SYNTHESIS OF (±)-HELIANNUOL D BASED ON PLATINUM CATALYZED REGIOSELECTIVE ADDITION OF ARYLBORONIC ACIDS TO ALLENES[†]

Mayu Osaka, Makoto Kanematsu, Masahiro Yoshida, and Kozo Shishido*

Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima 770-8505, Japan

E-mail: shishido@ph.tokushima-u.ac.jp

Abstract – An alternative total synthesis of (\pm) -heliannuol D has been achieved in 13 steps and 6.9% overall yield from the arylboronic acid **9**. The synthesis applies the previously developed regiocontrolled addition of arylboronic acids to allenes using a platinum catalyst to install the C5 carbon chain on the aryl ring.

INTRODUCTION

In our previous paper, we reported the regiocontrolled addition of arylboronic acids 1 to allenes 2 using the platinum catalyst 3 leading to the formation of *exo*-olefinic products 4 with high yields and regioselectivity (>20:1).¹ The procedure would be useful for the synthesis of natural products with a tertiary stereogenic center at the benzylic position by hydrogenation of the products. (Scheme 1)

Scheme 1. Regiocontrolled addition of arylboronic acids to allenes using platinum catalyst

[†] This paper is dedicated to Dr. Akira Suzuki on the occasion of his 80th birthday.

1004

RESULTS AND DISCUSSION

During the course of our projects directed towards an efficient synthesis of allelochemicals for the development of a new type of environmentally benign herbicides,² we planned to apply this cross coupling reaction to the synthesis of heliannuol type sesquiterpenoids isolated from the aqueous extracts of fresh sunflower leaves (Helianthus annuus var. SH-222).³ As a target allelochemical, we chose heliannuol D (5),^{3b} which has a unique carbon skeleton made up of an oxygen-containing seven-membered heterocycle fused to the aryl ring and two stereogenic centers whose absolute configurations were determined to be C-7R and C-10R, respectively, by our enantioselective total synthesis of (-)-5.^{4a} Because of the intriguing structural features and the allelopathic activity of 5, three enantioselective total syntheses⁴ and six racemic syntheses⁵ have been reported so far. Herein we report a new approach to the total synthesis of (±)-heliannuol D using the cross coupling methodology for the application to the allelochemical synthesis. Approaching the synthesis from a retrosynthetic perspective, we envisioned the following scheme: (\pm) -5 would be derived from the phenolic epoxide 6 employing the intramolecular etherification we previously developed. The epoxide 6 would be prepared via curculydroquinone 7^{6} , which can be made by catalytic hydrogenation followed by demethylation of 8. The exo-olefinic compound 8 could in turn be synthesized by the platinum catalyzed cross coupling reaction of the boronic acid **9** with the allene **10**. (Scheme 2)

Scheme 2. Retrosynthetic Analysis

Treatment of a mixture of the boronic acid 9^7 and the allene 10^8 with a catalytic amount of the platinum complex, $[Pt_2(OH)_2(Ph_3P)_4][BF_4]_2$ (3),¹ and KOH in dioxane/H₂O (20/1) at 100 °C for 0.5 h furnished in 77% yield the coupled product $\mathbf{8}$, which was subjected to catalytic hydrogenation to give the alcohol $\mathbf{11}$.⁹ Swern oxidation and Julia-Kocienski olefination of the aldehyde with the sulfone 12^{10} in the presence of LHMDS provided the alkene 13^{4a} in good overall yield. Oxidation of 13 with ceric ammonium nitrate (CAN) in aqueous THF followed by immediate reduction of the resulting quinone with Na₂S₂O₄ provided (\pm) -curculydroquinone (7),⁶ which was treated with TBSCl, imidazole and 4-DMAP to give the bis-TBS

ether 14^{4a} in 57% yield for the 3 steps. Desilylation of 14 with K_2CO_3 in MeOH furnished a separable mixture of the mono-TBS ethers 15 (the desired), 16 (the undesired but which can be recycled¹¹) and the recovered 14 in 60%, 17% and 12% yield, respectively. The desired 15 was converted to the methoxymethyl (MOM) ether 17, which was oxidized with mCPBA to give the epoxide 18^{4a} as an inseparable 1:1 mixture of diastereomers. (Scheme 3)

