Transmetalation of Pentafluorophenylmercury Derivatives with Organylmagnesium Bromides

V. V. Bardin^{a*}

^a N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, ul. Akademika Lavrentieva 9, Novosibirsk, 630090 Russia *e-mail: bardin@nioch.nsc.ru

Received November 1, 2018; revised November 14, 2018; accepted June 4, 2019

Abstract—The reactions of pentafluorophenylmercury derivatives with organomagnesium compounds have been studied. The interaction of pentafluorophenylmercury chloride with RMgBr (R = Et, Ph) has afforded diphenyland diethylmercury or phenylmercury chloride, besides the expected product (C_6F_5HgR). The results have been explained by the transmetalation of C_6F_5HgR with the Grignard reagent, followed by the reaction of the resulting C_6F_5MgX (X = Br, C_6F_5) with pentafluorophenylmercury chloride. Transmetalation of (C_6F_5)₂Hg with organylmagnesium bromides has led to the formation of C_6F_5MgX and R_2Hg .

Keywords: transmetalation, bis(pentafluorophenyl)mercury, diethylmercury, diphenylmercury, ethylmagnesium bromide, phenylmagnesium bromide

DOI: 10.1134/S1070363219070090

One of the approaches to the synthesis of asymmetrical organyl mercury derivatives R1HgR2 is a halogen (X) substitution in the R¹HgX derivatives under the action of a nucleophile R²MgX. For example, the interaction of isobutylmercury chloride with RMgBr (R = Alk, CH=CH₂, C≡CH, Ph, C₆Cl₅) [1] has afforded a series of asymmetrical derivatives (CH₃)₂CHCH₂HgR (yield 50–80%) and the R^1HgR^2 compounds (R^1 , $R^2 = Alk$, Ar). The latter ones have been prepared via two ways: the reactions of R1MgBr with R2HgBr or R1HgBr with R²MgBr [2]. Polyfluorinated aromatic derivatives of mercury Ar_FHgR have been prepared by the reaction of RHgX (R = Me, Et, Ph) with nucleophiles Ar_FM (Ar_F = C_6F_5 , 2,3,4,5- C_6F_4H ; M = Li, MgX) [3–6]. This method is not advantageous due to low nucleophilicity of Ar_FM and their thermal instability.

In this study, we attempted an alternative approach to the synthesis of mercury derivatives Ar_FHgR exemplified

by the reaction of pentafluorophenylmercury chloride **1** with organomagnesium compounds. The reaction with EtMgBr, besides the expected pentafluorophenyl(ethyl)-mercury **2a**, unexpectedly led to the formation of a mixture of di(pentafluorophenyl)mercury **3**, diethylmercury **4a**, and pentafluorobenzene **5** (Scheme 1). A similar mixture was obtained in the reaction of compound **1** with PhMgBr.

The increase in the reaction duration from 3 to 19 h ($\mathbf{R} = \mathbf{Et}$) did not lead to the conversion of pentafluorophenyl(ethyl)mercury **2a** into compounds **3** and **4a**, which ruled out the formation of the latter via symmetrization of the arylalkylmercury **2a**. Likely, transmetalation of C₆F₅HgR occurred under the action of the Grignard reagent with the formation of C₆F₅MgX, which was not observed in the case of the above-mentioned arylmercury derivatives [1, 2].

Indeed, the interaction of C_6F_5HgEt with EtMgBr led to the formation of pentafluorophenylmagnesium bromide **6**,

Scheme 2

C₆F₅HgR + RMgBr
$$\xrightarrow{\text{Et}_2\text{O}}$$
 C₆F₅MgBr + (C₆F₅)₂Mg + R₂Hg $\xrightarrow{\text{H}_2\text{O}}$ 5 + 4a, 4b
2a, 2b $R = \text{Et} (a), \text{Ph} (b).$
Scheme 3.

$$(C_{6}F_{5})_{2}Hg + RMgBr \xrightarrow{Et_{2}O} C_{6}F_{5}MgBr + (C_{6}F_{5})_{2}Mg + C_{6}F_{5}HgR + R_{2}Hg \xrightarrow{H_{2}O} 2 + 5$$
3
$$R = Et (a), Ph (b).$$

bis(pentafluorophenyl)magnesium 7, and diethylmercury (Scheme 2). Similarly, the reaction of C_6F_5HgPh with PhMgBr gave compounds 6, 7, and diphenylmercury 4b (¹⁹F and ¹⁹⁹Hg NMR). Hydrolysis of the reaction mixture led to conversion of products 6 and 7 into pentafluorobenzene (Scheme 2).

