organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

2-[Anilino(diphenylphosphoryl)methyl]phenol from a threecomponent Kabachnik—Fields reaction

Ming-Shu Wu,^a* Qing-Qin Feng,^b Gao-Nan Li^a and De-Hui Wan^a

^aCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China

Correspondence e-mail: wumingshu@126.com

Received 3 July 2013 Accepted 7 August 2013

The title compound, $C_{25}H_{22}NO_2P$, was synthesized in high yield by a three-component Kabachnik–Fields reaction of diphenylphosphine oxide, salicylaldehyde and aniline in dry toluene at room temperature. It precipitates as racemic crystals, in which strong hydrogen bonds between the hydroxy group and the P=O group of a neighbouring molecule form one-dimensional heterochiral chains along the crystallographic *a* axis, with an O···O separation of 2.568 (2) Å. The pseudo-tetrahedral environment of the P atom is distorted, with O–P–C bond angles significantly larger than the C– P–C angles.

Keywords: crystal structure; Kabachnik–Fields reaction; heterochiral chains.

1. Introduction

Chiral phosphorus-containing compounds such as α -aminophosphonic acids and their derivatives have attracted considerable attention due to their promising biological properties (Romanenko & Kukhar, 2006; Haynes et al., 1989, 1991; Shi et al., 2000; Kafarski & Lejczak, 2001). They have found application as antibacterials (Pratt, 1989), antiviral agents (Huang & Chen, 2000) and enzyme inhibitors (Smith et al., 1989; Kafarski & Lejczak, 1991). The absolute configuration of phosphonyl compounds strongly influences their biological properties (Patel et al., 1995). Various methods for the synthesis of α -aminophosphonic acids and α -aminophosphonates have therefore been reported (Moore et al., 2002; Demmer et al., 2011; Bálint et al., 2013; Wu et al., 2013). However, other α -amino phosphorus derivatives, such as α -aminophosphine oxides, have received much less attention for their biological properties due to the lack of direct synthetic access. We report herein a convenient one-pot threecomponent method using a Kabachnik–Fields reaction for the synthesis of 2-[anilino(diphenylphosphoryl)methyl]phenol, (I), using diphenylphosphine oxide, salicylaldehyde and aniline as starting materials (see Scheme). The notable advantages of this methodology are operational simplicity, mild reaction conditions, higher yields, a reasonable reaction time and ease of isolation of the pure products. In order to confirm further the stereochemistry and structure–activity relationship of α -aminophosphine oxides with potential practical applications, we established the crystal structure of (I).

2. Experimental

2.1. Synthesis and crystallization

A solution of diphenylphosphine oxide (1.01 g, 5 mmol, 1 equivalent) in dry toluene (10 ml) was added to a dry 50 ml flask (equipped with a CaCl₂ tube) containing a solution of aniline (1.8 ml, 20 mmol, 4 equivalents) and salicylaldehyde (0.61 g, 5 mmol, 1 equivalent) in dry toluene (20 ml). After stirring for 4 h at room temperature, the reaction was complete; the precipitate was filtered off, washed with cold toluene (10 ml) and then dried under vacuum to afford the pure title product, (I) (vield 1.8 g, 90%), as a colourless solid. Single crystals of (I) suitable for X-ray diffraction were obtained by recrystallization from diethyl ether. Spectroscopic analysis: ¹H NMR (400 MHz, CDCl₃, 298 K): δ 9.82 (s, 1H, OH), 7.81–6.62 (*m*, 19H, Ar-H), 5.46 (*d*, ${}^{2}J_{P-H} = 8.5$ Hz, 1H, C-H), 3.73 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 155.9, 145.8, 132.7, 129.3, 129.7, 129.2, 128.8, 128.6, 128.4, 128.3, 122.4, 120.4, 119.2, 114.4, 56.9 $(d, {}^{1}J_{P-C} =$ 39.9 Hz); ³¹P NMR (162 MHz, CDCl₃, 298 K): δ 38.4; IR (KBr, v, cm⁻¹): 3430 (NH), 3228 (OH), 3303 (NH), 3138, 3062, 2969, 2916, 2884, 2827, 1591, 1553, 1485, 1438, 1171 (P=O), 1122, 1096 (P-O), 1070, 1037, 855, 743, 726, 693, 561, 542, 525, 439. Analysis found for C₂₅H₂₂NO₂P: C 75.19, H 5.43, N 3.55%; calculated: C 75.18, H 5.55, N 3.51%.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bound to C or N atoms were positioned geometrically and refined using a

organic compounds

Table 1

Experimental details.

Crystal data	
Chemical formula	$C_{25}H_{22}NO_2P$
M _r	399.41
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	293
a, b, c (Å)	12.5489 (4), 16.4560 (5), 20.9643 (6)
$V(\text{\AA}^3)$	4329.2 (2)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.15
Crystal size (mm)	$0.1 \times 0.1 \times 0.1$
Data collection	
Diffractometer	Agilent Xcalibur (Atlas, Gemini ultra) diffractometer
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2012)
T_{\min}, T_{\max}	0.774, 1.000
No. of measured, independent and	14390, 4429, 2951
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.039
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)] = wR(F^2) S$	0.048 0.122 1.02
No of reflections	4429
No. of parameters	263
No of restraints	0
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.29, -0.27

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

riding model, with aryl C–H = 0.93 Å, methine C–H = 0.98 Å and N–H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The hydroxy H atom was located from a difference Fourier map and was refined with a combination of riding and rotational motion, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing for (I), showing the intermolecular hydrogen-bonding interactions (dashed lines) between atoms H1B and O2ⁱ of neighbouring S and R enantiomers. [Symmetry code: (i) $x - \frac{1}{2}$, y, $-z + \frac{3}{2}$.]