Deprotection of the TBS ether in 18 was realized by treatment with CsF in DMF at 0 °C to give a chromatographically separable mixture of the phenolic epoxides 6^{4a} and 19 in 45% and 47% yield, respectively. Finally, 6 was treated with 5% aqueous NaOH to produce the 7-membered cyclized product 20, which was hydrolyzed with 6N HCl (aq.) to give (±)-heliannuol D (5) quantitatively. The spectroscopic properties of the synthesized compound 5 were completely identical with those for the natural product.³⁻⁵ Similarly, **19** was transformed to (\pm) -10-*epi*-heliannuol D (**22**)^{5a,c} in 69% yield for the 2 steps. (Scheme 4)

Scheme 4. Syntheses of (±)-heliannuol D and (±)-10-epi-heliannuol D

In conclusion, an alternative total synthesis of (\pm) -heliannuol D (5) has been achieved in 13 steps and 6.9% overall yield from the arylboronic acid 9. This synthesis highlights the utility of the regiocontrolled addition of arylboronic acids to allenes using platinum catalyst developed in our laboratories. The synthetic route developed here is efficient and flexible for obtaining a variety of derivatives (*e.g.* 10-*epi*-heliannuol D), which can be supplied for evaluation of the allelopathic activity.

EXPERIMENTAL

Solvents were dried and distilled according to standard protocols. The phrase 'residue upon workup' refers to the residue obtained when the organic layer was separated and dried over anhydrous MgSO₄ and the solvent was evaporated under reduced pressure.

1-{5-(Benzyloxy)pent-1-en-2-yl}-2,5-dimethoxy-4-methylbenzene (8)

To a stirred solution of 5-benzyloxy-1,2-pentadiene **10**⁸ (222 mg, 1.28 mmol) in 1,4-dioxane (12.3 mL) and H₂O (0.61 mL) were added 2,5-dimethoxy-4-methylphenylboronic acid **9**⁷ (500 mg, 2.55 mmol), $[Pt_2(OH)_2(PPh_3)_4][BF_4]_2$ (**3**)¹ (105 mg, 0.064 mmol) and KOH (358 mg, 0.37 mmol) at rt, and stirring was continued at 100 °C for 0.5 h. The reaction mixture was diluted with minimum amount of AcOEt and dried over MgSO₄. After filtration through a pad of silica gel, the residue upon workup was chromatographed on silica gel with hexane-AcOEt (97:3, v/v) as eluent to give **8** (320 mg, 77%, exo:endo = >20:1) as a colorless oil. IR (neat): 2935, 2852, 1503, 1465, 1396, 1211, 1104, 1045, 901, 737, 698 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.70 (quint., *J* = 6.8 Hz, 2H), 2.21 (s, 3H), 2.57 (t, *J* = 7.6 Hz, 2H), 3.47 (t, *J* = 6.4 Hz, 2H), 3.74 (s, 3H), 3.76 (s, 3H), 4.47 (s, 2H), 5.02 (s, 1H), 5.13 (s, 1H), 6.61 (s, 1H), 6.68 (s, 1H), 7.26-7.33 (m, 5H); ¹³C-NMR (100 MHz, CDCl₃) δ 16.1 (CH₃), 28.2 (CH₂), 32.9 (CH₂), 55.9 (CH₃), 56.2 (CH₃), 70.0 (CH₂), 72.7 (CH₂), 112.6 (CH), 114.0 (CH₂), 114.4 (CH), 126.1 (Cq), 127.4 (CH), 127.5 (CH), 128.2 (CH), 129.7 (Cq), 138.7 (Cq), 148.5 (Cq), 150.1 (Cq), 151.5 (Cq); HRMS (ESI) *m/z* calcd for C₂₁H₂₆O₃Na [M⁺+Na⁺] 349.1780, found 349.1780.

