield 670 mg (75%); 1 H NMR (250 MHz, CDCl₃): δ 7.29–7.17 (m, 15H, Ar), 7.03 (t, 2H, J=4.9 Hz, D₂O exchangeable, NH), 3.70 (s, 2H, SCH₂Ph), 3.68 (s, 4H, 2 × CH₂CH₂SCH₂Ph), 3.35 (m, 4H, 2 × CH₂N), 2.93 (s, 2H, CH₂S), 2.52 (t, 4H, J=6.5 Hz, 2 × CH₂CH₂S), 1.45 (s, 3H, CH₃); 13 C NMR (63 MHz, CDCl₃: δ 171.89 (CO), 137.99 (Ar-C), 128.95 (CH-Ar), 128.84 (CH-Ar), 127.16 (CH-Ar), 54.20 (C(CO)₂), 39.70 (CH₂S), 38.40 (2 × SCH₂Ph), 37.88 (SCH₂Ph), 35.77 (NCH₂), 30.81 (2 × CH₂S), 20.24 (CH₃); MS (CI/NH₃): 553 (MH⁺); High Resolution MS (CI/CH₄): m/z calc. for C₃₀H₃₇N₂O₂S₃ (MH⁺): 553.2017; found: 553.2018. ### General Procedure for Debenzylation Sodium (\sim 1.6 g, 70 mmol) was added in small portions to a solution of benzylated diamide (10.2 mmol) in anhydrous THF (50 mL) and liquid ammonia (100 mL) until the deep blue color remained for 15 min. After addition of solid ammonium chloride (6 g, 112 mmol) and evaporation of ammonia under Ar, the mixture, cooled to 0°C, was acidified by aq. 2M HCl (pH \cong 1), extracted with EtOAc (3 \times 50 mL), and the combined organic layers were washed with saturated aq. NaCl, dried (MgSO₄), and evaporated. The crude product was purified by chromatography on silica gel (1:1 EtOAc-cyclohexane) to afford the corresponding tris-thiol as a colorless solid. All of the following compounds were prepared according to this procedure. N,N'-bis-(2-mercapto-2-methylpropyl)-2-(mercaptomethyl)-2-methylmalonyl diamide (1): from 10 (6.2 g, 10.2 mmol); yield 2.95 g (85%); m.p. (cyclohexane): 84°C; ¹H NMR (250 MHz, Me₂SO-d₆): δ 7.83 (t, 2H, J=5.5 Hz, D₂O exchangeable, NH), 3.25 (m, 4H, CH₂N), 3.01 (d, 2H, J=8.4 Hz, CH₂SH), 2.72 (s, 2H, D₂O exchangeable, Me₂CSH), 2.15 (t, 1H. D₂O exchangeable, CH₂SH), 1.42 (s, 3H, CH₃), 1.24 (s, 12H, 4 × CH₃); ¹³C NMR (63 MHz, CDCl₃: δ 171.61 (CO), 55.48 (C(CO)₂), 52.44 (NCH₂), 45.16 (Me₂CSH), 33.05 (CH₂S), 29.96 (4 × CH₃); 19.46 (CH₃), MS (CI/NH₃): 339 (MH⁺); IR (CHCl₃): ν 1675 cm⁻¹ (CO), 3440, 3330 cm⁻¹ (CONH); High Resolution MS (CI/CH₄): m/z calc. for C₁₃H₂₇N₂O₂S₃ (MH⁺): 339.1235; found: 339.1234. *N,N'-bis-(2-mercapto-2-methylpropyl)-2-(2-mercaptoethyl)-2-methylmalonyl diamide* (**2**): from **13** (1.793 g, 2.9 mmol); yield 975 mg (96%); m.p. (cyclohexane): 93°C; ¹H NMR (250 MHz, CDCl₃): δ 7.16 (t, 2H, J = 6.1 Hz, D₂O exchangeable, NH), 3.32 (d, 4H, 2 × CH₂NH), 2.53–2.44 (m, 