3. Results and discussion

In compound (I), the formation of P-C bonds between the P atom of diphenylphosphine oxide and the carbonyl C atom of salicylaldehyde generates a stereocentre at atom C7 (Fig. 1). The space group *Pbca* was identified with the help of the program *PLATON* (Spek, 2009). Not surprisingly, (I) forms racemic crystals with one molecule in the asymmetric unit. A displacement ellipsoid plot of the *S* enantiomer is shown in Fig. 1. The O-P-C bond angles are systematically larger than the C-P-C angles (Table 2), indicating a minor distortion in which the phenyl groups are splayed back slightly, away from the phosphoryl function.

An intermolecular $O1-H1\cdots O2^i$ hydrogen bond (details in Table 3, including symmetry code) between the O1-H1hydroxy group and P-bonded atom O2 links neighbouring

Table 2		
Selected	bond angles	(°).

O2-P1-C7	110.33 (9)	C19-P1-C7	108.59 (9)
O2-P1-C19	110.55 (9)	C25-P1-C7	105.28 (9)
O2-P1-C25	114.61 (9)	C25-P1-C19	107.19 (9)

Table 3	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1-H1B\cdots O2^{i}$	0.82	1.79	2.5677 (19)	159
Symmetry code: (i) x	$-\frac{1}{2}, y, -z + \frac{3}{2}.$			

molecules into heterochiral chains along the crystallographic *a* axis (Fig. 2).

This work was supported by the National Natural Science Foundation of China (grant No. 21162008).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EG3131). Services for accessing these data are described at the back of the journal.

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Bálint, E., Takács, J., Drahos, L. & Juranovic, A. (2013). Heteroatom Chem. 24, 221–225.
- Demmer, C. S., Krogsgaard-Larsen, N. & Bunch, L. (2011). Chem. Rev. 111, 7981–8006.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Haynes, R. K., Loughlin, W. A. & Hambley, T. W. (1991). J. Org. Chem. 56, 5785–5790.
- Haynes, R. K., Vonwiller, S. C. & Hambley, T. W. (1989). J. Org. Chem. 54, 5162–5170.
- Huang, J. & Chen, R. (2000). Heteroatom Chem. 11, 480-492.
- Kafarski, P. & Lejczak, B. (1991). Phosphorus Sulfur Silicon Relat. Elem. 63, 193–215.
- Kafarski, P. & Lejczak, B. (2001). Curr. Med. Chem. 1, 301-312.
- Moore, J. D., Sprott, K. T. & Hanson, P. R. (2002). J. Org. Chem. 67, 8123-8129.
- Patel, D. V., Rielly-Gauvin, K., Ryono, D. E., Charles, A. F., Rogers, W. L., Smith, S. A., Deforrest, J. M., Oehl, R. S. & Petrillo, E. W. (1995). J. Med. Chem. 38, 4557–4569.
- Pratt, R. F. (1989). Science, 246, 917-919.
- Romanenko, V. D. & Kukhar, V. P. (2006). Chem. Rev. 106, 3868-3965.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, J.-C., Chao, H.-Y., Fu, W.-F., Peng, S.-M. & Che, C.-M. (2000). J. Chem. Soc. Dalton Trans. 18, 3128–3132.
- Smith, M. M., Merlie, J. P. & Lawrence, J. C. (1989). J. Biol. Chem. 264, 12813– 12819.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wu, M.-S., Liu, R.-D. & Wan, D.-H. (2013). Heteroatom Chem. 24, 110–115.

supplementary materials

Acta Cryst. (2013). C69, 1070-1072 [doi:10.1107/S0108270113022087]

2-[Anilino(diphenylphosphoryl)methyl]phenol from a three-component Kabachnik-Fields reaction

Ming-Shu Wu, Qing-Qin Feng, Gao-Nan Li and De-Hui Wan

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

2-[Anilino(diphenylphosphoryl)methyl]phenol

Crystal data			
$C_{25}H_{22}NO_{2}P$ $M_{r} = 399.41$ Orthorhombic, <i>Pbca</i> $a = 12.5489 (4) \text{ Å}$ $b = 16.4560 (5) \text{ Å}$ $c = 20.9643 (6) \text{ Å}$ $V = 4329.2 (2) \text{ Å}^{3}$ $Z = 8$ $F(000) = 1680$	$D_x = 1.226 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3813 reflections $\theta = 2.3-29.7^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 293 K Prism, colourless $0.1 \times 0.1 \times 0.1 \text{ mm}$		
Data collection			
Agilent Xcalibur (Atlas, Gemini ultra) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2012) $T_{\min} = 0.774, T_{\max} = 1.000$	14390 measured reflections 4429 independent reflections 2951 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -14 \rightarrow 15$ $k = -20 \rightarrow 16$ $l = -26 \rightarrow 25$		
Refinement			
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.122$ S = 1.02 4429 reflections 263 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0503P)^2 + 0.6207P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å ⁻³ $\Delta\rho_{min} = -0.27$ e Å ⁻³		