4-(2,5-Dimethoxy-4-methylphenyl)pentan-1-ol (11)⁹

To a stirred suspension of Pd-C (79.4 mg, 25 wt%) in EtOH (2.3 mL) was added ether **8** (317 mg, 0.97 mmol) at rt, and stirring was continued for 12 h at the same temperature under 5 atm of hydrogen gas. The resulting solution was filtered and the solvent was evaporated to give a residue, which was chromatographed on silica gel with hexane-AcOEt (75:25, v/v) as eluent to give the alcohol **11** (203 mg, 88%) as a colorless oil. IR (neat): 3363, 2937, 1505, 1464, 1398, 1209, 1046 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.21 (d, *J* = 6.8 Hz, 3H), 1.44 (s, 1H, OH, D₂O exchangeable), 1.44-1.65 (m, 2H), 2.20 (s, 3H), 3.17 (sext., *J* = 6.8 Hz, 1H), 3.61 (t, *J* = 6.4 Hz, 2H), 3.76 (s, 3H), 3.79 (s, 3H), 6.67 (s, 1H), 6.68 (s, 1H);

¹³C-NMR (100 MHz, CDCl₃) δ 16.0 (CH₃), 21.0 (CH₃), 30.7 (CH₂), 31.5 (CH), 33.4 (CH₂), 56.1 (CH₃), 56.3 (CH₃), 62.9 (CH₂), 109.6 (CH), 114.3 (CH), 124.3 (Cq), 133.5 (Cq), 150.6 (Cq), 151.9 (Cq); HRMS (ESI) m/z calcd for C₁₂H₁₄ONa [M⁺+Na⁺] 261.1467, found 261.1467.

1-(1,5-Dimethylhex-4-enyl)-2,5-dimethoxy-4-methylbenzene (13)^{4a}

To a solution of oxalyl chloride (1.63 mL, 18.7 mmol) in CH₂Cl₂(17.6 mL) was added DMSO (1.8 mL, 23 mmol) in CH₂Cl₂(8.8 mL) at -78 °C. A solution of **11** (1.78 g, 7.5 mmol) in CH₂Cl₂(17.6 mL) was added dropwise, and after 30 min, Et₃N (8.14 mL, 58.4 mmol) was added. After being stirred for 10 min at -78 °C, the reaction mixture was allowed to warm to 0 °C over 15 min and the reaction mixture was diluted with water and concentrated in vacuo. The residue was extracted with Et₂O and the combined extracts were washed with brine. The residue upon workup was the corresponding aldehyde, a colorless oil, which was used to the next reaction without further purification. To a solution of sulfone 12^{10} (4.3 g, 17 mmol) in THF (100 mL) at -78 °C was added dropwise LHMDS (1.6 M in THF, 10.8 mL, 17 mmol). The yellow solution was stirred at -78 °C for 30 min and the solution was added in one portion with a precooled syringe to a solution of the crude aldehyde in THF (100 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 3 h, then the mixture was slowly warmed to rt and stirred for 10 min. The reaction mixture was quenched with H₂O and concentrated in vacuo. The residue was extracted with Et₂O and the extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (95:5, v/v) as eluent to give 13 (1.73 g, 88% for the 2 steps) as a colorless oil. IR (neat): 2927, 2852, 1504, 1465, 1398, 1208, 1049 cm⁻¹; ¹H-NMR (400 MHz, CDCl₂) δ 1.18 (d, J = 7.2 Hz, 3H), 1.54 (s, 3H), 1.48-1.67 (m, 2H), 1.67 (s, 3H), 1.92 (dt, J = 16.6 Hz and 8.4 Hz, 2H), 2.20 (s, 3H), 3.14 (sext., J = 7.6 Hz, 1H), 3.76 (s, 3H), 3.78 (s, 3H), 5.12 (t, J = 7.2 Hz, 1H), 6.67 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 16.0 (CH₃), 17.5 (CH₃), 21.2 (CH₃), 25.6 (CH₃), 26.3 (CH₂), 31.9 (CH), 37.3 (CH₂), 55.9 (CH₃), 56.2 (CH₃), 109.7 (CH), 114.2 (CH), 124.1 (Cq), 124.8 (CH), 130.9 (Cq), 133.9 (Cq), 150.8 (Cq), 151.9 (Cq); HRMS (ESI) m/z calcd for C₁₇H₂₆O₂Na [M⁺+Na⁺] 285.1831, found 285.1839.

