CHEMISTRY =

Synthesis of Novel Spirocyclopropylmalonates and Barbiturates

Yu. G. Borisova, G. Z. Raskil'dina*, and S. S. Zlotskii

Presented by Academician A.A. Berlin February 22, 2017

Received March 28, 2017

Abstract—Alkylidenemalonates have been subjected to dichlorocyclopropanation to produce novel spirogem-dichlorocyclopropylmalonates in quantitative yields. The latter have been reacted with urea in the presence of sodium ethoxide to produce the corresponding barbiturates in 80–95% yields. The cleavage of the spiro-gem-dichlorocyclopropylmalonate carbocycle with ethanol with the aid of aluminum chloride has led to ethyl ethers, while carbocycle expansion with isobutyraldehyde has afforded polysubstituted tetrahydrofurans. The prepared compounds have been structurally characterized in detail by ¹H and ¹³C NMR spectroscopy.

DOI: 10.1134/S0012500817090014

Substituted malonates and barbiturates (pyrimidine-2,4,6-triones) exhibit high biological and pharmacological activity and are widely used in medicinal chemistry [1–3]. This work describes the methods of synthesis of spiro-*gem*-dichlorocyclopropylmalonates and the corresponding barbiturates on their basis, which are of considerable interest as NADH dehydrogenase complex inhibitors. The presence of *gem*dichloromethyl group enhances the biological activity and selectivity of these molecules as compared with the known cyclopropane derivatives [1, 4, 5].

In this work, we carried out the condensation of malonic ester 1 (Scheme 1) with aldehydes 2a and 2b to form alkylidenemalonates 3a and 3b, which were subjected to dichlorocarbonation for the first time to afford spiro-*gem*-dichlorocyclopropylmalonates 4a and 4b. In turn, the latter were used as initial compounds for preparing new spirocyclic barbiturates 5a and 5b. The yields of products 4a, 4b, 5a, and 5b were 80–90% as calculated for malonate 1.

The cleavage of carbocycle in malonates 4a and 4b with ethanol led to ethyl ethers 6a and 6b (yield 20-30%). Ring expansion in compounds 4a and 4b under the action of isobutyraldehyde 6b allowed the preparation of polysubstituted tetrahydrofurans 7a and 7b (yield 15-20%).

The ¹H NMR spectra of compounds 3a and 3b confirmed the formation of double bond upon the

condensation of diethyl malonate **1** with aldehydes **2a** and **2b**. The proton signal of the methyne group in compound **3a** appears at $\delta_{\rm H}$ 6.95 ppm as a triplet with spin–spin coupling constant J = 79 Hz. In compound **3b**, it appears at $\delta_{\rm H}$ 6.75 ppm as a doublet with spin– spin coupling constant J = 10.5 Hz. The ¹³C NMR spectra of compounds **3a** and **3b** display resonances of carbon atoms of the CH groups under consideration at $\delta_{\rm C}$ 149.13 and 154.76 ppm, respectively. The carbon atoms of ethoxycarbonyl groups in compounds **3a** and **3b** show characteristic signals: at $\delta_{\rm C}$ 165.60–168.43 ppm for C=O group, at $\delta_{\rm C}$ 61.09–61.44 ppm for CH₂ group, and at $\delta_{\rm C}$ 14.03–14.07 ppm for CH₃ group.

The ¹H NMR spectra of compounds 4a and 4b exhibit characteristic proton signal of CH group of gem-dichlorocyclopropane ring in the region $\delta_{\rm H}$ 2.41 ppm as a multiplet for **4a** and at $\delta_{\rm H}$ 2.25 ppm as a doublet with spin-spin coupling constant J = 10.8 Hz for 4b. The methyl groups of the isopropyl moiety in compound **4b** display resonances as two doublets at $\delta_{\rm H}$ 0.95 and 1.85 ppm with spin-spin coupling constant J = 6.6 Hz, while the CH₃ group of compound 4a shows a signal at $\delta_{\rm H}$ 0.95 ppm as a triplet with spinspin coupling constant J = 7.4 Hz. The proton signals of ethoxycarbonyl groups in compounds 4a and 4b have close chemical shits (the protons of CH₂ groups appear at $\delta_{\rm H}$ 4.25–4.30 ppm as a triplet of doublets with spin–spin coupling constant J = 2.4 and 7.2 Hz, the protons of CH₃ groups have $\delta_{\rm H}$ 1.25–1.35 ppm as quadruplet with spin-spin coupling constants J = 4.5, 4.8, and 7.2 Hz).