2H, CH₂CH₂S), 2.24–2.17 (m, 2H, CH₂CH₂S), 1.63 (s, 2H, D₂O exchangeable, 2 × Me₂CSH), 1.49 (s, 3H, CH₃), 1.42 (t, 1H, J = 7.9 Hz, D₂O exchangeable, CH₂SH), 1.32 (s, 12H, 4 × CH₃); ¹³C NMR (63 MHz, CDCl₃): δ 172.26 (CO), 53.51 (C(CO)₂), 52.30 (CH₂N), 45.08 (Me₂CS), 43.86 (CH₂S), 29.92 (4 × CH₃), 20.12 (CH₂CH₂S), 19.06 (CH₃); MS (CI/NH₃): 353 (MH⁺); High Resolution MS (CI/CH₄): m/z calc. For C₁₄H₂₉N₂O₂S₃ (MH⁺): 353.1391. Found: 353.1379. *N,N'-bis-(2-mercaptoethyl)-2-(mercaptomethyl)-2-(methylmalonyl diamide* (3): from **15** (639 mg, 1.16 mmol); yield 266 mg (82%); m.p. (cyclohexane): 88°C; ¹H NMR (250 MHz, CDCl₃): δ 7.17 (s br, 2H, D₂O exchangeable, NH), 3.44–3.36 (m, 4H, 2 × CH₂N), 2.95 (d, 2H, J=9.0 Hz, CH₂S), 2.67–2.59 (m, 4H, 2 × CH₂CH₂S), 1.61 (t, 1H, D₂O exchangeable, SH), 1.48 (s, 3H, CH₃), 1.37 (t, 2H, J=8.4 Hz, D₂O exchangeable, 2 × SH); ¹³C NMR (63 MHz, CDCl₃): δ 171.63 (CO), 55.15 (C(CO)₂), 42.57 (CH₂N), 33.01 (CH₂S), 24.25 (2 × CH₂S), 19.16 (CH₃); MS (CI/NH₃). 283 (MH⁺); High Resolution MS (CI/CH₄) m/z calc. For C₉H₁₉N₂O₂S₃ (MH⁺): 283.0609. Found: 283.0604. N-(2-benzylthio-2-methylpropyl)-1-benzylthio-2-methylpropionamide (11): Carbonyldiimidazole (CDI, 163 mg, 1 mmol) was added at room temperature under argon to a solution of the diacid 8 (116 mg, 0.457 mmol) in anhydrous THE (2 mL). After vigorous stirring at room temperature for 30 min, a solution of the amine 9 (95 mg, 1 mmol) in anhydrous THF (2 mL) was added to the mixture. After 3 days at room temperature, aq. HCl 1M was added to reach pH \cong 1 and the product extracted with EtOAc (3 \times 30 mL). The organic layer was washed with water (20 mL), saturated aq. NaHCO₃ (pH \cong 10), saturated ag. NaCl (20 mL), dried (MgSO₄), and evaporated to afford 11 as a pure (NMR), colorless oil (114 mg, 65%). ¹H NMR (250 MHz, CDCl₃): δ7.33–7.20 (m, 10H, Ar), 5.80 (s br, 1H, NH), 3.69 (s, 4H, $2 \times SCH_2Ph$), 3.25–3.20 (m, 2H, CH₂N), 2.71 (dd, 1H, $J_{AB} = 13.1 \text{ Hz}$ J = 8.1 Hz, $BnSCH_AH_B$), 2.42 (dd, 1H, SCH_AH_B), 2.19 (m, 1H, C(O)CHCH₃), 1.23 (s, 6H, 2 × CH₃), 1.11 (d, 3H, J = 7 Hz, CHC H_3); ¹³C NMR (63 MHz, CDCl₃): δ 174.55 (CO), 138.24 (Ar-C), 138.04 (Ar-C), 128.66 (Ar-CH), 128.43 (Ar-CH), 128.35 (Ar-CH), 126.88 (Ar-CH), 47.11 (Me₂CS), 46.59 (CH₂N), 41.50 (CHCO), 36.83 (SCH₂Ph), 35.18 (SCH₂Ph), 32.63 (CH₂S), 26.53 (2 × CH₃), 17.50 (CH₃CH); MS (CI/ NH₃): 388 (MH⁺); High Resolution MS (CI/CH₄): m/z calc. for C₂₂H₃₀NOS₂ (MH⁺): 388.1769. Found: 388.1764. N-(2-benzylthio-2-methylpropyl)-1-benzylthio-3-methylbutyramide (16): A solution of trimethylaluminum in heptane (2M, 7.5 mL, 15 mmol) was added dropwise under argon to a solution of the amine 9 (2.11 g, 10.8 mmol) in anhydrous toluene (7 mL) cooled to −15°C. After stirring at 25°C until no more methane evolved, the reaction, cooled to 0°C, was added a solution of the diester 12 (1 g, 3.09 mmol) in anhydrous toluene (4 ml). After 48 h at reflux, the mixture, cooled to -15° C, was carefully acidified by ag. 2M HCl (pH \cong 1), extracted with EtOAc (3 \times 40 mL), and the combined organic layers were washed with saturated aq. NaHCO₃ (to pH 8), and water $(2 \times 20 \text{ mL})$, dried $(MgSO_4)$ and evaporated. The crude product was purified by chromatography on silica gel (3:7 EtOAc-cyclohexane) to give the monoamide 16 as a pale-yellow oil (590 mg, 48%). ¹H NMR (250 MHz, CDCl₃): δ 7.36–7.20 (m, 10H, Ar), 5.76 (t, 1H, J = 5.8 Hz, NH), 3.68 (s, 2H, SCH₂Ph), 3.67 (s, 2H, SCH₂Ph), 3.20 (d, 2H, NCH₂), 2.45–2.26 $(m, 4H, CH_2CH_2S), 1.93 (m, 1H, C(O)CHCH_3), 1.25 (s, 6H, 2 \times CH_3), 1.07$ (d, 3H, J = 6.9 Hz, CHC H_3); ¹³C NMR (63 MHz, CDCl₃): δ 175.59 (CO), 138.21 (Ar-C), 128.82 (Ar-CH), 128.67 (Ar-CH), 128.67 (Ar-CH), 128.49 (Ar-CH), 127.61 (Ar-CH), 127.13 (Ar-CH), 126.96 (Ar-CH), 47.14 (CH₂N), 46.81 (Me₂CS), 40.20 (CHCO), 36.12 (CH₂S), 33.18 (SCH₂Ph), 32.87 (SCH₂Ph), 29.27 (CH₂CH₂S), 26.76 (CH₃), 26.69 (CH₃), 17.86 (CH₃CH); MS (CI/NH₃): 402 (MH⁺); High Resolution MS (CI/CH₄): m/z calc. for $C_{23}R_{32}NOS_2$ (MH⁺): 402.1925. Found: 402.1929. N,N' bis-(2-mercapto-2-methylpropyl)-2,2-dimethylmalonyl diamide (4): To a suspension of 1-amino-2-methyl-2-propanethiol hydrochloride (18) (184 mg, 1.3 mmol) in anhydrous CH₂Cl₂ (5 mL) were added successively triethylamine (346 μL, 2.49 mmol) and dimethylmalonyl dichloride (17) (100 mg, 0.592 mmol) at 0°C under argon. After vigorous stirring at room temperature for 16 h, aq. HCl 1M was added to the mixture to reach pH \cong 1 and the product extracted with CH₂Cl₂ (2 × 20 ml). The organic layer was washed with saturated aq. NaHCO₃ (10 ml), water (10 ml), dried (MgSO₄), and evaporated to afford **4** as a pure (NMR), colorless solid (165 mg, 91%). m.p. (cyclohexane) 92°C; ¹H