Bifunctionalisation of 1,4-naphthoquinone by the oxidative addition of an alkylamine and iodine

Huan-Ming Huang, Yu-Jin Li*, Yin-Ping Dai, Wu-Bin Yu, Qin Ye and Jian-Rong Gao

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, P. R. China

Novel 2-iodo-3-(alkylamino) naphthalene-1,4-diones are formed in 33–70% yield by the reaction of alkylamine and 1, 4-naphthoquinone in the presence of iodine.

Keywords: 2-iodo-3-(alkylamino) naphthalene-1,4-dione, alkylamine, 1, 4-naphthoquinone, iodine

Some natural products which contain alkylamino derivatives of naphthoquinones show a wide biological activity as potent antitumour,^{1–3} antimalarial^{4,5} and antibacterial^{6–9} agents. This biological activity has made the synthesis of these compounds attractive. Two major synthetic strategies have been developed: one which involves the nucleophilic displacement of the halo-quinone,^{4,5,10} while the other involves a direct 1,4-addition of amines to the quinones. Unfortunately, many of these procedures have disadvantages involving strongly acidic conditions side-reactions, low yields and complex methodology.

Recently, the metal (ion)-free catalysis of organic reaction has received increasing attention.^{11–17} The use of molecular iodine has become popular because of its high tolerance to air and moisture, low-cost, ready availability, and high catalytic activity.^{18–23} For instance, Karimi²⁴ reported a mild and highly efficient method for the silylation of alcohols using hexamethyldisilazane catalysed by iodine under nearly neutral reaction conditions. Wang²⁵ reported a new decarboxylative cyclisation to construct pyridines derivatives by a-amino acids and aldehyde under molecular iodine conditions. Recently, the preparation of 1,2-diaryldiketones by oxidative cleavage of 1,3-diaryldiketones catalysed by iodine has been reported.²⁶ A one-pot synthesis of flavanone and highly substituted pyrimidine derivatives via multi component Mannich reaction catalysed by iodine has also been reported.²⁷

Liu has recently disclosed an iodine-promoted protocol for the synthesis of 2-amino-1,4-naphthoquinones under ultrasonic irradiation at room temperature.²⁸ Unexpectedly when we tried to repeat the reaction of 1,4-naphthoquinone and a primary amine in the presence of iodine, the unpublished product of iodine addition was obtained (Scheme 1). In this paper, the synthesis of 2-iodo-3-(alkylamino)naphthalene-1,4- dione is now reported. As new compounds, besides their potential bioactivity, they can become very useful intermediates for the further preparation of derivatives of 2-amino-1,4-naphthoquinone.²⁹

Our initial investigations were focused on the preparation of 2-(benzylamino)naphthalene-1,4-dione (**4a**) from the reaction of 1,4-naphthoquinone (**1a**) and benzylamine (**2a**). The unexpected iodine addition product 2-iodo-3-(benzylamino)-naphthalene-1,4-dione (**3a**) was obtained in 15% together with 2-(benzylamino)naphthalene-1,4-dione (**4a**) in 27.7% (Table 1, entry 1). To explore this reaction, the conditions were

optimised to improve the yield of **3a**. As shown in Table 1, the solvent of this reaction was studied with 1,4-naphthoquinone and benzylamine as the model reaction, the yield of **3a** and total yield were both increased with $CHCl_3$ as the solvent (Table 1, entry 3).

In order to further improve the reaction efficiency and selectivity, the effect of temperature was examined. The selectivity for the formation of **3a** has obviously improved at 0 °C (entries 3,5 and 6), and the corresponding product **3a** was obtained in 31.4% and **4a** in 38.5% (entry 6).

Under these conditions, the yield of **3a** was improved with increase of iodine. Finally, the yield of **3a** and **4a** was obtained in 51.3% and 32.2% at 0 °C in CHCl₃ with the ratio of **1a:2a**: I₂ as 1:1.2:2. Although 1,4-naphthoquinone was consumed under optimised condition, the reaction time was extended but the yield of product **3a** was not increased and the ratio of **3a** to **4a** was not changed (entry 12).

As shown in Table 2, the iodine addition products **3** were obtained in moderate to good yield in the reaction of 1,4-naph-thoquinone and different primary amines in CHCl₃ as solvent and starting material molar ratios of **1**:2:I₂ (1:1.2:2) at 0 °C (Scheme 2). The total yield of **3** and **4** was in 70–86%. The selectivity for the formation of **3** was good when the carbon number of amines were no more than four without steric hindrance, the ratio of **3** and **4** was above three (entries 2, 3, 4, 5 and 9). As the steric hindrance of the benzylamine and the long-chain amine increased, the selectivity for **3** decreased and the yield of **3** and **4** was about equivalent (entries 1, 7 and 8).