Special details

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.68854 (4)	0.10727 (3)	0.67088 (2)	0.03680 (16)
01	0.43871 (13)	0.17634 (11)	0.75461 (7)	0.0704 (5)
H1B	0.3989	0.1774	0.7856	0.106*
O2	0.79368 (10)	0.14729 (9)	0.66206 (6)	0.0484 (4)
N1	0.59018 (14)	0.21014 (10)	0.59205 (7)	0.0476 (4)
H1	0.6477	0.2017	0.5708	0.057*
C1	0.65930 (19)	0.30369 (13)	0.71138 (11)	0.0559 (6)
H1A	0.7084	0.3083	0.6784	0.067*
C2	0.6630(2)	0.35799 (15)	0.76194 (13)	0.0732 (7)
H2	0.7144	0.3987	0.7629	0.088*
C3	0.5904 (2)	0.35127 (16)	0.81021 (12)	0.0693 (7)
Н3	0.5931	0.3876	0.8442	0.083*
C4	0.5139 (2)	0.29207 (15)	0.80944 (10)	0.0603 (6)
H4	0.4646	0.2885	0.8424	0.072*
C5	0.51038 (17)	0.23744 (13)	0.75920 (9)	0.0466 (5)
C6	0.58356 (16)	0.24296 (11)	0.70957 (9)	0.0392 (5)
C7	0.58122 (15)	0.17948 (12)	0.65686 (8)	0.0384 (5)
H7	0.5136	0.1500	0.6602	0.046*
C8	0.41040 (18)	0.26471 (13)	0.59454 (10)	0.0514 (6)
H8	0.3999	0.2444	0.6355	0.062*
С9	0.3292 (2)	0.30678 (15)	0.56417 (12)	0.0668 (7)
H9	0.2646	0.3146	0.5850	0.080*
C10	0.3430 (3)	0.33700 (16)	0.50364 (14)	0.0758 (8)
H10	0.2881	0.3651	0.4836	0.091*
C11	0.4382 (3)	0.32536 (16)	0.47317 (12)	0.0740 (8)
H11	0.4478	0.3458	0.4322	0.089*
C12	0.5201 (2)	0.28378 (13)	0.50237 (10)	0.0561 (6)
H12	0.5843	0.2763	0.4810	0.067*
C13	0.50706 (18)	0.25279 (11)	0.56411 (9)	0.0433 (5)
C14	0.5774 (2)	-0.00203 (15)	0.59125 (10)	0.0621 (6)
H14	0.5149	0.0253	0.6019	0.075*
C15	0.5736 (3)	-0.06854 (17)	0.55043 (12)	0.0788 (8)
H15	0.5086	-0.0861	0.5342	0.095*
C16	0.6647 (3)	-0.10775 (17)	0.53429 (13)	0.0860 (10)