Ufa State Petroleum Technological University, Ufa, 450062 Russia *e-mail: graskildina444@mail.ru

The ¹³C NMR spectra of compounds **4a** and **4b** show signals of quaternary carbon atoms (from cyclopropane ring at the CCl₂ group and the carbon atom of the malonic ester moiety) appear in the region δ_C 76.40–76.70 and 52.10–55.60 ppm, respectively. The signal of CH group of this ring displays resonance at δ_C 39.03 for **4a** and at δ_C 46.50 ppm for compound **4b**. The chemical shifts of carbon atoms of ethoxycarbonyl groups for these compounds **3a** and **3b**.

The data of ¹H and ¹³C NMR and 2D COSY, HSQC, and HMBC correlation spectra for prepared 5,7-diazaspiro[2.5]octane systems **5a** and **5b** indicate that the *gem*-dichlorocyclopropane ring spiro-fused with the pyrimidine-2,4,6-trione heterocycle persists upon transformations of compounds **4a** and **4b**. This is evidenced by the presence of characteristic signals of the protons and carbon atoms of the *gem*-dichlorocyclopropane ring. The pyrimidine-2,4,6-trione moiety of molecules **5a** and **5b** is confirmed by the presence of two symmetrical C=O groups appeared in ¹³C NMR spectra as signals at $\delta_{\rm C}$ 167.50 ppm and one C=O group (between two NH groups) at $\delta_{\rm C}$ 148.41 ppm, which is typical for barbiturates **5** [3].

The ¹H NMR spectra of compounds **6a** and **6b** exhibit additional proton signals of the CH₃CH₂O groups ($\delta_{\rm H}$ 1.17 ppm for <u>CH₃CH₂O</u> and $\delta_{\rm H}$ 3.60–3.75 ppm for CH₃<u>CH₂O</u> protons), which confirms ring cleavage with ethanol in malonates **4a** and **4b**. The signal of the methyne proton at the C(3) atom is

observed at 3.05 ppm, while the signal of the proton at the C(1) atom appears as a singlet at 3.73 ppm.

In the ¹³C NMR spectra of compounds **6a** and **6b**, the signal of the tertiary carbon atom of the CCl₂ group in the cyclopropane ring is shifted downfield ($\delta_{\rm C}$ 88.40 ppm).

The ¹H NMR spectra of compounds **7a** and **7b**, display proton signals typical for isopropyl group. In particular, the proton signal of the methyne group at C(5) of this ring appears in the region $\delta_{\rm H}$ 3.64 and 4.15 ppm for compounds **7a** and **7b**, respectively.

The ¹³C NMR spectra of compounds **7a** and **7b** exhibit carbon resonances with chemical shifts δ_C 74.29–74.81 ppm for C(1) and δ_C 75.40–76.20 ppm for C(2) of the CCl₂ group, which indicates ring expansion in compounds **4a** and **4b** under the action of isobutyraldehyde **2b**.

Thus, we accomplished the synthesis of previously unknown spiro-*gem*-dichlorocyclopropylmalonates and barbiturates, which are of interest as biologically and pharmacologically active compounds.

EXPERIMENTAL

¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 spectrometer operating at 300.13 MHz (¹H) and 75.47 MHz (¹³C) in CDCl₃ (D₂O for **5a** and **5b**) using Me₄Si as an internal reference. Mass spectra were obtained on a ThermoFisher