In contrast, the product of iodine addition was not obtained in the reaction of phenylamine and 1,4-naphthoquinone under the same conditions. The product of iodination of the aniline ring 2-(4-iodophenylamino)naphthalene-1,4-diol (**5**) was obtained instead in 24.6% yield. 2- Phenylamino-1,4-naphthoquinone (**6**) was also obtained in 34.2% yield. The structure of **5** was confirmed by ¹H NMR in CDCl₃ and D₂O.

The following experiments were carried out to understand the reaction and from our experimental results, a possible mechanism was proposed (Scheme 4). Product **4a** was obtained in 72.6% yield from the reaction between **1a** and benzylamine **2a**. Product **3a** was obtained in 64.6% yield when **4a** as treated with 2 equiv. iodine, thus demonstrating the intermediacy of **4a** in the reaction pathway. When the reaction was prolonged or used more than 2 equiv. iodine, a greater yield of product **3a**

* Correspondent. Email: lyjzjut@zjut.edu.cn

 Table 1
 Optimisation of the reaction conditions

Entry ^a	1a:2a:l ₂ Solvent		T/°C	Yield/% ^ь of 3a:4a	Ratio of 3a:4a	
1	1:1.2:1	CH ₂ Cl ₂	r.t.	14.9/27.7	0.54	
2	1:1.2:1	Toluene	r.t.	19.5/28.4	0.68	
3	1:1.2:1		r.t.	21.4/38.5	0.56	
4	1:1.2:1	C₂H₅OH	r.t.	15.0/49.5	0.30	
5	1:1.2:1	Ēt ₂ O	r.t.	15.7/37.4	0.42	
6	1:1.2:1	Water	r.t.	18.7/19.7	0.95	
7	1:1.2:1		60 °C	12.2/49.5	0.25	
8	1:1.2:1		0 °C	31.4/38.5	0.81	
9	1:1.2:0.1		0 °C	7.4/51.7	0.14	
10	1:1.2:1.2		0 °C	36.6/35.4	1.03	
11	1:1.2:2		0 °C	51.3/32.2	1.59	
12°	1:1.2:2	CHCl₃	0 °C	52.0/32.7	1.59	

^a Stirred for 18h. ^b Isolated yield based on 1a. ^c Stirred for 36 h.

was not obtained. The iodo compound, 2-iodonaphthalene-1,4-dione 7 was not obtained with naphthoquinone and iodine. In terms of our experimental results, a possible sequence for the formation of the iodinated product 3 is proposed in which iodinated product 3 was formed by iodination of intermediate 4.

Our experimental results and the work of Liu²⁸ and Wang³⁰, leads to the sequence shown in Scheme 5. The alkylamine attacks the 1,4-naphthoquinone activated by molecular iodine to give the initial addition product **II**. The intermediate **II** and its tautomer **III** are oxidised to quinones resulting in **4**, The oxidation process can involve the oxygen in air ³¹ and the iodine in reaction system. Two possible reaction pathways leading to **3** are depicted in Scheme 5: One is the iodination of 2-amino-1,4-naphthoquinone **4** to give the product **3** whilst the other is the iodination of the hydroquinone **III** to give the intermediate **VI** which is then oxidised to the final product **3**.

 Table 2
 Reaction between 1,4- naphthoquinone and different primary amines

Entry	R	Product 3		Product 4		3/4	Total
		3	Yield/%	4	Yield/%		yield
1	PhCH₂-	3a	51.3	4a	32.2	1.6	83.5
2	CH ₃ -	3b	56.4	4b	19.5	2.9	75.9
3	C_2H_5 -	3c	68.7	4c	18.2	3.8	86.9
4	C_3H_7 -	3d	70.4	4d	15.5	4.5	85.9
5	C₄H ₉ -	3e	67.8	4e	17.3	3.9	85.1
6	C ₆ H ₁₃ -	3f	32.8	4f	38.9	0.8	71.7
7	C ₁₀ H ₂₁ -	3g	43.9	4g	30.2	1.5	74.1
8	C ₁₂ H ₂₅ -	3ĥ	47.9	4ĥ	44.0	1.1	87.9
9	(CH ₃ O), CHCH ₂ -	3i	55.0	4i	19.2	2.9	74.2
10	HŎCH ₂ CH₂- [*]	3j	49.4	4j	21.4	2.3	70.8

In summary, we have synthesised a series of 2-iodo-3-(alkylamino)-naphthalene-1,4-diones by a useful, convenient, and cost-effective route. These novel compounds have potential biological activity and their applications to the synthesis of more complex and interesting products are underway in our laboratory.