1,4-Bis-(*tert*-butyldimethylsiloxy)-2-(1,5-dimethylhex-4-enyl)-5-methylbenzene (14)^{4a}

To a solution of **13** (31.7 mg, 0.121 mmol) in THF (1.12 mL) and H₂O (0.38 mL) was added CAN (159 mg, 0.29 mmol) at 0 °C. After being stirred at the same temperature for 5 min, the reaction mixture was diluted with H₂O and extracted with Et₂O. The combined extracts were washed with brine and the residue upon workup was curcuquinone,⁶ a yellow oil, which was used to the next reaction without further purification. To a solution of curcuquinone in THF (0.6 mL) was added and Na₂S₂O₄ (63.5 mg, 0.36 mmol) in H₂O at 0 °C. After being stirred at rt for 3 h, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The extracts were washed with brine and the residue upon

workup was curcuhydroquinone 7^6 , a yellow oil, which was used to the next reaction without further purification. To a solution of curcuhydroquinone, imidazole (29.6 mg, 0.435 mmol) and TBSC1 (40.1 mg, 0.27 mmol) in CH₂Cl₂ (0.6 mL) was added 4-DMAP (1.5 mg, 12.1 mmol) at 0 °C. After being stirred for 0.5 h at rt, the reaction mixture was quenched with water and extracted with CH₂Cl₂. The extracts were washed with brine and the residue upon workup was chromatographed on silica gel with hexane-AcOEt (95:5, v/v) as eluent to give **14** (31.9 mg, 57% for the 3 steps) as a colorless oil. IR (neat): 2958, 2930, 2859, 1499, 1472, 1463, 1399, 1255, 1203 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 0.16-0.19 (m, 12H), 1.00 (s, 18H), 1.11 (d, *J* = 6.8 Hz, 3H), 1.46-1.53 (m. 5H), 1.66 (s, 3H), 1.88-1.96 (m, 2H), 2.11 (s, 3H), 3.10 (sext., *J* = 7.2 Hz, 1H), 5.09 (t, *J* = 6.4 Hz, 1H), 6.53 (s, 1H), 6.55 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ -4.3 (CH₃), -4.1 (CH₃), 16.6 (CH₃), 17.6 (CH₃), 18.2 (Cq), 18.2 (Cq), 21.3 (CH₃), 25.7 (CH₃), 25.8 (CH₃), 26.1 (CH₂), 30.8 (CH), 37.4 (CH₂), 116.8 (CH), 120.6 (CH), 124.8 (CH), 125.8 (Cq), 131.1 (Cq), 135.7 (Cq), 146.6 (Cq), 147.8 (Cq); HRMS (ESI) *m*/z calcd for C₂₉H₃₈O₂NaSi₂ [M⁺+Na⁺] 517.3873, found 517.3872.

4-(*tert*-Butyldimethylsiloxy)-5-(1,5-dimethylhex-4-enyl)-2-methylphenol(15)and4-(*tert*-Butyldimethylsiloxy)-2-(1,5-dimethylhex-4-enyl)-5-methylphenol(16)

To a solution of **14** (40.7 mg, 87.9 μ mol) in MeOH (2.9 mL) was added K₂CO₃ (36.5 mg, 0.26 mmol) at rt. After being stirred for 4 h, the reaction mixture was quenched with water and extracted with AcOEt. The extracts were washed with brine and the residue upon workup was chromatographed on silica gel with CHCl₃ as eluent to give the recovered **14** (9.2 mg, 22%), compound **16** (5.3 mg, 17%) as a colorless oil, and compound **15** (18.5 mg, 60%) as a colorless oil.

Compound **16**: IR (neat): 3414, 2958, 2928, 2857, 1510, 1412, 1256, 1195 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) d 0.17 (s, 6H), 1.01 (s, 9H), 1.19 (d, J = 6.8 Hz, 3H), 1.53 (s, 3H), 1.53-1.60 (m. 2H), 1.68 (s, 3H), 1.93 (q, J = 7.2 Hz, 2H), 2.12 (s, 3H), 2.92 (sext., J = 7.2 Hz, 1H), 4.31 (s, 1H, OH, D₂O exchangeable), 5.11 (t, J = 7.2 Hz, 1H), 6.55 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃) d -4.2 (CH₃), -4.2 (CH₃), 16.4 (CH₃), 17.7 (CH₃), 18.2 (Cq), 21.2 (CH₃), 25.7 (CH₃), 25.8 (CH₃), 26.0 (CH₂), 31.4 (CH), 37.4 (CH₂), 117.0 (CH), 117.8 (CH), 124.6 (CH), 126.6 (Cq), 130.8 (Cq), 132.0 (Cq), 146.8 (Cq), 147.7 (Cq); HRMS (ESI) *m/z* calcd for C₂₁H₃₇O₂Si [M⁺+H⁺] 349.2563, found 349.2559.