DOKLADY CHEMISTRY Vol. 476 Part 1 2017

Table 1. ¹H and ¹³C NMR spectra of compounds 3a, 3b–7a, 7b

Compound (yield, %)	¹ H, ppm	¹³ C, ppm	$m/z, (I_{rel}, \%)$
3a (95)	0.90 (t, 3H, C ⁷ H ₃ , ³ J7.4), 1.25 (t,	$13.03 (C^7), 14.03 (C^8+C^9),$	M ⁺ = 214 (>1), 169
10—8, O	6H, $C^{10}H_3$, $C^{11}H_3$, ³ <i>J</i> 7.1), 1.50 (q,	21.56 (C ⁶), 31.57 (C ⁵),	(15), 127 (16), 122
O -1 ¹ (5) (7)	2 H, C ⁶ H ₂ 3 J 7.4), 2.25 (q, 2H, C ⁵ H ₂)	$61.09 (C^8 + C^9), 128.75$	(100), 99 (24), 94
2=4 6	^{3}J 7.4; 7.6), 4.15 (q, 4H, C ⁶ H ₂ , C ⁶ H ₂)	(C^2) , 149.13 (C^3) , 165.60 (C^1) , 168.43 (C^3)	(32), 68 (10), 55 (11),
0^{-3}	$J'.1), 0.95(t, 111, C 11_1, J'.9)$	(C), 100.43 (C)	+1())
3h (03)	$105(4.6H C^{6}H C^{7}H ^{3}I6.6)$ 125	$14.07(C^{10}+C^{11})$ 21.74	$M^+ = 214 (>1)$ 160
10—8 O	$(t, 6H, C^{10}H_3, C^{11}H_3, {}^3J7.3), 2.65 (m, 1.25)$	$(C^{6+}C^7)$, 29.33 (C ⁵),	(20), 127 (20), 122
\mathbf{O}^{-1}	1H, C^{5} H), 4.15 (q, 4H, C^{8} H ₂ , C^{9} H ₂ ,	$61.44(C^8+C^9), 126.50(C^2),$	(100), 99 (26), 68
$2=4^{-5}$	${}^{3}J$ 7.1), 6.75 d (1H, C ⁴ H, ${}^{3}J$ 10.5)	$154.76 (C^4), 164.60 (C^1),$	(20), 55 (13), 41(9)
O-3		$168.43 (C^3)$	
11—9 O		11 12	
4a (90)	$0.95 (t, 3H, C^{6}H_{3}, {}^{3}J7.4), 1.25 (q, 0.12)$	$13.97 (C^{11} + C^{12}), 21.21$	$M^+ = 285$ (absent),
11-9 0 4 5 6	150-160 (a 4H C4H2 C5H3 3 I 68)	$(C^{4}), 27.96 (C^{3}), 39.03$ $(C^{4}), 40.70 (C^{3}), 52.10$	258(25), 225(38), 215(42), 195(60)
$0 - \frac{3}{1 - \frac{3}{1$	$2.41 \text{ (m, 1H, C^{3}H), } 4.25 \text{ (td, 4H, }$	$(C^{1}), 61.44 (C^{9} + C^{10}),$	169 (85), 160 (100),
$O = \frac{1}{2} Cl$	$C^{9}H_{2}, C^{10}H_{2}, {}^{2}J2.4; {}^{3}J7.2)$	76.40 (C^2), 164.2 (C^{11+12})	141 (21), 123 (70), 99
12-10 O Cl			(23), 79 (65), 43 (45)
4b (85)	$0.95 (d, 3H, C^5H_3, {}^3J 6.6), 1.85 (d,$	13.90 (C ¹¹ +C ¹²), 22.21	$M^+ = 294(absent),$
$11 - 9 \qquad 0 \qquad ^{5}$	3 H, C ⁶ H ₃ , 3 <i>J</i> 6.6), 1.35 (q, 6H, C ¹¹ H ₃ ,	$(C^{5+6}), 26.80 (C^4), 46.50$	259 (45), 225 (44),
O - 7 / 2 / 4 - 6	$C^{12}H_3$, ${}^{3}J$ 4.5; 4.8; 7.2), 2.70 (m, 1H, $C^{4}H$), 2.25 (d, 1H, $C^{3}H$, ${}^{3}J$ 10.8)	(C^3) , 55.60 (C ¹), 61.44 $(C^9 + C^{10})$, 76.70 (C ²)	215(32), 195(60), 160(80), 160(100)
	$4.30 (td. 4H, C^9H_2, C^{10}H_2, ^2J_2, 4;$	$(C^{7} + C^{7}), 70.70 (C^{7}), 164.82 (C^{7+8})$	109(80), 100(100), 141(23), 123(73), 99
$O-8$ $\int Cl$	³ <i>J</i> 7.2)		(24),79 (61), 43(43)
12 - 10 O Cl			
5a (85)	0.90 (t, 3H, C ¹¹ H ₃ , ³ <i>J</i> 7.0), 1.30 (dd, 1H, C ⁹ H ² <i>I</i> 7.3, ³ <i>I</i> 4.8), 1.50 (d, 2H)	13.09 (C11), 21.17 (C10), 28.96 (C9), 37.36 (C2)	—
Ŭ	$C^{10}H_2$, ${}^3J7.3$), 1.70 (dd, 1H, C^9H_b	$52.71 (C^3), 84.56 (C^1),$	
HN7 [°] 5NH	${}^{2}J7.1; {}^{3}J = 4.5), 2.10 (d, 1H, C^{2}H,$	148.41 (C^6), 167.50 (C^{4+8})	
0=8~3-4\$0	^{3}J 5.3), 4.60 (br s, NH, H ₂ O)		
$Cl = \frac{1}{2}$			
Cl			
10			
5b (80)	1.00 (m, 1H, C ⁹ H), 1.10 (dd, 6H,	$21.00 (C^{10+11}), 31.33 (C^9),$	_
0	$C^{10+11}H_3$, ³ <i>J</i> 6.5), 2.20 (d, 1H, C ² H,	$53.21 (C^3), 148.41 (C^6),$	
ا ⁶ ر	^{3}J 10.8)	$167.50 (C^{4+8})$	
$0^{=8}$ 3^{-4} 0			
$CI - \frac{1}{2}$			
6a (20)	1.00 (t. 3H, C ⁸ H ₂ , ³ /7 0) 1 17 (t. 3H	$14.03 (C^8)$, 14 77 (C ⁷)	_
5	$C^{5}H_{3}$, ${}^{3}J7.1$), 1.30 (t, 6H, $C^{13}H_{3}$,	$15.00 (C^{13+14}), 21.17(C^6),$	
	$C^{14}H_3$, ³ <i>J</i> 7.3), 2.65–2.70 (m, 4H,	$33.22 (C^5), 63.61 (C^{11+12}),$	
0 - 9 0 - 7 - 8	$C^{6}H_{2}, C'H_{2}), 3.05 (s, 1H, C^{3}H),$	$64.21 (C^4), 65.33 (C^1),$	
	5.00-3.70 (m, 2H, C ^T H ₂), 3.73 (s, C ¹ H) 4 15 (a 4H C ¹¹ H ₂ C ¹² H ₂	$88.40 (C^2), 102.33 (C^3), 166.21 (C^{9+10})$	
O^{-10} ^{2}Cl	$^{3}J7.2$		
14–12 O Cl			