Experimental

The reagents were obtained from commercial sources. CH_2Cl_2 , $CHCl_3$ and toluene were dried with Na or CaH_2 . The ¹H and ¹³C NMR spectra were recorded at 500 and 125 MHz, respectively, in CDCl₃ with a Bruker AM 500 spectrometer. The GC-MS was Agilent (GC6890-MS5973).

General procedure

A mixture of 1,4-naphthoquinone (0.158 g, 1.0 mmol) and the amine (1.2 mmol) in CHCl₃ (5 mL) was added to I_2 (2 equiv.) at 0 °C and stirred until the starting material was consumed, as determined by

GC-MS and TLC. The reaction mixture was poured into saturated aqueous sodium thiosulfate (8 mL) and was extracted with $CHCl_3$ (3 × 10 mL). The combined extracts were dried over MgSO₄. The solvent was removed under vacuum, and the mixed crude products **3** and **4** were separated by chromatography on silica gel and eluted with CH_2Cl_2 -petroleum ether (1:3).

2-Iodo-3-(benzylamino)naphthalene-1,4-dione (**3a**): Yield 51.3% (199.5 mg). Red solid: m.p. 99–100 °C; ¹H NMR (CDCl₃): δ (ppm) 8.14 (dd, $J_1 = 1.0$ Hz, $J_2 = 8.0$ Hz 1H), 8.02 (dd, $J_1 = 2.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.69 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 7.63 (dt, $J_1 = 2.0$ Hz, $J_2 = 8.0$ Hz 1H), 7.42–7.33 (m, 5H),6.21 (brs, 1H), 5.10 (d, J = 5.5 Hz, 2H); ¹³C NMR (CDCl₃): δ (ppm) 178.99 (1C), 177.38 (1C), 130.13 (1C), 137.64 (1C), 134.63 (1C), 132.46 (1C), 130.98 (1C), 130.13 (1C), 129.24 (1C), 128.09 (1C), 127.70 (2C), 127.44 (2C), 126.99 (1C), 77.30 (1C), 50.05 (1C); GC-MS (m/z): 387.9 (M-1), 386.9 (100%), 262.2, 204.2, 176.2, 157.0, 129.1, 50.0; HRMS (ESI-TOF) m/z. Calcd for C₁₇H₁₃INO₂ [M+H]⁺ 389.9985, found 389.9983.

2-*Iodo-3-(methylamino)naphthalene-1,4-dione* (**3b**):²⁹ Yield 56.4% (176.6 mg). Red solid: m.p. 185–186 °C (lit.²⁹ 186–187 °C); ¹H NMR (CDCl₃): δ (ppm) 8.15 (d, *J* = 7.0 Hz 1H), 8.04 (d, *J* = 7.5 Hz, 1H), 7.70 (t, *J* = 7.5 Hz 1H), 7.64 (t, *J* = 7.0 Hz 1H), 6.13 (brs, 1H), 3.47 (d, *J* = 6.0 Hz, 3H); GC-MS (*m*/*z*): 313.7 (M+1), 312.7 (M, 100%), 186.0, 158.0, 131.1, 105.0, 89.0.

2-*Iodo-3*-(*ethylamino*)*naphthalene-1*,4-*dione* (**3c**): Yield 68.7% (224.7 mg). Red solid: m.p. 130–131 °C; ¹H NMR (CDCl₃): δ (ppm) 8.15 (d, J = 8.0 Hz, 1H), 8.04 (d=d, J = 7.5 Hz 1H), 7.70 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 7.64 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 5.98 (brs, 1H), 3.99–3.93 (m, 2H) 1.37 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃): δ (ppm) 179.29 (1C), 177.47 (1C), 150.72 (1C), 134.67 (1C), 132.35 (1C), 131.30 (1C), 129.92 (1C), 127.47 (1C), 126.95 (1C), 77.25 (1C), 40.97 (1C), 15.99 (1C); GC-MS (*m*/*z*):327.8 (M+1), 326.8 (M, 100%), 312.1, 200.2, 172.2, 155.1, 144.2, 89.2; HRMS (ESI-TOF) *m*/*z* Calcd for C₁₂H₁₁INO₂ [M+H]⁺ 327.9829, found 327.9835.