H16	0.6619	-0.1523	0.5071	0.103*
C17	0.7601 (3)	-0.08252 (17)	0.55751 (14)	0.0857 (9)
H17	0.8221	-0.1096	0.5458	0.103*
C18	0.7655 (2)	-0.01646 (14)	0.59873 (11)	0.0640 (7)
H18	0.8310	0.0006	0.6145	0.077*
C19	0.67364 (17)	0.02364 (12)	0.61607 (9)	0.0428 (5)
C20	0.7151 (2)	0.10357 (17)	0.80119 (10)	0.0719 (8)
H20	0.7624	0.1463	0.7948	0.086*
C21	0.6948 (3)	0.0757 (2)	0.86265 (12)	0.0975 (11)
H21	0.7280	0.1003	0.8973	0.117*
C22	0.6265 (3)	0.0125 (2)	0.87217 (12)	0.0874 (9)
H22	0.6143	-0.0067	0.9133	0.105*
C23	0.5764 (2)	-0.02250 (17)	0.82197 (13)	0.0783 (8)
H23	0.5290	-0.0651	0.8287	0.094*
C24	0.5956 (2)	0.00505 (14)	0.76081 (10)	0.0609 (6)
H24	0.5609	-0.0193	0.7266	0.073*
C25	0.66542 (16)	0.06800 (12)	0.74989 (9)	0.0426 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0374 (3)	0.0433 (3)	0.0297 (3)	-0.0013 (2)	-0.0015 (2)	0.0009 (2)
O1	0.0646 (11)	0.0858 (12)	0.0609 (10)	-0.0245 (10)	0.0271 (8)	-0.0124 (9)
O2	0.0378 (8)	0.0683 (9)	0.0391 (7)	-0.0077 (7)	-0.0011 (6)	-0.0007 (7)
N1	0.0492 (11)	0.0603 (11)	0.0333 (8)	0.0079 (9)	0.0064 (8)	0.0097 (8)
C1	0.0629 (15)	0.0474 (13)	0.0574 (14)	-0.0102 (12)	0.0067 (12)	0.0012 (11)
C2	0.0790 (19)	0.0521 (15)	0.089 (2)	-0.0140 (14)	-0.0039 (16)	-0.0097 (14)
C3	0.084 (2)	0.0586 (16)	0.0657 (16)	0.0075 (15)	-0.0063 (15)	-0.0203 (13)
C4	0.0673 (16)	0.0659 (16)	0.0479 (12)	0.0117 (14)	0.0073 (12)	-0.0074 (11)
C5	0.0465 (12)	0.0501 (12)	0.0430 (11)	0.0012 (11)	0.0035 (10)	0.0010 (10)
C6	0.0421 (12)	0.0384 (11)	0.0370 (10)	0.0008 (9)	0.0000 (9)	0.0045 (9)
C7	0.0390 (11)	0.0429 (11)	0.0332 (10)	-0.0034 (9)	0.0006 (8)	0.0051 (8)
C8	0.0570 (14)	0.0535 (13)	0.0436 (12)	0.0074 (11)	-0.0110 (11)	-0.0036 (10)
C9	0.0662 (17)	0.0640 (16)	0.0702 (16)	0.0141 (13)	-0.0229 (13)	-0.0157 (13)
C10	0.093 (2)	0.0604 (17)	0.0743 (18)	0.0103 (15)	-0.0419 (17)	-0.0013 (14)
C11	0.108 (2)	0.0609 (16)	0.0527 (14)	-0.0108 (16)	-0.0350 (16)	0.0141 (12)
C12	0.0759 (16)	0.0524 (13)	0.0400 (11)	-0.0113 (12)	-0.0120 (11)	0.0062 (10)
C13	0.0567 (14)	0.0371 (11)	0.0362 (10)	-0.0034 (10)	-0.0102 (10)	-0.0019 (9)
C14	0.0703 (17)	0.0622 (15)	0.0539 (13)	-0.0032 (13)	-0.0079 (13)	-0.0116 (12)
C15	0.109 (2)	0.0678 (17)	0.0595 (16)	-0.0205 (18)	-0.0115 (16)	-0.0111 (14)
C16	0.148 (3)	0.0524 (16)	0.0574 (16)	-0.006 (2)	0.0084 (19)	-0.0091 (13)
C17	0.116 (3)	0.0599 (17)	0.081 (2)	0.0229 (18)	0.0206 (19)	-0.0111 (15)
C18	0.0740 (18)	0.0570 (15)	0.0609 (14)	0.0125 (14)	0.0016 (13)	-0.0042 (12)
C19	0.0567 (14)	0.0400 (11)	0.0318 (10)	0.0011 (10)	-0.0007 (10)	0.0016 (9)
C20	0.0852 (19)	0.0932 (19)	0.0372 (12)	-0.0216 (16)	-0.0057 (12)	0.0073 (13)
C21	0.129 (3)	0.128 (3)	0.0357 (14)	-0.021 (2)	-0.0097 (15)	0.0118 (16)
C22	0.125 (3)	0.092 (2)	0.0450 (15)	0.011 (2)	0.0147 (17)	0.0264 (15)
C23	0.100 (2)	0.0636 (17)	0.0714 (18)	-0.0068 (16)	0.0200 (17)	0.0246 (14)
C24	0.0745 (17)	0.0593 (15)	0.0491 (13)	-0.0074 (13)	0.0037 (12)	0.0112 (11)
C25	0.0475 (12)	0.0456 (11)	0.0347 (10)	0.0048 (10)	-0.0008 (9)	0.0043 (9)

Geometric parameters (Å, °)