DOKLADY CHEMISTRY Vol. 476 Part 1 2017

Table 1. (Contd.)

Compound (yield, %)	¹ H, ppm	¹³ C, ppm	m/z, (I _{rel} , %)
$ \begin{array}{c} \mathbf{6b} (30) \\ $	0.95 (d, 3H, C^7H_3 , ³ <i>J</i> 6.6), 0.95 (d, 3H, C^8H_3 , ³ <i>J</i> 6.6), 1.30 (t, 6H, $C^{13}H_3$, $C^{14}H_3$, ³ <i>J</i> 7.3), 2.65–2.70 (m, C^6H), 3.05 (s, 1H, C^3H), 3.60–3.71 (m, 2H, C^3H_2), 3.73 (s, C^1H), 4.15 (q, 4H, $C^{11}H_2$, $C^{12}H_2$, ³ <i>J</i> 7.2)	15.00 (C^{13+14}), 22.21 (C^{7+8}), 26.80 (C^{6}), 33.22 (C^{5}), 63.61 (C^{11+12}), 64.21 (C^{4}), 65.33 (C^{1}), 88.40 (C^{2}), 102.33 (C^{3}), 166.21 (C^{9+10})	_
7a (15) 9-6 O_{1}^{8} , 14 ⁻¹⁶ 9-6 O_{2}^{10} , 0 11 O_{1}^{-5} , 1-13, 0, 15 ⁻¹⁷ 10 -7, -3 -2, Cl O Cl	1.00 (d, 6H, $C^{8}H_{3}$, $C^{11}H_{3}$, ${}^{3}J8.0$), 1.09 (d, 6H, $C^{9}H_{3}$, $C^{10}H_{3}$, ${}^{3}J8.1$), 1.30 (t, 6H, $C^{16}H_{3}$, $C^{17}H_{3}$, ${}^{3}J7.0$), 1.75 (m, 1H, $C^{6}H$), 2.68 (m, 1H, $C^{7}H$), 3.64 (d, 1H, $C^{5}H$, ${}^{3}J6.4$), 4.00 (d, 1H, $C^{2}H$, ${}^{3}J6.5$), 4.15 (q, 4H, $C^{14}H_{2}$, $C^{15}H_{2}$, ${}^{3}J7.1$)	14.33 (C ¹¹), 15.01 (C ¹⁶⁺¹⁷), 16.77 (C ¹⁰), 18.51 (C ⁸⁺⁹), 31.21 (C ⁶), 33.11 (C ⁷), 65.22 (C ¹⁴⁺¹⁵), 74.29 (C ¹), 75.40 (C ²), 90.33 (C ³), 96.21 (C ⁵), 167.25 (C ¹²⁺¹³)	_
7b (20) $9 - 6 O_{12} - 0$ 0 - 5 / 1 - 13 - 0 - 15 - 17 10 - 7 - 3 - 2 - 0 1 - 13 - 0 - 15 - 17 10 - 7 - 3 - 2 - 0 1 - 13 - 0 - 15 - 17 10 - 7 - 3 - 2 - 0 1 - 13 - 0 - 15 - 17	1.00 (d, 6H, $C^{8}H_{3}$, $C^{11}H_{3}$, ${}^{3}J 8.0$), 1.09 (d, 6H, $C^{9}H_{3}$, $C^{10}H_{3}$, ${}^{3}J 8.1$), 1.30 (t, 6H, $C^{16}H_{3}$, $C^{17}H_{3}$, ${}^{3}J 7.0$), 1.75 (m, 1H, $C^{6}H$), 2.68 (m, 1H, $C^{7}H$), 4.00 (d, 1H, $C^{2}H$, ${}^{3}J 6.5$), 4.15 (d, 1H, $C^{5}H$, ${}^{3}J 6.5$), 4.15 (q, 4H, $C^{11}H_{2}$, $C^{12}H_{2}$, ${}^{3}J 7.1$)	15.21 (C^{16+17}), 16.77 (C^{8+11}), 18.55 (C^{9+10}), 31.71 (C^{6+7}), 65.77 (C^{14+15}), 74.81 (C^{1}), 76.20 (C^{2}), 90.36 (C^{3}), 96.22 (C^{5}), 165.35 (C^{12+13})	_