2-Iodo-3-(propylamino)naphthalene-1,4-dione (**3d**): Yield 70.4% (240.2 mg). Red solid: m.p. 123–124 °C; ¹H NMR (CDCl₃): δ (ppm) 8.16 (dd, $J_1 = 1.5$ Hz, $J_2 = 8.0$ Hz 1H), 8.05 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.70 (dt, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.64 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 7.64 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 6.07 (brs, 1H), 5.87 (q, J = 7.5 Hz, 2H), 1.79–1.71 (m, 2H), 1.05 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃): δ (ppm) 179.28 (1C), 178.20 (1C), 150.85 (1C), 134.75 (1C), 132.61 (1C), 130.99 (1C), 129.46 (1C), 127.55 (1C), 126.70 (1C), 77.23 (1C), 45.80 (1C), 23.97 (1C), 10.84 (1C); GC-MS (m/z): 341.8 (M+1), 341.0 (M, 100%), 312.1, 214.2, 185.2, 130.2, 102.2, 41.2; HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₃INO₂ [M+H]⁺ 341.9985, found 341.9990.

2-Iodo-3-(butylamino)naphthalene-1,4-dione (**3e**): Yield 67.8% (240.8 mg). Red solid: m.p. 119–120 °C; ¹H NMR (CDCl₃): δ (ppm) 8.16 (dd, J_1 = 1.5 Hz, J_2 = 8.0 Hz 1H), 8.04 (dd, J_1 = 1.5 Hz, J_2 = 8.0 Hz 1H), 7.70 (dt, J_1 = 1.5 Hz, J_2 = 7.5 Hz 1H), 7.64 (dt, J_1 = 1.5 Hz, J_2 = 7.5 Hz 1H), 7.64 (dt, J_1 = 1.5 Hz, J_2 = 7.5 Hz 1H), 7.64 (dt, J_1 = 1.5 Hz, J_2 = 7.5 Hz 1H), 7.64 (dt, J_1 = 1.74–1.68 (m, 2H), 1.51–1.44 (m, 2H), 1.00 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃): δ (ppm) 179.20 (1C), 177.45 (1C), 150.70 (1C),

134.65 (1C), 132.32 (1C), 131.71 (1C), 131.33 (1C), 129.86 (1C), 127.45 (1C), 126.93 (1C), 77.25 (1C), 45.59 (1C), 32.69 (1C), 19.73 (1C), 13.67 (1C); GC-MS (m/z): 355.8 (M+1), 354.9 (M, 100%), 28.2, 186.2, 130.1, 102.0.76.0, 50.0; HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₅INO₂ [M+H]⁺ 356.0142, found 356.0149.

2-*Iodo-3*-(*hexylamino*)*naphthalene-1*,4-*dione* (**3f**): Yield 32.8% (125.7 mg). Red solid: m.p. 87–88 °C; ¹H NMR (CDCl₃): δ (ppm) 8.16 (dd, $J_1 = 1.0$ Hz, $J_2 = 8.0$ Hz 1H), 8.05 (dd, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 7.70 (dt, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.64 (dt, $J_1 = 1.5$ Hz, $J_2 = 8.0$ Hz 1H), 6.05 (brs, 1H), 3.90 (q, J = 6.5 Hz, 2H), 1.74–1.69 (m, 2H), 1.47–1.41 (m, 2H), 1.37–1.34 (m, 4H), 1.47–1.41 (m, 2H), 0.92 (t, J = 7.5 Hz, 3H). ¹³C NMR (CDCl₃): δ (ppm) 179.21 (1C), 177.27 (1C), 150.83 (1C), 127.53 (1C), 132.63 (1C), 131.99 (1C), 131.34 (1C), 129.89 (1C), 127.53 (1C), 127.12 (1C), 77.25 (1C), 45.79 (1C), 30.74 (1C), 26.09 (1C), 22.68 (1C), 13.79 (1C), GC-MS (m/z): 383.0 (M+1, 100%), 312.1, 256.4, 186.3, 185.3, 129.3, 76.2, 41.2. HRMS (ESI-TOF) m/z Calcd for C₁₆H₁₉INO₂ [M+H]⁺ 384.0455, found 384.0459.