Compound **15**: IR (neat): 3353, 2958, 2928, 2858, 1503, 1462, 1408, 1196 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 0.19 (s, 3H), 0.20 (s, 3H), 1.00 (s, 9H), 1.12 (d, *J* = 6.8 Hz, 3H), 1.47-1.60 (m. 2H), 1.54 (s, 3H), 1.66 (s, 3H), 1.86-2.00 (m, 2H), 2.16 (s, 3H), 3.10 (sext., *J* = 6.8 Hz, 1H), 4.26 (s, 1H, OH, D₂O exchangeable), 5.09 (tt, *J* = 7.2 Hz and 1.2 Hz, 1H), 6.53 (s, 1H), 6.58 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ -4.2 (CH₃), -4.1 (CH₃), 15.6 (CH₃), 17.6 (CH₃), 18.2 (Cq), 21.2 (CH₃), 25.7 (CH₃), 25.8 (CH₃), 26.1 (CH₂), 30.9 (CH), 37.4 (CH₂), 113.3 (CH), 120.6 (CH), 121.0 (Cq), 124.7 (CH), 131.1 (Cq), 136.6

(Cq), 146.4 (Cq), 147.8 (Cq); HRMS (ESI) m/z calcd for C₂₁H₃₇O₂Si [M⁺+H⁺] 349.2563, found 349.2560.

1,4-Bis-(tert-butyldimethylsiloxy)-2-(1,5-dimethylhex-4-enyl)-5-methylbenzene (14)^{4a}

To a solution of **16** (5.1 mg, 14.63 μ mol) and TBSCl (3.3 mg, 21.95 μ mol) in CH₂Cl₂ (0.1 mL) was added 4-DMAP (0.2 mg, 1.46 μ mol) at rt. After being stirred for 10 min, the reaction mixture was quenched with water and extracted with CH₂Cl₂. The extracts were washed with brine and the residue upon workup was chromatographed on silica gel with hexane-AcOEt (98:2, v/v) as eluent to give the olefin **14** (5.9 mg, 87%) as a colorless oil.

6-(2-tert-Butyldimethylsiloxy-5-methoxymethoxy-4-methylphenyl)-2-methyl-2-heptene (17)

To a solution of **15** (57.9 mg, 0.17 mmol) in CH₂Cl₂ (1.0 mL) was added ⁱPr₂NEt (0.35 mL, 1.99 mmol) and methoxymethyl chloride (0.13 mL, 1.66 mmol) at rt. The reaction mixture was stirred for 9 h at the same temperature, then quenched with water and extracted with Et₂O. The extracts were washed with brine and the residue upon workup was chromatographed on silica gel with hexane-AcOEt (92.5:7.5, v/v) as eluent to give the MOM ether **17** (63.1 mg, 97%) as a colorless oil. IR (neat): 2957, 2928, 2857, 1501, 1391, 1255, 1215, 1193, 1151 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 0.20 (s, 3H), 0.21 (s, 3H), 1.01 (s, 9H), 1.13 (d, *J* = 6.8 Hz, 3H), 1.48-1.60 (m, 2H), 1.54 (s, 3H), 1.66 (s, 3H), 1.93 (quint., *J* = 7.2 Hz, 2H), 2.17 (s, 3H), 3.11 (sext., *J* = 6.8 Hz, 1H), 3.50 (s, 3H), 5.08-5.12 (m, 1H), 5.10 (s, 2H), 6.55 (s, 1H), 6.82 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ -4.2 (CH₃), -4.1 (CH₃), 16.0 (CH₃), 17.6 (CH₃), 18.2 (Cq), 21.2 (CH₃), 25.7 (CH₃), 25.8 (CH₃), 26.2 (CH₂), 31.2 (CH), 37.2 (CH₂), 56.0 (CH₃), 95.8 (CH₂), 113.7 (CH), 120.5 (CH), 124.8 (CH), 125.2 (Cq), 131.1 (Cq), 136.0 (Cq), 147.4 (Cq), 149.9 (Cq); HRMS (ESI) *m*/z calcd for C₂₃H₄₁O₃Si [M⁺+H⁺] 393.2825, found 393.2823.