P1 02 1.4862 (14) C11 P11 0.9300 P1-C7 1.820 (2) C12-C11 1.378 (3) P1-C19 1.805 (2) C12-H12 0.9300 P1-C25 1.8015 (19) C13-C12 1.401 (3) N1-H1 0.8600 C14-H14 0.9300 N1-H1 0.8600 C14-C15 1.390 (3) C1-C2 1.387 (3) C16-C15 1.356 (4) C1-C2 1.387 (3) C16-C15 1.356 (4) C2-C3 1.366 (4) C16-C17 1.357 (4) C3-H3 0.9300 C18-H18 0.9300 C4-H4 0.9300 C18-H18 0.9300 C5-O1 1.352 (2) C19-C14 1.382 (3) C5-C4 1.380 (3) C20-H20 0.9300 C4-C5 1.391 (3) C20-C21 1.391 (3) C7-N1 1.454 (2) C21-H21 0.9300 C4-C6 1.521 (3) C22-C21 1.351 (4) C7-N1 1.345 (2) C21-H21 0.9300 C4-C5 1.391 (3) C23-H22 0.9300					
PI-C7 1.820 (2) $C12-C11$ 1.378 (3) $PI-C19$ 1.803 (2) $C12-H12$ 0.9300 $PI-C25$ 1.8015 (19) $C13-C8$ 1.384 (3) $OI-H1B$ 0.8500 $C13-C12$ 1.401 (3) $OI-H1B$ 0.8500 $C14-H14$ 0.9300 $NI-C13$ 1.387 (3) $C16-C15$ 1.356 (4) $C1-C2$ 1.387 (3) $C16-C15$ 1.356 (4) $C2-C3$ 1.366 (4) $C16-C17$ 1.357 (4) $C3-H3$ 0.9300 $C18-H18$ 0.9300 $C4-C3$ 1.368 (3) $C18-C17$ 1.390 (3) $C4-C4$ 1.385 (3) $C19-C14$ 1.382 (3) $C5-O1$ 1.352 (2) $C19-C14$ 1.382 (3) $C5-C4$ 1.385 (3) $C20-H20$ 0.9300 $C4-C5$ 1.391 (3) $C20-C21$ 1.391 (3) $C7-N1$ 1.454 (2) $C21-H21$ 0.9300 $C6-C5$ 1.391 (3) $C22-C21$ 1.355 (4) $C8-H8$ 0.9300 $C23-C22$ 1.335 (4) <td>P1—O2</td> <td>1.4862 (14)</td> <td>C11—H11</td> <td>0.9300</td> <td></td>	P1—O2	1.4862 (14)	C11—H11	0.9300	
PI-C19 $1.803 (2)$ C12-H12 0.930^{-1} PI-C25 $1.8015 (19)$ C13-C2 $1.401 (3)$ NI-H1 0.8200 C13-C12 $1.401 (3)$ NI-C13 $1.387 (3)$ C14-C15 $1.390 (3)$ C1-H1A 0.9300 C15-H15 0.9300 C1-C2 $1.387 (3)$ C16-C15 $1.356 (4)$ C2-H2 0.9300 C16-H16 0.9300 C2-C3 $1.366 (4)$ C16-C17 $1.357 (4)$ C3-H3 0.9300 C18-C17 $1.390 (3)$ C4-C3 $1.368 (3)$ C18-C17 $1.390 (3)$ C5-C1 $1.352 (2)$ C19-C18 $1.377 (3)$ C5-C1 $1.380 (3)$ C20-C21 $1.391 (3)$ C7-N1 $1.454 (2)$ C21-H21 0.9300 C7-H7 0.9800 C22-H22	P1—C7	1.820 (2)	C12—C11	1.378 (3)	
P1-C25 1.8015 (19) C13-C8 1.384 (3) O1-H1B 0.8200 C13-C12 1.401 (3) N1-H1 0.8500 C14-H14 0.9300 C1-C13 1.387 (3) C14-C15 1.390 (3) C1-H1A 0.9300 C15-H15 0.9300 C1-C2 1.387 (3) C16-C15 1.356 (4) C2-C3 1.366 (4) C16-C17 1.357 (4) C3-H3 0.9300 C18-H18 0.9300 C4-C3 1.368 (3) C18-C17 1.390 (3) C4-H4 0.9300 C18-H18 0.9300 C5-01 1.352 (2) C19-C14 1.382 (3) C5-C4 1.385 (3) C19-C18 1.377 (3) C6-C5 1.391 (3) C20-C21 1.363 (4) C7-C6 1.521 (3) C22-C21 1.363 (4) C7-C7 1.393 (3) C23-H22 0.9300 C8-H8 0.9300 C23-H23 0.9300 C8-H8 0.9300 C23-H23 0.9300 C9-H9 0.9300 C24-C23 1.381 (3) C9-C10 <t< td=""><td>P1-C19</td><td>1.803 (2)</td><td>C12—H12</td><td>0.9300</td><td></td></t<>	P1-C19	1.803 (2)	C12—H12	0.9300	
01-H1B 0.8200 $C13-C12$ 1.401 0.9300 $N1-H1$ 0.8600 $C14-H14$ 0.9300 $C1-H1A$ 0.9300 $C15-H15$ 0.9300 $C1-C2$ 1.387 (3) $C16-C15$ 1.356 (4) $C2-C3$ 1.366 (4) $C16-C17$ 1.357 (4) $C2-C3$ 1.366 (3) $C18-C17$ 1.390 (3) $C4-C3$ 1.368 (3) $C19-C14$ 1.382 (3) $C5-O1$ 1.352 (2) $C19-C14$ 1.382 (3) $C5-O4$ 1.380 (3) $C20-C21$ 1.391 (3) $C5-C4$ 1.380 (3) $C20-C21$ 1.391 (3) $C5-C4$ 1.380 (3) $C20-C21$ 1.391 (3) $C7-C6$ 1.521 (3) $C22-C21$ 0.9300 $C7-H7$ 0.9800 $C22-H22$ 0.9300 $C3-H8$ 0.9300 $C24-C23$ 1.381 (3) $C9-H9$ 0.9300 $C24-C23$ 1.381 (3) $C9-H9$ 0.9300 $C25-C20$ 1.374 (3) <td>P1—C25</td> <td>1.8015 (19)</td> <td>C13—C8</td> <td>1.384 (3)</td> <td></td>	P1—C25	1.8015 (19)	C13—C8	1.384 (3)	
N1-H1 0.8600 C14-H14 0.9300 N1-C13 1.387 (3) C14-C15 1.390 (3) C1-H1A 0.9300 C15-H15 0.9300 C1-C2 1.387 (3) C16-C15 1.356 (4) C2-H2 0.9300 C16-H16 0.9300 C4-C3 1.366 (4) C16-C17 1.357 (4) C3-H3 0.9300 C17-H17 0.9300 C4-C3 1.368 (3) C18-C17 1.390 (3) C4-H4 0.9300 C18-H18 0.9300 C5-O1 1.352 (2) C19-C18 1.377 (3) C6-C1 1.380 (3) C20-H20 0.9300 C7-C6 1.521 (3) C22-C21 1.363 (4) C7-H7 0.9800 C23-H22 0.9300 C7-C6 1.521 (3) C23-H23 0.9300 C9-H9 0.9300 C24-C23 1.381 (3) C9-C10 1.374 (4) C24-H24 0.9300 C10-H10 0.9300 C25-C20 1.374 (3) C10-H10 <td>O1—H1B</td> <td>0.8200</td> <td>C13—C12</td> <td>1.401 (3)</td> <td></td>	O1—H1B	0.8200	C13—C12	1.401 (3)	