2-*Iodo-3-(decylamino)naphthalene-1,4-dione* (**3g**): Yield 43.9% (192.9 mg). Red solid: m.p. 85–86 °C; ¹H NMR (CDCl₃): δ (ppm) 8.16 (dd, $J_1 = 1.0$ Hz, $J_2 = 8.0$ Hz 1H), 8.05 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.70 (dt, $J_1 = 1.5$ Hz, $J_2 = 8.0$ Hz 1H), 7.64 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 6.06 (brs, 1H), 3.90 (q, J = 6.5 Hz, 2H), 1.74–1.68 (m, 2H), 1.46–1.28 (m, 2H), 1.37–1.34 (m, 2H), 1.47–1.41 (m, 14H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃): δ (ppm) 179.33 (1C), 178.71 (1C), 151.12 (1C), 134.64 (1C), 173.97 (1C), 45.99 (1C), 31.90 (1C), 31.74 (1C), 29.51 (1C), 29.29 (1C), 29.26 (1C), 29.22 (1C), 26.60 (1C), 22.60 (1C), 14.17 (1C); GC-MS (m/z): 438.9 (M), 312.1 (100%), 186.2, 174.2, 130.1, 102.2, 77.2, 41.2; HRMS (ESI-TOF) m/z Calcd for C₂₀H₂₇INO₂ [M+H]⁺ 440.1081, found 440.1078.

2-Iodo-3-(dodecylamino)naphthalene-1,4-dione (**3h**): Yield 47.9% (223.9 mg). Red solid: m.p. 95–96 °C; ¹H NMR (CDCl₃): δ (ppm) 8.15 (dd, $J_1 = 0.5$ Hz, $J_2 = 7.5$ Hz 1H), 8.04 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.69 (dt, $J_1 = 1.0$ Hz, $J_2 = 7.0$ Hz 1H), 7.63 (dt, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.69 (dt, $J_1 = 1.0$ Hz, $J_2 = 7.0$ Hz 1H), 7.63 (dt, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 6.05 (brs, 1H), 3.90 (q, J = 6.5 Hz, 2H), 1.73–1.67 (m, 2H), 1.45–1.26 (m, 18H), 0.88 (t, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃): δ (ppm) 179.44 (1C), 178.99 (1C), 151.47 (1C), 134.95 (1C), 132.42 (1C), 131.56 (1C), 130.72 (1C), 127.30 (1C), 126.94 (1C), 29.56 (1C), 29.50 (1C), 29.36 (1C), 29.26 (1C), 29.56 (1C), 29.50 (1C), 29.36 (1C), 29.26 (1C), 22.71 (1C), 14.14 (1C); GC-MS (m/z): 468.1 (M+1), 467.1 (M, 100%), 340.2, 312.1, 300.2, 186.2, 55.2, 41.2; HRMS (ESI-TOF) m/z Calcd for C₂₂H₃₁INO₂ [M+H]⁺ 468.1394, found 468.1381.

2-Iodo-3-(2,2-dimethoxyethylamino)naphthalene-1,4-dione (3i): Yield 55.0% (212.9 mg). Yellow solid: m.p. 87–88 °C; ¹H NMR (CDCl₃): δ (ppm) 8.11 (dd, $J_1 = 1.5$ Hz, $J_2 = 8.0$ Hz 1H), 8.01 (dd, $J_1 = 1.5$ Hz, $J_2 = 8.0$ Hz 1H), 7.69 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 7.63 (dt, $J_1 = 2.0$ Hz, $J_2 = 8.0$ Hz 1H), 6.17 (brs, 1H), 4.58 (t, J = 5.5 Hz, 1H), 4.02 (t, J = 5.5 Hz, 2H), 3.47 (s, 6H); ¹³C NMR (CDCl₃): δ (ppm) 179.11 (1C), 177.52 (1C), 151.32 (1C), 134.69 (1C), 132.63 (1C), 131.26 (1C), 130.26 (1C), 127.49 (1C), 127.07 (1C), 102.67 (1C), 77.47 (1C), 54.87 (2C), 47.10 (1C);GC-MS (m/z): 387.8 (M), 355.8, 326.9, 75.0 (100%), 47.0; HRMS (ESI-TOF) m/z Calcd for $C_{14}H_{15}INO_2$ [M+H]⁺ 388.0040, found 388.0049.

2-*Iodo-3*-(2-*hydroxyethylamino*)*naphthalene-1*,4-*dione* (**3j**): Yield 49.4% (169.5 mg). Red solid: m.p. 54–55 °C; 'H NMR (CDCl₃): δ (ppm) 8.15 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 8.05 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.0$ Hz 1H), 7.70 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.0$ Hz 1H), 7.65 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.0$ Hz 1H), 6.37 (brs, 1H), 4.11–4.08 (m, 2H), 3.96– 3.94 (m, 2H), 1.75 (s, 1H); ¹³C NMR (CDCl₃): δ (ppm) 183.22 (1C), 181.97 (1C), 148.38 (1C), 134.64 (1C), 133.54 (1C), 132.14 (1C), 126.32 (1C), 126.20 (1C), 101.15 (1C), 60.07 (1C), 44.22 (1C); GC-MS (*m/z*): 342.0 (M), 327.0 (100%), 299.2, 285.1, 206.2.