Interestingly, the treatment of an equimolar mixture of compounds 2a and 2b with 1.3 eq. of EtMgBr in ether resulted in complete conversion of C_6F_5HgPh , while the amount of C_6F_5HgEt remaining unchanged (¹⁹F NMR). That fact evidenced significant effect of the substituent R in the starting C_6F_5HgR on the transmetalation rate. Nevertheless, di(pentafluorophenyl)mercury, as compounds 2a, 2b, underwent to transmetalation under the action of RMgBr. The reaction occurred within 3 h and led to the formation of magnesium derivatives 6 and 7 as well as the corresponding organomercury compounds 2a, 4a and 2b, 4b(Scheme 3).

More comprehensive analysis of the reasons for the difference in the reactivity of perfluorinated organomercury compounds towards the Grignard reagents from that of the non-fluorinated analogs demands additional experiments involving polyfluorinated derivatives of alkenyl- and alkynylmercury.

In summary, in contrast to the known method of preparation of asymmetrical mercury compounds ArHgR and their fluorinated analogs Ar_FHgR from ArM (Ar_FM) and RHgX, the alternative approach based on the interaction of organomagnesium nucleophiles RMgBr with pentafluorophenylmercury derivatives gave a mixture of symmetrical and asymmetrical products C₆F₅HgR, (C₆F₅)₂Hg, and R₂Hg (R = Alk, Ar). The reaction involved perfluoromagnesium compounds formed via transmetalation of perfluoroarylmercury compounds with the Grignard reagents.

EXPERIMENTAL

 $(C_6F_5)_2$ Hg, C_6F_5 HgPh [3], C_6F_5 HgCl, and C_6F_5 HgEt [6] were synthesized by the known procedures. The yield of the fluorinated products was determined by ¹⁹F NMR spectroscopy with internal reference C_6F_6 or C_6H_5F . The yield of the organomercury products was determined by the ¹⁹⁹Hg NMR spectroscopy by comparison of the intensity of the considered signal with that of pentafluorophenylmercury compound, the content of which was determined from the ¹⁹F NMR spectroscopy. The NMR data for compounds **6** and **7** [7], **5** [8, 9] (¹⁹F), and **4a–4c** [10] (¹⁹⁹Hg) coincided with the reference ones. The operations were performed under dry argon atmosphere.

NMR spectra were recorded using Bruker Avance 300 (¹⁹F, 282.40 MHz) and Avance 600 (¹⁹⁹Hg, 107.51 MHz) instruments.

Reaction of pentafluorophenylmercury 1 with RMgBr. a. R = Et. 0.54 M. solution of EtMgBr in diethyl ether (1.0 mL, 0.54 mmol) was added to a stirred solution of compound 1 (175 mg, 0.43 mmol) in 2.5 mL of THF. The obtained solution was kept at 22°C during 5 h. A mixture of compounds 2a (0.19 mmol), 3 (0.16 mmol), diethylmercury (0.14 mmol), and pentafluorobenzene (0.04 mmol) was obtained (¹⁹F and ¹⁹⁹Hg NMR data).

b. R = Ph. The reaction was performed similarly using 182 mg (0.45 mmol) of compound **1** in 1 mL of THF and 0.51 M. solution of PhMgBr in diethyl ether (1.0 mL, 0.51 mmol); reaction duration 3 h. A mixture of compounds **2b** (0.31 mmol), **3** (0.09 mmol), and **4c** (0.10 mmol) was obtained (¹⁹F and ¹⁹⁹Hg NMR data).

Reaction of pentafluorophenyl(ethyl)mercury 2a with EtMgBr. 0.54 M. solution of EtMgBr in diethyl ether (1.2 mL, 0.64 mmol) was added to a stirred solution of compound 2a (225 mg, 0.56 mmol) in 2 mL of

diethyl ether. The obtained solution was kept at 22°C during 5 h. A mixture of compounds **2a** (0.09 mmol), **6** (0.34 mmol), **7** (0.10 mmol), and **4a** (0.40 mmol) was obtained (¹⁹F and ¹⁹⁹Hg NMR data). 1 mL of 5% HCl was added to the obtained solution, the organic phase was separated and dried over MgSO₄. The solution contained C_6F_5HgEt (0.09 mmol) and C_6F_5H (0.33 mmol) (¹⁹F NMR data).