N1-C13 $1.387 (3)$ C14-C15 $1.390 (3)$ C1-H1A 0.9300 C15-H15 0.9300 C1-C2 $1.37 (3)$ C16-C15 $1.356 (4)$ C2-H2 0.9300 C16-H16 0.9300 C2-C3 $1.366 (4)$ C16-C17 $1.357 (4)$ C3-H3 0.9300 C17-H17 0.9300 C4-C3 $1.368 (3)$ C18-C17 $1.390 (3)$ C4-H4 0.9300 C18-H118 0.9300 C5-O1 $1.352 (2)$ C19-C14 $1.382 (3)$ C5-C4 $1.380 (3)$ C20-C21 $1.391 (3)$ C6-C5 $1.391 (3)$ C20-C21 $1.391 (3)$ C7-N1 $1.454 (2)$ C21-H21 0.9300 C7-H7 0.9800 C23-C22 $1.355 (4)$ C8-C9 $1.37 (3)$ C23-H23 0.9300 C9-H8 0.9300 C24-C23 $1.381 (3)$ C9-H9 0.9300 C24-C23 $1.381 (3)$ C9-P1-C7 $10.33 (9)$ C10-C11-C12 $120.9 (2)$ C2-P1-C19 $10.55 (9)$ C12-C11-H11	N1—H1	0.8600	C14—H14	0.9300	
C1-H1A 0.9300 C15-H15 0.9300 C1-C2 1.387 (3) C16-C15 1.356 (4) C2-H2 0.9300 C16-H16 0.9300 C2-C3 1.366 (4) C16-C17 1.357 (4) C3-H3 0.9300 C17-H17 0.9300 C4-C3 1.368 (3) C18-C17 1.390 (3) C4-H4 0.9300 C18-H18 0.9300 C5-O1 1.352 (2) C19-C18 1.377 (3) C6-C1 1.380 (3) C20-H20 0.9300 C6-C5 1.391 (3) C20-C21 1.391 (3) C7-N1 1.454 (2) C21-H21 0.9300 C7-C6 1.521 (3) C22-C22 1.355 (4) C8-H8 0.9300 C23-H23 0.9300 C9-C10 1.374 (4) C24-H24 0.9300 C9-H9 0.9300 C25-C20 1.374 (3) C10-H10 0.9300 C25-C24 1.376 (3) C2-P1-C7 10.35 (9) C10-C11-C12 10.90 C10	N1-C13	1.387 (3)	C14—C15	1.390 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—H1A	0.9300	C15—H15	0.9300	
C2-H2 0.9300 C16-H16 0.9300 C2-C3 1.366 (4) C16-C17 1.357 (4) C3-H3 0.93000 C17-H17 0.93000 C4-C3 1.368 (3) C18-C17 1.390 (3) C4-H4 0.9300 C18-H18 0.9300 C5-O1 1.352 (2) C19-C14 1.382 (3) C5-C4 1.385 (3) C20-C18 1.377 (3) C6-C5 1.391 (3) C20-C21 1.391 (3) C7-N1 1.454 (2) C21-H21 0.9300 C7-C6 1.521 (3) C22-C22 1.355 (4) C8-H8 0.9300 C24-C23 1.381 (3) C9-P1-C7 1.337 (4) C24-C14 0.9300 C9-H9 0.9300 C25-C20 1.374 (3) C10-H10 0.9300 C25-C20 1.374 (3) C11-C12 120.9 (2) 1.99 C19-P1-C7 106.55 (9) C11-C12-H12 19.9 C19-P1-C7 105.28 (9) C11-C12-H12 19.9 C19-P1-C7 </td <td>C1—C2</td> <td>1.387 (3)</td> <td>C16—C15</td> <td>1.356 (4)</td> <td></td>	C1—C2	1.387 (3)	C16—C15	1.356 (4)	
C2-C3 1.366 (4) $C16-C17$ 1.357 (4) $C3-H3$ 0.9300 $C17-H17$ 0.9300 $C4-C3$ 1.358 (3) $C18-C17$ 1.390 (3) $C4-H4$ 0.9300 $C18-H18$ 0.9300 $C5-O1$ 1.352 (2) $C19-C14$ 1.382 (3) $C5-C4$ 1.380 (3) $C20-H20$ 0.9300 $C6-C1$ 1.380 (3) $C20-C21$ 1.391 (3) $C7-C6$ 1.521 (3) $C22-C21$ 1.363 (4) $C7-C6$ 1.521 (3) $C22-C22$ 1.355 (4) $C8-C9$ 1.387 (3) $C23-C22$ 1.355 (4) $C8-C9$ 1.387 (3) $C23-C22$ 1.356 (4) $C9-C10$ 1.374 (4) $C24-H23$ 0.9300 $C2-H10$ 0.9300 $C23-C20$ 1.374 (3) $C10-H10$ 0.9300 $C22-C20$ 1.374 (3) $C10-H10$ 1.935 (9) $C12-C11-H11$ 119.6 $O2-P1-C7$ 10.538 (9) $C13-C12-H12$ 10.9 $O2-P1-C7$ 105.28 (9) $C13-C12-H12$ 119.9 $C25-P1-C7$ 105.28 (9	С2—Н2	0.9300	C16—H16	0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3	1.366 (4)	C16—C17	1.357 (4)	
C4-C3 1.368 (3) C18-C17 1.390 (3) C4-H4 0.9300 C18-H18 0.9300 C5-O1 1.352 (2) C19-C14 1.382 (3) C5-C4 1.380 (3) C20-H20 0.9300 C6-C1 1.380 (3) C20-H20 0.9300 C6-C5 1.391 (3) C20-C21 1.391 (3) C7-N1 1.454 (2) C21-H21 0.9300 C7-C6 1.521 (3) C22-C21 1.363 (4) C7-M7 0.9800 C23-C22 1.355 (4) C8-C9 1.387 (3) C23-C22 1.355 (4) C8-C9 1.387 (3) C24-C23 1.381 (3) C9-H9 0.9300 C24-C23 1.374 (3) C10-H10 0.9300 C25-C20 1.374 (3) C11-C10 1.368 (4) C25-C24 1.376 (3) C2-P1-C7 110.33 (9) C10-C11-C12 120.9 (2) C25-P1-C7 105.28 (9) C13-C12-H11 19.6 C25-P1-C7 105.28 (9) C13-C12-H12 19.9 C13-N1-C7 105.81 (6) C19-C14-H14 19.9	С3—Н3	0.9300	C17—H17	0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3	1.368 (3)	C18—C17	1.390 (3)	
CS-OI 1.352 (2) C19-C14 1.382 (3) C5-C4 1.385 (3) C19-C18 1.377 (3) C6-C1 1.380 (3) C20-H20 0.9300 C6-C5 1.391 (3) C20-C21 1.391 (3) C7-N1 1.454 (2) C21-H21 0.9300 C7-C6 1.521 (3) C22-C22 0.9300 C8-H8 0.9300 C23-C22 1.355 (4) C8-C9 1.387 (3) C23-H23 0.9300 C9-H9 0.9300 C24-C23 1.381 (3) C9-C10 1.374 (4) C24-H24 0.9300 C10-H10 0.9300 C25-C20 1.374 (3) C11-C10 1.368 (4) C25-C24 1.376 (3) O2-P1-C7 100.33 (9) C10-C11-C12 120.9 (2) O2-P1-C7 108.59 (9) C13-C12-H12 119.9 C19-D1-C7 108.59 (9) C13-C12-H12 119.9 C19-D1-C7 108.59 (9) C13-C12-H12 119.9 C25-P1-C7 108.52 8 (9) C13-C12-H12 119.9 C25-P1-C19 107.19 (9) N1-C13-C12 118.4	C4—H4	0.9300	C18—H18	0.9300	