2-(*Benzylamino*)-1,4-*naphthoquinone* (**4a**):²⁸ Yield 32.2% (84.7 mg). Red soild: m.p. 156–157 °C (lit.²⁸ m.p. 158–159 °C); ¹H NMR (CDCl₃): δ (ppm) 8.12–8.07 (m, 2H), 7.43 (t, J = 6.0 Hz, 1H), 7.68 (t, J = 6.0 Hz, 1H), 7.39–7.28 (m, 5H), 6.23 (s, 1H), 5.82 (s, 2H), 5.11 (d, J = 6.0 Hz, 2H); GC-MS (*m*/*z*): 263.0 (M), 262.0 (M-1, 100%), 158.0, 130.0, 102.0, 76.0, 50.0.

2-(*Methylamino*)-1,4-naphthoquinone (**4b**):³² Yield 19.5% (36.5 mg). Red needle crystal: m.p. 221–222 °C (lit.³³ m.p. 220–230 °C); ¹H NMR (CDCl₃): δ (ppm) 7.70–8.20 (m, 4H), 5.94 (s, 1H), 5.70 (s, 1H), 2.93 (d, 2H);GC-MS (*m*/*z*): 187.2 (M, 100%), 146.2, 130.3, 105.2, 89.2, 76.2, 50.1

2-(*Ethylamino*)-1,4-*naphthoquinone* (**4c**):³³ Yield 18.2% (36.6 mg). Yellow needle crystal: m.p. 139–140 °C (lit.³³ 141.4 °C); GC-MS (*m/z*): 201.0 (M, 100%), 199.1, 186.0, 158.0, 130.1, 102.0, 76.0, 50.0.

2-(*Propylamino*)-1,4-*naphthoquinone* (**4d**):³⁴ Yield 15.5% (33.4 mg). Yellow needle crystal: m.p. 115–116 °C (lit.³⁴ 114–116 °C); ¹H NMR (CDCl₃): δ (ppm) 7.20–8.10 (m, 4H), 5.93 (s, 1H), 5.75 (s, 1H), 3.15– 3.19 (m, 2H), 1.71–1.76 (m, 2H), 1.04 (t, *J* = 7.5 H); GC-MS (*m/z*): 215.8 (m, 100%), 214.9, 186.0, 131.0, 101.0, 76.0, 50.0. 2-(*Butylamino*)-1,4-*naphthoquinone* (**4e**):²⁸ Yield 17.3% (39.7 mg).

2-(*Butylamino*)-1,4-naphthoquinone (**4e**):²⁸ Yield 17.3% (39.7 mg). Yellow needle crystal: m.p. 117–118 °C (lit.²⁸ 115–117 °C); ¹H NMR (CDCl₃): δ (ppm) 8.12 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 8.06 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.76–7.73 (m, 1H), 7.64–7.61 (m, 1H), 5.90 (brs, 1H), 5.75 (s, 1H), 3.20 (q, J = 6.0 Hz, 2H), 1.73–1.67 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H); GC-MS (*m*/*z*): 230.0 (M+1), 229.0 (M), 201.0, 186.0 (100%), 146.0, 131.0, 76.0, 41.0.

2-(*Hexylamino*)-*1*,4-*naphthoquinone* (**4f**):³⁵ Yield 38.9% (100.1 mg). Red needle crystal: m.p. 116–117 °C; ¹H NMR (CDCl₃): δ (ppm) 8.12 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 8.06 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.75–7.72 (m, 1H), 7.64–7.61 (m, 1H), 5.90 (brs, 1H), 5.74 (s, 1H), 3.19 (q, J = 6.0 Hz, 2H), 1.72–1.67 (m, 2H), 1.43–1.40 (m, 2H), 1.35–1.32 (m, 4H), 0.92 (t, J = 4.5 Hz, 3H); GC-MS (*m*/*z*): 257.2, 228.2, 186.3, 146.2, 131.2, 103.2, 76.1, 41.2.

2-(*Decylamino*)-1,4-naphthoquinone (**4g**):³⁵ Yield 30.2% (94.7 mg). Red needle crystal: m.p. 130–131 °C; GC-MS (*m/z*): 313.0, 242.1, 228.2, 186.2, 174.1, 146.0, 41.1.