6-(2-tert-Butyldimethylsiloxy-5-methoxymethoxy-4-methylphenyl)-2-methyl-2,3-epoxyheptane (18)^{4a}

To a mixture of **17** (19.9 mg, 50.7 µmol) and sodium bicarbonate (21.3 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added *m*CPBA (20.2 mg, 76.0 µmol) at 0 °C. After being stirred at rt for 0.5 h, the reaction mixture was quenched with saturated aqueous NaHCO₃ and concentrated *in vacuo*. The residue was extracted with CH₂Cl₂, the extracts were washed with brine and the residue upon workup was chromatographed on silica gel with hexane-AcOEt (90:10, v/v) as eluent to give a 1:1 diastereomeric mixture of **18** (16.2 mg, 78%) as a colorless oil. IR (neat): 2958, 2930, 2859, 1503, 1391, 1255, 1215, 1194, 1151 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 0.19-0.21 (m, 6H), 1.00 (s, 4.5H), 1.00 (s, 4.5H), 1.17 (d, J = 6.8 Hz, 3H), 1.19 (s, 3H), 1.25 (s, 1.5H), 1.26 (s, 1.5H), 1.35-1.73 (m, 4H), 2.17 (s, 3H), 2.65-2.71 (m, 1H), 3.16 (sext., J = 6.4 Hz, 1H), 3.49 (s, 1.5 H), 3.50 (s, 1.5H), 5.08-5.12 (m, 2H), 6.56 (s, 1H), 6.82 (s, 0.5H), 6.83 (s, 0.5H); ¹³C-NMR (100 MHz, CDCl₃) δ -4.2 (CH₃), -4.0 (CH₃), 16.1 (CH₃), 18.3 (Cq), 18.6

(CH₃), 21.1 (CH₃), 21.4 (CH₃), 24.9 (CH₃), 25.9 (CH₃), 27.0 (CH₂), 27.4 (CH₂), 31.5 (CH), 31.7 (CH), 33.7 (CH₂), 34.1 (CH₂), 56.0 (CH₃), 58.2 (Cq), 64.3 (CH), 64.6 (CH), 95.7 (CH₂), 113.5 (CH), 113.6 (CH), 120.6 (CH), 120.7 (CH), 125.5 (Cq), 135.2 (Cq), 147.4 (Cq), 150.0 (Cq); HRMS (ESI) *m/z* calcd for $C_{23}H_{40}O_4NaSi [M^++Na^+] 431.2594$, found 431.2596.

6-(2-Hydroxy-5-methoxymethoxy-4-methylphenyl)-2-methyl-2,3-epoxyheptane (6)^{4a} and 3-*epi*-6-(2-hydroxy-5-methoxymethoxy-4-methylphenyl)-2-methyl-2,3-epoxyheptane (19)

To a mixture of CsF (6.8 mg, 0.04 mmol) in DMF (0.62 mL) was added **18** (15.3 mg, 37.4 mmol) in DMF (0.62 mL) at 0 °C. The reaction mixture was stirred at rt for 15 min, then quenched with water and extracted with Et_2O . The extracts were washed with brine and the residue upon workup was chromatographed on silica gel with hexane-AcOEt (90:10, v/v) as eluent to give **19** (5.2 mg, 47%) as a colorless oil and **6** (4.9 mg, 45%) as a colorless oil.

Compound 19: IR (neat): 3379, 2960, 2927, 1514, 1455, 1399, 1191, 1150 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.06-1.17 (m, 1H), 1.21 (s, 3H), 1.25 (d, 6.8 Hz, 3H), 1.33 (s, 3H), 1.67-1.76 (m, 2H), 1.80-1.87 (m, 1H), 2.17 (s, 3H), 2.85 (dd, *J* = 9.2 Hz and 1.6 Hz, 1H), 3.14-3.18 (m, 1H), 3.50 (s, 3H), 5.08-5.11 (m, 2H), 6.61 (s, 1H, OH, D₂O exchangeable), 6.66 (s, 1H), 6.80 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 15.9 (CH₃), 18.4 (CH₃), 22.4 (CH₃), 24.7 (CH₃), 25.9 (CH₂), 30.5 (CH), 36.4 (CH₂), 56.0 (CH₃), 58.9 (Cq), 66.2 (CH), 95.9 (CH₂), 113.3 (CH), 119.3 (CH), 126.4 (Cq), 130.5 (Cq), 148.3 (Cq), 149.9 (Cq); HRMS (ESI) *m/z* calcd for C₁₇H₂₇O₄ [M⁺+H⁺] 295.1909, found 295.1913.