NMR (250 MHz, Me₂SO-*d*₆): δ 7.60 (t, 2H, J=6.3 Hz, D₂O exchangeable, NH), 3.22 (d, 4H, CH₂N), 2.71 (s, 2H, D₂O exchangeable, SH), 1.35 (s, 6H, 2 × CH₃), 1.22 (s, 12H, 4 × CH₃); ¹³C NMR (63 MHz, CDCl₃): δ 173.41 (CO), 52.09 (CH₂) 49.35 (*C*(CO)₂), 45.09 (Me₂*C*SH), 29.72 (4 × CH₃), 23.90 (2 × CH₃); MS (CI/NH₃): 307 (MH⁺); IR (CHCl₃): ν 3320, 3450 cm⁻¹ (CO*NH*), 1670 cm⁻¹ (CO); Anal. calc. for C₁₃H₂₆N₂O₂S₂ (306.49): C 50.95, H 8.55, N 9.14. Found: C 50.97, H 8.59, N 9.25. #### ACKNOWLEDGMENTS This work was supported by the European Commission TMR-NOHEMIP, contract no. ERBFMRX-CT98-0174. #### REFERENCES - Kobayashi, M.; Nagasawa, T.; Yamada, H. Trends Biotechnol. 1992, 10, 402–408. - 2. Nagasawa, T.; Yamada, H. Trends Biotechnol. **1989**, 7, 153–158. - 3. Brennan, B.A.; Alms, G.; Nelson, M.J.; Durney, L.T.; Scarrow, R.C. J. Am. Chem. Soc. **1996**, *118*, 9194–9195. - 4. Huang, W.; Jia, J.; Cunning, J.; Nelson, M.; Schneider, G.; Lindqvist, Y. Structure **1997**, *5*, 691–699. - Nagashima, S.; Nakasato, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo. I. Nature Struc. Biol. 1998, 5, 347–351. - Noveron, J.C.; Olmstead, M.M.; Mascharak, P.K. Inorg. Chem. 1998, 37, 1138–1139. - 7. Tyler, L.A.; Noveron, J.C.; Olmstead, M.M.; Mascharak, P.K. Inorg. Chem. **2000**, *39*, 357–362. - 8. Artaud, I.; Chatel, S.; Chauvin, A.S.; Bonnet, D.; Kopf, M.A.; Leduce, P. Coordination Chem. Review **1999**, 190–192, 577–586. - 9. Zimmerman, S.C.; Lamberson, C.R.; Cory, M.; Fairley, T.A. J. Am. Chem. Soc. **1989**, *111*, 6805–6809. - Hermkens, P.H.H.; Maarseven, J.H.; Ottenheijm, H.C.J.; Kruse, C.G.; Scheeren, H.W. J. Org. Chem. 1990, 55, 3998–4006. - 11. Böhme, H.; Fischer, H.; Franck, R. Liebigs Ann. Chem. **1949**, *563*, 54–72. - 12. Caroll, F.I.; White, J.D.; Wall, M.E. J. Org. Chem. **1963**, 28, 1240–1243. - 13. Bodanszky, M.; Bodanszky, A. *The Practice of Peptide Synthesis*; Springer-Verlag: Berlin, **1984**; 143–150. - 14. Lipton, M.F.; Basha, A.; Weinreb, S.M. Org. Synth., coll. vol. VI, 492–495. - Heinrich, L.; Li, Y.; Vaissermann, J.; Chottard, G.; Chottard, J.C. Angew. Chem. Int. Ed. Engl. 1999, 38, 3526–3528. - Heinrich, L.; Li, Y.; Vaissermann, J.; Chottard, J.C. European J. Inorg. Chem. in press. - 17. Salmon-Legagneur, F.; Picquet, L.; Neuveu, C. Bull. Soc. Chim. Fr. **1966**, 2025–2033. Received in the UK June 13, 2000