C5-C4 1.385 (3) C19-C18 1.377 (3) C6-C1 1.380 (3) C20-H20 0.9300 C6-C5 1.391 (3) C20-C21 1.391 (3) C7-N1 1.454 (2) C21-H21 0.9300 C7-C6 1.521 (3) C22-C21 1.363 (4) C7-H7 0.9800 C22-H22 0.9300 C8-H8 0.9300 C23-H23 0.9300 C8-C9 1.387 (3) C23-H23 0.9300 C9-H9 0.9300 C24-C23 1.381 (3) C9-C10 1.374 (4) C24-H24 0.9300 C10-H10 0.9300 C25-C20 1.376 (3) C2-P1-C7 110.33 (9) C10-C11-C12 120.9 (2) C9-P1-C19 110.55 (9) C11-C12-H12 119.9 C19-P1-C7 108.59 (9) C11-C12-H12 119.9 C19-P1-C7 105.28 (9) C13-C12-H12 119.9 C19-P1-C7 105.28 (9) C13-C12 119.1 (2) C5-O1-H1B 109.5 C8-C13-N1 122.41 (17) C7-N1-H1 119.6 C19-C14-C15 120.2 (3)	C5—O1	1.352 (2)	C19—C14	1.382 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4	1.385 (3)	C19—C18	1.377 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1	1.380 (3)	C20—H20	0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5	1.391 (3)	C20—C21	1.391 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1	1.454 (2)	C21—H21	0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С6	1.521 (3)	C22—C21	1.363 (4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—Н7	0.9800	C22—H22	0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—Н8	0.9300	C23—C22	1.355 (4)	
C9-H90.9300C24-C231.381 (3)C9-C101.374 (4)C24-H240.9300C10-H100.9300C25-C201.374 (3)C11-C101.368 (4)C25-C241.376 (3)OO<	С8—С9	1.387 (3)	C23—H23	0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9—Н9	0.9300	C24—C23	1.381 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10	1.374 (4)	C24—H24	0.9300	
C11-C101.368 (4)C25-C241.376 (3) $02-P1-C7$ 110.33 (9)C10-C11-C12120.9 (2) $02-P1-C19$ 110.55 (9)C12-C11-H11119.6 $02-P1-C25$ 114.61 (9)C11-C12-H12119.9C19-P1-C7108.59 (9)C13-C12-H12119.9C25-P1-C7105.28 (9)C13-C12-H12119.9C25-P1-C7105.28 (9)C13-C12119.1 (2)C5-O1-H1B109.5C8-C13-N1122.41 (17)C7-N1-H1119.6C15-C14-H14119.9C13-N1-C7120.81 (16)C19-C14-C15120.2 (3)C6-C1-H1A119.6C19-C14-C15120.2 (3)C6-C1-H1A119.6C14-C15-H15120.0C6-C1-C2120.7 (2)C16-C15-C14120.0 (3)C1-C2-H2120.3C16-C15-H15120.0C3-C2-C1119.5 (2)C15-C16-H16119.7C3-C2-H2120.3C15-C16-H16119.7C3-C2-H2120.3C15-C16-H16119.7C2-C3-H3119.4C16-C17-C18120.3 (3)C3-C4121.1 (2)C16-C17-H17119.8C4-C3-H3119.4C16-C17-C18120.3 (3)	C10—H10	0.9300	C25—C20	1.374 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10	1.368 (4)	C25—C24	1.376 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—P1—C7	110.33 (9)	C10-C11-C12	120.9 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—P1—C19	110.55 (9)	C12—C11—H11	119.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—P1—C25	114.61 (9)	C11—C12—H12	119.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—P1—C7	108.59 (9)	C11—C12—C13	120.3 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25—P1—C7	105.28 (9)	C13—C12—H12	119.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25—P1—C19	107.19 (9)	N1—C13—C12	119.1 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—O1—H1B	109.5	C8—C13—N1	122.41 (17)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—H1	119.6	C8—C13—C12	118.4 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—N1—H1	119.6	C15—C14—H14	119.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—N1—C7	120.81 (16)	C19—C14—H14	119.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—H1A	119.6	C19—C14—C15	120.2 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—H1A	119.6	C14—C15—H15	120.0	
C1—C2—H2 120.3 C16—C15—H15 120.0 C3—C2—C1 119.5 (2) C15—C16—H16 119.7 C3—C2—H2 120.3 C15—C16—C17 120.6 (3) C2—C3—H3 119.4 C17—C16—H16 119.7 C2—C3—C4 121.1 (2) C16—C17—H17 119.8 C4—C3—H3 119.4 C16—C17—C18 120.3 (3) C3—C4—H4 120.2 C18—C17—H17 119.8	C6—C1—C2	120.7 (2)	C16—C15—C14	120.0 (3)	
C3—C2—C1 119.5 (2) C15—C16—H16 119.7 C3—C2—H2 120.3 C15—C16—C17 120.6 (3) C2—C3—H3 119.4 C17—C16—H16 119.7 C2—C3—C4 121.1 (2) C16—C17—H17 119.8 C4—C3—H3 119.4 C16—C17—C18 120.3 (3) C3—C4—H4 120.2 C18—C17—H17 119.8	C1—C2—H2	120.3	C16—C15—H15	120.0	
C3—C2—H2 120.3 C15—C16—C17 120.6 (3) C2—C3—H3 119.4 C17—C16—H16 119.7 C2—C3—C4 121.1 (2) C16—C17—H17 119.8 C4—C3—H3 119.4 C16—C17—C18 120.3 (3) C3—C4—H4 120.2 C18—C17—H17 119.8	C3—C2—C1	119.5 (2)	C15—C16—H16	119.7	
C2—C3—H3 119.4 C17—C16—H16 119.7 C2—C3—C4 121.1 (2) C16—C17—H17 119.8 C4—C3—H3 119.4 C16—C17—C18 120.3 (3) C3—C4—H4 120.2 C18—C17—H17 119.8	C3—C2—H2	120.3	C15—C16—C17	120.6 (3)	
C2—C3—C4 121.1 (2) C16—C17—H17 119.8 C4—C3—H3 119.4 C16—C17—C18 120.3 (3) C3—C4—H4 120.2 C18—C17—H17 119.8	С2—С3—Н3	119.4	C17—C16—H16	119.7	
C4—C3—H3 119.4 C16—C17—C18 120.3 (3) C3—C4—H4 120.2 C18—C17—H17 119.8	C2—C3—C4	121.1 (2)	C16—C17—H17	119.8	
C3—C4—H4 120.2 C18—C17—H17 119.8	С4—С3—Н3	119.4	C16—C17—C18	120.3 (3)	
	C3—C4—H4	120.2	C18—C17—H17	119.8	