Dash indicates that spectra were not recorded.

Scientific Thermo Finnigan MAT 95 XP high-resolution GC-mass spectrometer system at ionizing voltage 70 eV (ionizing chamber temperature 250°C, direct inlet temperature 50–270°C, heating rate 10 K/min). Gas-liquid chromatography was performed on a Chrom-5 instrument (Laboratory Equipment, Czechoslovakia, column 1.2 m long, 5% SE-30 silicone as a stationary phase) using Chromaton N-AW-DMCS as a sorbent (Ekolan, Russia, 0.16–0.20 mm, working temperature 50–300°C, helium as a carrier gas).

Synthesis of alkylidenemalonates 3a and 3b. A solution of 8 g (0.1 mol) of aldehyde 2a or 2b, 16 g (0.1 mol) of diethyl malonate 1, 0.85 g (0.01 mol) of piperidine, and 1.2 g (0.02 mol) of acetic acid in 40 mL of C_6H_6 was heated at reflux with a Dean–Stark trap for 3 h until water evolution ceased. The resultant mixture was cooled and washed with water until the pH in the solution became neutral, dried with Na₂SO₄, the solvent was removed by rotary evaporation to give 20 g of diethyl butylidenemalonate (3a) (yield 95%), bp 101°C (6 mmHg) and 19.7 g of diethyl (2-methylpropylidene)malonate (3b) (yield 93%), bp 106°C (6 mmHg).

Dichlorocarbonylation of alkylidenemalonates 3a and 3b were carried out by previously described procedure [6]. Diethyl 2,2-dichloro-3-propylcyclopropane-1,1-dicarboxylate (4a), yield 12.6 g (90%), bp 145°C (2 mmHg); diethyl 2,2-dichloro-3-isopropylcyclopropane-1,1-dicarboxylate (**4b**), yield 14 g (85%), bp 154°C (2 mmHg) were obtained.

Synthesis of substituted barbiturates 5a and 5b. Three grams (0.04 mol) of urea was added to a solution of sodium ethoxide prepared by dissolution of 0.5 g(0.024 mol) of sodium in 11 mL of anhydrous ethanol, 2.3 g (0.008 mol) of diethyl 2,2-dichloro-3-propylcyclopropane-1,1-dicarboxylate (4a) or 2.3 g of diethyl 2,2-dichloro-3-isopropylcyclopropane-1,1-dicarboxvlate (4b) was added dropwise with stirring. The mixture was heated under reflux for 4 h until precipitate formed. The mixture was cooled to ambient temperature, the precipitate was separated by filtration, and the filtrate was evaporated. The solid residue was washed with hexane using a Buchner funnel. The resultant powder was dried in air. 1,1-Dichloro-2-propyl-5,7-diazaspiro[2.5]octane-4,6,8-trione (5a), vield 1.9 g (85%), mp 149°C; 1,1-dichloro-2-isopropyl-5,7-diazaspiro[2.5]octane-4,6,8-trione (5b), yield 1.7 g (80%), mp 151°C.