Reaction of pentafluorophenyl(phenyl)mercury 2b with PhMgBr. 0.51 M. solution of PhMgBr in diethyl ether (1 mL, 0.51 mmol) was added to a stirred solution of compound **2b** (213 mg, 0.47 mmol) in 1.5 mL of diethyl ether. The obtained solution was kept at 22°C during 3 h. A mixture of compounds **2b** (0.18 mmol), **6** (0.19 mmol), 7 (0.09 mmol), and **4b** (0.52 mmol) was obtained (¹⁹F and ¹⁹⁹Hg NMR data). 1 mL of 5% HCl was added to the obtained solution, the organic phase was separated and dried over MgSO₄. The solution contained C₆F₅HgPh (0.16 mmol) and C₆F₅H (0.28 mmol) (¹⁹F NMR data).

Competing reactions of pentafluorophenyl(ethyl)mercury 2a and pentafluorophenyl(phenyl)mercury 2b with EtMgBr. 0.54 M. solution of EtMgBr in diethyl ether (1.0 mL, 0.54 mmol) was added to a stirred solution of compounds 2a (175 mg, 0.43 mmol) and 2b (177 mg, 0.40 mmol) in 2.5 mL of diethyl ether. The obtained mixture was kept at 22°C during 18 h. A mixture of compounds 2a, 6, 7, and 5 (10 : 5 : 1 : 1) was obtained (¹⁹F NMR data). 1 mL of 5% HCl was added to the obtained solution, the organic phase was separated and dried over MgSO₄. The solution contained C₆F₅HgEt (0.40 mmol) and pentafluorobenzene (0.32 mmol) (¹⁹F NMR data).

Reaction of bis(pentafluorophenyl)mercury 3 with RMgBr. a. R = Et. The reaction between compound 3 (146 mg, 0.27 mmol) in 1 mL of diethyl ether and 0.54 M. solution of EtMgBr in diethyl ether (1.0 mL, 0.54 mmol) was performed similarly during 3 h. A mixture of compounds 2a (0.08 mmol), 6 (0.57 mmol), 7 (0.15 mmol), and 4a (0.35 mmol) was obtained. Compounds 2a (0.08 mmol) and 5 (0.42 mmol) were obtained upon hydrolysis (¹⁹F NMR data). The presence of compound 4a was not verified. b. R = Ph. The reaction was performed similarly using a solution of 144 mg (0.27 mmol) of compound **3** in 1 mL of diethyl ether and 0.51 M. solution of PhMgBr in diethyl ether (1.0 mL, 0.51 mmol); reaction duration 3 h. A mixture of compounds **2b** (0.14 mmol), **6** (0.20 mmol), **7** (0.06 mmol), and **4b** (0.09 mmol) was obtained. Upon keeping the mixture during 48 h and hydrolysis, the products contained compounds **2b** (0.14 mmol) and **5** (0.27 mmol) (¹⁹F NMR data). The presence of compound **4a** was not verified.

Author acknowledges the Multi-Access Chemical Research Center of Siberian Branch of Russian Academy of Sciences for spectral measurements.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- Steinborn, D., Taube, R., Radeglia, R., and Hoebold, W., J. Organomet. Chem., 1981, vol. 210, no. 2, p. 139. doi 10.1016/S0022-328X(00)82227-5
- Kharasch, M.S., Marker, R., J. Am. Chem. Soc., 1926, vol. 48, no. 12, p. 3130. doi 10.1021/ja01691a018
- Chambers, R.D., Coates, G.E., Livingstone, J.G., and Musgrave, W.K.R., *J. Chem.* Soc., 1962, no. 11, p. 4367. doi 10.1039/JR9620004367
- Burdon, J., Coe, P.L., Fulton, M., and Tatlow, J.C., *J. Chem.* Soc., 1964, no. 8, p. 2673. doi 10.1039/JR9640002673
- Brooke, G.M., Chambers, R.D., Heyes, J., and Musgrave, W.K.R., *J. Chem.* Soc., 1964, no. 2, p. 729. doi 10.1039/ JR9640000729
- Bardin, V.V., *Magn. Res. Chem.*, 2018, vol. 56, no. 11, p. 1124. doi 10.1002/mrc.4755
- Evans, D.F. and Khan, M.S., J. Chem. Soc., 1967A, no. 10, p. 1643. doi 10.1039/J19670001643
- Pushkina, L.N., Stepanov, A.P., Zhukov, V.S., and Naumov, A.D., *Zh. Org. Khim.*, 1972, vol. 8, no. 3, p. 586.
- Pushkina, L.N., Stepanov, A.P., Zhukov, V.S., and Naumov, A.D., Org. Magn. Res., 1972, vol. 4, no. 5, p. 607. doi 10.1002/mrc.1270040503
- Nöth, H. and Wrackmeyer, B., Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Berlin: Springer, 1978, p. 129.