C3—C4—C5	119.6 (2)	C17—C18—H18	120.1
С5—С4—Н4	120.2	C19—C18—C17	119.9 (3)
O1—C5—C4	123.9 (2)	C19—C18—H18	120.1
O1—C5—C6	115.74 (18)	C14—C19—P1	124.35 (17)
C4—C5—C6	120.4 (2)	C18—C19—P1	116.58 (17)
C1—C6—C5	118.79 (19)	C18—C19—C14	119.1 (2)
C1—C6—C7	122.05 (18)	С21—С20—Н20	119.9
C5—C6—C7	119.09 (18)	С25—С20—Н20	119.9
P1—C7—H7	107.8	C25—C20—C21	120.1 (3)
N1—C7—P1	108.69 (13)	C20—C21—H21	119.9
N1—C7—C6	116.05 (16)	C22—C21—C20	120.2 (3)
N1—C7—H7	107.8	C22—C21—H21	119.9
C6—C7—P1	108.47 (13)	С21—С22—Н22	119.9
С6—С7—Н7	107.8	C23—C22—C21	120.2 (2)
С9—С8—Н8	119.9	С23—С22—Н22	119.9
С13—С8—Н8	119.9	С22—С23—Н23	120.0
C13—C8—C9	120.2 (2)	C22—C23—C24	120.0 (3)
С8—С9—Н9	119.6	С24—С23—Н23	120.0
С10—С9—С8	120.8 (3)	C23—C24—H24	119.6
С10—С9—Н9	119.6	C25—C24—C23	120.8 (2)
С9—С10—Н10	120.3	C25—C24—H24	119.6
C11—C10—C9	119.4 (2)	C20—C25—P1	119.59 (17)
C11—C10—H10	120.3	C20—C25—C24	118.65 (19)
C10-C11-H11	119.6	C24—C25—P1	121.71 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O1—H1B···O2 ⁱ	0.82	1.79	2.5677 (19)	159

Symmetry code: (i) x-1/2, y, -z+3/2.