Cleavage of malonates 4a and 4b with ethyl alcohol. A solution of 1.35 g (0.01 mol) of AlCl₃ in 50 mL of methylene chloride was added dropwise with stirring to a mixture of 2.3 g (0.008 mol) of diethyl 2,2-dichloro-3-propylcyclopropane-1,1-dicarboxylate (4a) or 2.3 g of diethyl 2,2-dichloro-3-isopropylcyclopropane-1,1-dicarboxylate (4b), 0.9 g (0.009 mol) of

DOKLADY CHEMISTRY Vol. 476 Part 1 2017

ethyl alcohol and 40 mL of methylene chloride and the mixture was stirred at 50°C for 8 h. Next, the reaction mixture was washed with water and extracted with dichloromethane. The organic layers were combined, dried with MgSO₄, and the solvent was removed in vacuum. The residue was chromatographed on silica gel (benzene : ethyl acetate = 8 : 2) to give 0.5 g (yield 20%) of diethyl (1,1-dichloro-2-ethoxy-3-methylbu-tyl)malonate (**6a**), $R_f = 0.44$ and 0.6 g (yield 30%) of diethyl (1,1-dichloro-2-ethoxy-3-methylisobu-tyl)malonate (**6b**), $R_f = 0.49$.

Cleavage of malonates 4a and 4b with aldehyde 2b. A solution of 1.3 g (0.01 mol) of AlCl₃ in 50 mL of methylene chloride was added dropwise to a mixture of 2.3 g (0.008 mol) of diethyl 2,2-dichloro-3-propylcyclopropane-1,1-dicarboxylate (4a) or 2.3 g of diethyl 2,2-dichloro-3-isopropylcyclopropane-1,1-dicarboxylate (4b), 0.9 g (0.009 mol) of isobutanal 2b, and 40 mL of methylene chloride and the mixture was stirred at 30°C for 8 h. Next, an aqueous 5% HCl solution was added to pH = 3, and the reaction mixture was extracted with dichloromethane $(3 \times 8 \text{ mL})$. The organic layers were combined, dried with MgSO₄, and the solvent was removed by rotary evaporation. The residue was chromatographed on silica gel (benzene : ethyl acetate = 8:2) to give 0.3 g (yield 15%) of diethyl 4,4-dichloro-2,5-diisopropyldihydrofuran-3,3(2H)dicarboxylate (7a), $R_f = 0.63$ and 0.5 g (yield 20%) of diethyl 4,4-dichloro-2,5-diisopropyldihydrofuran-3,3(2H)-dicarboxylate (7b), $R_{\rm f} = 0.68$.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (grant no. 15-13-10034).

REFERENCES

- 1. Fraser, W., Suckling, C.J., and Wood, H.C.S., J. Chem. Soc. Perkin Trans., 1990, pp. 3137–3144.
- Maquoi, E., Sounni, N.E., Devy, L., Olivier, F., Frankenne, F., Krell, H.-W., Grams, F., Foidart, J.-M., and Noel, A., *Clin. Canc. Res.*, 2004, vol. 11, pp. 4038– 4047.
- Wakamatsu, T., Tanaka, T., Oda, S., Nishi, K., Harada, H., Daijo, H., Takabuchi, S., Kai, S., Fukuda, K., and Hirota, K., *Eur. J. Pharm.*, 2009, vol. 617, pp. 17– 22.
- Yanovskaya, L.A., Dombrovskii, V.A., and Khusid, A.Kh., *Tsiklopropany s funktsional'nymi gruppami*. *Sintez i primenenie* (Tricycloporopanes with Functional Groups. Synthesis and Application), Moscow: Nauka, 1980.
- Rudakov, G.F., Dubovis, M.V., Kulagin, A.S., Tsar'kova, K.V., Goloveshkin, A.S., and Zhilin, V.F., *Khim. Geterotsikl. Soedin.*, 2015, vol. 50, p. 1777.
- Raskil'dina, G.Z., Borisova, Yu.G., Yanybin, V.M., Sultanova, R.M., Spirikhin, L.V., and Zlotskii, S.S., *Dokl. Chem.*, 2016, vol. 466, part 1, pp. 8–10.

Translated by I. Kudryavtsev