2-(*Dodecylamino*)-1,4-*naphthoquinone* (**4h**):³⁵ Yield 44.0% (150.3 mg). Red needle crystal: m.p. 145–146 °C; ¹H NMR (CDCl₃): δ (ppm) 8.15 (dd, $J_1 = 0.5$ Hz, $J_2 = 7.5$ Hz 1H), 8.04 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 7.69 (dt, $J_1 = 1.0$ Hz, $J_2 = 7.0$ Hz 1H), 7.63 (dt, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 5.85 (s, 1H), 3.90 (q, J = 6.5 Hz, 2H), 1.73–1.67 (m, 2H), 1.45–1.26 (m, 18H), 0.88 (t, J = 6.5 Hz, 3H); GC-MS (*m*/*z*): 342.1, 341.1, 242.2, 228.2, 186.2, 174.2, 146.0, 41.0.

2-(2,2-Dimethoxyethylamino)-1,4-naphthoquinone (**4i**): Yield 19.2% (50.2 mg). Yellow needle crystal: m.p. 110–112 °C; ¹H NMR (CDCl₃): δ (ppm) 8.11 (dd, $J_1 = 1.5$ Hz, $J_2 = 8.0$ Hz 1H), 8.01 (dd, $J_1 = 1.5$ Hz, $J_2 = 8.0$ Hz 1H), 7.69 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz 1H), 7.63 (dt, $J_1 = 2.0$ Hz, $J_2 = 8.0$ Hz 1H), 6.06 (brs, 1H), 5.77 (s, 1H), 4.60 (t, J = 5.5 Hz, 1H), 3.44 (s, 6H), 3.31 (t, J = 5.0 Hz, 2H); GC-MS (m/z): 262.0, 260.8, 230.0, 201.0, 198.0, 75.0, 47.0.

2-(2-Hydroxyethylamino)-1,4-naphthoquinone (**4j**):³⁶ Yield 21.4% (46.5mg). Yellow needle crystal: m.p. 158–159 °C (lit.³⁷ 186–187 °C); ¹H NMR (CDCl₃): δ (ppm) 8.11 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz 1H), 8.05 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.0$ Hz 1H), 7.70 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.0$ Hz 1H), 7.65 (dt, $J_1 = 1.5$ Hz, $J_2 = 7.0$ Hz 1H), 6.23 (brs, 1H), 5.79 (s, 1H), 3.95–3.94 (m, 2H), 3.40–3.37 (m, 2H), 1.86 (s, 1H).

2-(4-Iodophenylamino)naphthalene-1,4-diol (5): Yield 24.6% (92.8mg). Red solid; ¹H NMR (CDCl₃): δ (ppm) 7.68–8.15 (m, 4H, ArH), 7.52 (s, 1H, NH), 7.42–7.42 (d, 2H, J = 0 Hz,ArH), 7.05–7.07 (d, 2H, J = 8.5 Hz, ArH), 6.41 (s, H, CH).

2-(*Phenylamino*)-1,4-naphthoquinone (6):³⁴ Yield 34.2% (85.9mg). Red solid: m.p. 184–185 °C (lit.³⁴ m.p. 187–189 °C); ¹H NMR (CDCl₃): δ (ppm) 8.15 (dd, J_1 = 1.0 Hz, J_2 = 9.0 Hz 2H), 7.80–7.77 (m, 1H), 7.71–7.68 (m, 1H), 7.58 (brs, 1H), 7.46–7.43 (m, 2H), 7.31–7.22 (m, 3H), 6.44 (s, 1H).

We gratefully acknowledge the financial support from the Natural Science Foundation of China (21176223) and the National Natural Science Foundation of Zhejiang (Y407306).

Received 13 September 2012; accepted 14 November 2012 Paper 1201545 doi: 10.3184/174751912X13547276507240 Published online: 15 January 2013