Compound 6: IR (neat): 3375, 2960, 1456, 1191, 1149, 1058 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.21 (s, 3H), 1.24 (d, *J* = 7.2 Hz, 3H), 1.28 (s, 3H), 1.44-1.69 (m, 3H), 1.77-1.86 (m, 1H), 2.17 (s, 3H), 2.72 (t, *J* = 6.4 Hz, 1H), 3.07 (sext., *J* = 6.8 Hz, 1H), 3.50 (s, 3H), 4.58 (s, 1H, OH, D₂O exchangeable), 5.10 (s, 2H), 6.56 (s, 1H), 6.83 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 15.8 (CH₃), 18.6 (CH₃), 20.8 (CH₃), 24.8 (CH₃), 26.7 (CH₂), 32.0 (CH), 33.6 (CH₂), 56.0 (CH₃), 58.8 (Cq), 64.6 (CH), 95.9 (CH₂), 114.2 (CH), 117.8 (CH), 126.1 (Cq), 130.9 (Cq), 147.9 (Cq), 149.6 (Cq); HRMS (ESI) *m/z* calcd for C₁₇H₂₇O₄ [M⁺+H⁺] 295.1909, found 295.1911.

(\pm) -Heliannuol D $(5)^5$

A solution of **6** (10.1 mg, 34 µmol) in 5% aqueous NaOH (1.1 mL) was stirred at rt for 31 h. The reaction mixture was diluted with $CHCl_{3}$ acidified with 1% aqueous HCl (pH<7) and extracted with $CHCl_{3}$. The extracts were washed with brine and the residue upon workup was the alcohol **20**, a colorless oil, which was used to the next reaction without further purification. To a solution of the crude **20** in THF (0.1 mL) was added 6 N HCl *aq*. (0.1 mL). After being stirred at rt for 2 h, the mixture was extracted with Et₂O. The extracts were washed with brine and the residue upon workup was chromatographed on silica gel

with hexane-AcOEt (70:30, v/v) as eluent to give the (\pm)-heliannuol D **5** (8.7 mg, quant. for 2 steps) as a colorless crystalline solid. mp 157-158 °C (lit.,^{5a,c} 161-162 °C); IR (KBr): 3362, 2931, 2360, 1508, 1456, 1417, 1375, 1192, 1065 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.27-1.29 (m, 9H), 1.72-2.05 (m, 4H), 2.16 (s, 3H), 2.66 (s, 1H, OH, D₂O exchangeable), 2.88-2.91 (m, 1H), 3.30 (dd, *J* = 11.2 Hz and 1.2 Hz, 1H), 4.54 (s, 1H, OH, D₂O exchangeable), 6.54 (s, 1H), 6.73 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 15.3 (CH₃), 18.6 (CH₃), 24.5 (CH₃), 25.6 (CH₂), 26.1 (CH₃), 31.8 (CH₂), 38.5 (CH), 72.6 (Cq), 90.5 (CH), 115.8 (CH), 122.1 (Cq), 123.5 (CH), 138.2 (Cq), 149.6 (Cq), 151.7 (Cq); HRMS (ESI) *m/z* calcd for C₁₅H₂₃O₃ [M⁺+H⁺] 251.1647, found 251.1643.

(±)-10-epi-Heliannuol D (22)^{5a,c}

According to the same procedure as for the preparation of **5**, **22** was obtained from **19** as a colorless crystalline solid in 69% yield for the 2 steps. mp 155-157 °C (lit.,^{5c} 158-159 °C); IR (KBr): 3262, 2973, 1506, 1456, 1374, 1187, 1152, 1062 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.27 (s, 3H), 1.28 (s, 3H), 1.30 (d, *J* = 7.2 Hz, 3H), 1.87-1.93 (m, 3H), 2.18 (s, 3H), 2.63 (s, 1H, OH, D₂O exchangeable), 3.02 (quint., *J* = 8.0 Hz, 1H), 3.24 (dd, *J* = 10.0 Hz and 3.2 Hz, 1H), 4.62 (s, 1H, OH, D₂O exchangeable), 6.61 (s, 1H), 6.76 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 15.3 (CH₃), 20.2 (CH₃), 24.4 (CH₃), 26.3 (CH₃), 30.9 (CH₂), 34.3 (CH), 65.9 (CH₂), 72.5 (Cq), 89.7 (CH), 112.7 (CH), 121.5 (Cq), 122.8 (CH), 138.5 (Cq), 149.8 (Cq), 152.6 (Cq); HRMS (ESI) *m/z* calcd for C₁₅H₂₃O₃ [M⁺+H⁺] 251.1647, found 251.1645.