References

- 1 T.S. Lin, S. Xu, L. Zhu, L.A. Cosby and A.C. Sartorelli, J. Med. Chem., 1989, 32, 1467.
- 2 A.H. Crosby and R.E. Lutz, J. Am. Chem. Soc., 1956, 78, 1233.
- 3 B.J. Stefanska, M.J. Dzieduszycka, S. Martelli, I. Antonini and E. Borowski, J. Org. Chem., 1993, 58, 1568.
- 4 T.S. Lin, L.Y. Zhu, S.P. Xu, A.A. Divo and A.C. Sartorelli, *J. Med. Chem.*, 1991, **34**, 1634.
- 5 E.A. Couladouros, Z.F. Plyta and V.P. Papageorgiou, *J. Org. Chem.*, 1996, **61**, 3031.
- 6 A. Mital, S. Mahlavat, S. Bindal, M. Sonawane and V. Negi, *Pharma Chem.*, 2010, 2, 309.
- 7 A. Mital, S. Mahlavat, S. Bindal, M. Sonawane and V. Negi, *Pharma Chem.*, 2010, **2**, 53.
- 8 K.Y. Chan, J.J. Zhang and C.-W.T. Chang, *Bioorg. Med. Chem. Lett.*, 2011, 21, 6353.
- 9 J. Zhang, N. Redman, A.P. Litke, J. Zeng, J. Zhan, K.Y. Chan and C.-W.T. Chang, *Bioorg. Med. Chem.*, 2011, 19, 498.
- B. Åkermark, J.D. Oslob and U. Heuschert, *Tetrahedron Lett.*, 1995, 36, 1325.
- 11 P.R. Schreiner, Chem. Soc. Rev., 2003, 32, 289.
- 12 A. Wittkopp and P.R. Schreiner, Chem. Eur. J., 2003, 9, 407.
- 13 F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angew. Chem., Int. Ed., 2006, 45, 4467.
- 14 P.A. Chase, G.C. Welch, T. Jurca and D.W. Stephan, Angew. Chem., Int. Ed., 2007, 46, 8050.
- 15 P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Froehlich and G. Erker, Angew. Chem., Int. Ed., 2008, 47, 7543.
- 16 Y. Kita, K. Morimoto, M. Ito, C. Ogawa, A. Goto and T. Dohi, J. Am. Chem. Soc., 2009, 131, 1668.
- 17 Z. Shao and H. Zhang, Chem. Soc. Rev., 2012, 41, 560.
- 18 N. Deka, D.J. Kalita, R. Borah and J.C. Sarma, J. Org. Chem., 1997, 62, 1563.
- 19 H. Firouzabadi, N. Iranpoor and H. Hazarkhani, J. Org. Chem., 2001, 66, 7527.
- 20 B.P. Bandgar and K.A. Shaikh, Tetrahedron Lett., 2003, 44, 1959
- 21 B.K. Banik, M. Fernandez and C. Alvarez, *Tetrahedron Lett.*, 2005, 46, 2479.
- 22 S. Ko, M.N.V. Sastry, C. Lin and C.F. Yao, *Tetrahedron Lett.*, 2005, 46, 5771.
- 23 R. Varala, S. Nuvula and S.R. Adapa, J. Org. Chem., 2006, 71, 8283.
- 24 B. Karimi and B. Golshani, J. Org. Chem., 2000, 65, 7228.
- 25 Q. Wang, C. Wan, Y. Gu, J. Zhang, L. Gao and Z. Wang, *Green Chem.*, 2011, **13**, 578.
- 26 Y. Yuan and H. Zhu, Eur. J. Org. Chem., 2012, 2012, 329.
- 27 V. Kavala, C. Lin, C.-W. Kuo, H. Fang and C.-F. Yao, *Tetrahedron*, 2012, 68, 1321.
- 28 B. Liu and S.-J. Ji, Synth. Commun., 2008, 38, 1201.
- 29 M. Yamashita, K. Ueda, K. Sakaguchi and A. Iida, *Tetrahedron Lett.*, 2011, 52, 4665.
- 30 C.H. Jiang and S.Z. Wang, Synlett, 2009, 7, 1099.
- 31 H. Miyamura, M. Shiramisu, R. Matsubara and S. Kobayashi, *Chem. Lett.* 2008, 37, 360.
- 32 C. Valente, R. Moreira, R.C. Guedes, J. Iley, M. Jaffar and K.T. Douglas, Bioorg. Med. Chem., 2007, 15, 5340–5350.
- 33 U. Lohmann and K. Hartke, Arch. Pharm., 1984, 317, 313-323.
- 34 J.S. Yadav, B.V.S. Reddy, T. Swamy and K.S. Shankar, *Monatsh. Chem.*, 2008, **139**, 1317–1320.
- 35 M.Y. Fosso, K.Y. Chan, R. Gregory and C.-W.T. Chang, ACS Comb. Sci., 2012, 14, 231–235.
- 36 S. Cao, B.T. Murphy, C. Foster, J.S. Lazo and D.G.I. Kingston, *Bioorg. Med. Chem.*, 2009, **17**, 2276–2281.
- 37 L.F. Fieser, E. Berliner, F.J. Bondhus, F.C. Chang, W.G. Dauben, M.G. Ettlinger, G. Fawaz, M. Fields, C.Heidelberger, H. Heymann, W.R. Vaughan, A.G. Wilson, E. Wilson, M. Wu, M.T. Leffler, K.E. Hamlin, E.J. Matson, E.E. Moore, M.B. Moore, H.E. Zaugg, J. Am. Chem. Soc., 1948, **70**, 3174.

Copyright of Journal of Chemical Research is the property of Science Reviews 2000 Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.