ACKNOWLEDGEMENTS

This work was supported financially by the Program for the Promotion of Basic and Applied Research for Innovations in the Bio-oriented Industry (BRAIN).

REFERENCES AND NOTES

- 1. M. Yoshida, K. Matsuda, Y. Shoji, T. Gotou, M. Ihara, and K. Shishido, Org. Lett., 2008, 10, 5183.
- For our recent synthetic studies on allelochemicals, see, T. Kamei, T. Takahashi, M. Yoshida, and K. Shishido, *Heterocycles*, 2009, **78**, 1439; F. A. Macías, D. Chinchilla, J. M. G. Molinilo, F. R. Fronczek, and K. Shishido, *Tetrahedron*, 2008, **64**, 5502; K. Ohtsuki, K. Matsuo, T. Yoshikawa, C. Moriya, K. Tomita-Yokotani, K. Shishido, and M. Shindo, *Org. Lett.*, 2008, **10**, 1247; H. Yokoe, H. Sasaki, T. Yoshimura, M. Shindo, M. Yoshida, and K. Shishido, *Org. Lett.*, 2007, **9**, 969. For reviews, see, T. Kamei, S. Morimoto, and K. Shishido, *J. Synth. Org. Chem., Japan*, 2006, **64**, 1021; K. Shishido, *Heterocycles*, 2009, **78**, 873.
- (a) F. A. Macías, R. M. Varela, A. Torres, J. M. G. Molinillo, and F. R. Fronczek, *Tetrahedron Lett.*, 1993, **34**, 1999; (b) F. A. Macías, J. M. G. Molinillo, R. M. Varela, A. Torres, and F. R. Fronczek, *J.*

Org. Chem., 1994, 59, 8261.

- (a) K. Takabatake, I. Nishi, M. Shindo, and K. Shishido, *J. Chem. Soc., Perkin Trans. 1*, 2000, 1807;
 (b) H. Kishuku, T. Yoshimura, M. Shindo, and K. Shishido, *Heterocycles*, 2003, **61**, 125; (c) J. Zhang, X. Wang, W. Wang, W. Quan, X. She, and X. Pan, *Tetrahedron*, 2007, **63**, 6990.
- (a) J. R. Vyvyan and R. E. Looper, *Tetrahedron Lett.*, 2000, 41, 1151; (b) K. Tuhina, D. R. Bhowmik, and R. V. Benkateswaran, *Chem. Commun.*, 2002, 634; (c) F. A. Macias, D. Chinchilla, J. M. G. Molinillo, D. Marin, R. M. Varela, and A. Torres, *Tetrahedron*, 2003, 59, 1679; (d) F. Doi, T. Ohta, T. Ogamino, T. Sugai, K. Higashinakasu, K. Yamada, H. Shigemori, K. Hasegawa, and S. Nishiyama, *Phytochemistry*, 2004, 65, 1405; (e) S. K. Sabui and R. V. Benkateswaran, *Tetrahedron Lett.*, 2004, 45, 983; (f) S. K. Sabui and R. V. Benkateswaran, *Tetrahedron Lett.*, 2004, 45, 2047.
- T. Yoshimura, H. Kishuku, T. Kamei, K. Takabatake, M. Shindo, and K. Shishido, *ARKIVOC*, 2003, 8, 232.
- 7. P. Debroy, S. V. Lindeman, and R. Rathore, *Org. Lett.*, 2007, **9**, 4091.
- 8. D. Hideura, H. Urabe, and F. Sato, Chem. Commun., 1998, 271.
- 9. M. Ono, Y. Yamamoto, R. Todoroki, and H. Akita, *Heterocycles*, 1994, 37, 181.
- 10. C. Meyers and E. M. Carreira, Angew. Chem. Int. Ed., 2003, 42, 694.
- The undesired isomer 16 was converted to 14 in 87% yield upon treatment with TBSCl, imidazole and 4-DMAP in CH₂Cl₂ at rt.