ISSN 1070-4280, Russian Journal of Organic Chemistry, 2015, Vol. 51, No. 11, pp. 1587–1592. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.V. Chervyakov, P.A. Slepukhin, M.V. Dmitriev, A.N. Maslivets, 2015, published in Zhurnal Organicheskoi Khimii, 2015, Vol. 51, No. 11, pp. 1617–1622.

Synthesis of 8-Aroylpyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-triones and Their Reaction with Water. New Analogs of Cyclic Dipeptides

A. V. Chervyakov^a, P. A. Slepukhin^b, M. V. Dmitriev^a, and A. N. Maslivets^a

^a Perm State National Research University, ul. Bukireva 15, Perm, 614990 Russia e-mail: koh2@psu.ru

^b Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

Received February 25, 2015

Abstract—2-Aryl-8-aroyl-3,4-dihydropyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-triones prepared from (*Z*)-1-aryl-3-(2-aryl-2-oxoethylidene)piperazin-2-ones and oxalyl chloride react with water to afford (*E*)-8a-hydroxy-2-aryl-8-[aryl(hydroxy)methylene]tetrahydropyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-triones. The crystal and molecular structure of 8-benzoyl-2-phenyl-3,4-dihydropyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-trione and (*E*)-8a-hydroxy-8-[hydroxy(phenyl)methylene]-2-phenyltetrahydropyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-trione were studied by X-ray diffraction analysis.

DOI: 10.1134/S1070428015110123

Heterocyclic enaminoketones reacting with oxalyl chloride afford hetareno[e]pyrrole-2,3-diones [1–4] or 4-heterylfuran-2,3-diones [4, 5]. In order to extend the range of data providing a possibility to predict the occurrence of one or another of these two routes we synthesized (Z)-1-aryl-3-(2-aryl-2-oxoethylidene)pipe-razin-2-ones **1a–1c** and investigated their reactions with oxalyl chloride.

Piperazinones **1a–1c** were prepared from methyl 4aryl-2-hydroxy-4-oxobut-2-enoates and *N*-arylethylenediamines in toluene in the presence of catalytic quantities of glacial acetic acid by boiling for 1 h. The use of toluene as solvent made it possible to reduce the reaction time and slightly increase the yield of target products as compared with the known procedure of piperazinone **1c** synthesis in ethanol [6].

Compounds **1a–1c** are light-yellow high melting crystalline substances readily soluble in DMF and DMSO, sparingly soluble in ethanol, benzene, toluene, insoluble in water and alkanes.

IR spectra of compounds **1a–1c** contain the bands of the stretching vibrations of the NH group as a broad band in the region $3150-3214 \text{ cm}^{-1}$, of lactam carbonyl group (1668–1671 cm⁻¹), and aroyl carbonyl group (1603–1607 cm⁻¹) involved in the formation of an intramolecular hydrogen bond.

In ¹H NMR spectra of compounds 1a-1c along with the signals of aromatic protons and the protons of the methyl group (for compound 1b) two multiplets appear of the protons of two methylene groups in the region 3.69–3.97 ppm, a singlet from the proton of vinyl group CH (6.57–6.63 ppm), and a broadened singlet in the downfield region 10.86–10.88 ppm from the proton of NH group involved in the formation of the intramolecular hydrogen bond.

The spectral characteristics of compounds 1a-1c show that they exist in the crystalline state and in solutions with a strong intramolecular hydrogen bond of H-chelate type between the NH group and the aroyl group, i.e. in the form of Z-isomers characteristic of the compounds of this class [6].

The reactions of compounds 1a-1c with oxalyl chloride in toluene (1 h at room temperature and 2–2.5 h of boiling till the end of HCl liberation under the common conditions for the synthesis of five-membered dioxoheterocycles [7]) furnished instead of expected 4-heterylfuran-2,3-diones 2-aryl-8-aroyl-3,4-dihydropyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-triones 2a-2c, [8], whose structure was confirmed by XRD analysis by an example of compound 2a.

Pyrrolopyrazinetriones **2a–2c** are bright red high melting crystalline substances readily soluble in DMF

and DMSO, sparingly soluble in chloroform, benzene, toluene, insoluble in alkanes; they react with water and alcohols and quickly suffer discoloration at storage due to the reaction with the air moisture.

In the IR spectra of compounds 2a-2c the bands of stretching vibration are present of lactam C⁶=O (1754–1755 cm⁻¹), C¹=O (1663–1691 cm⁻¹), ketone C⁷=O (1721–1731 cm⁻¹) and aroyl (1614–1665 cm⁻¹) carbonyl groups. The higher wave number corresponding to the band of stretching vibrations of lactam group compared to the band of ketone group is in agreement with the published data on these groups in the IR spectra of substituted furan-2,3-diones [9] and isatins [10].

In ¹H NMR spectra of compounds 2a-2c solutions along with the signals of aromatic protons a threeproton singlet appears from the protons of the methyl group at 2.28 ppm (in the spectrum of compound 2b), and two multiplets of protons from two methylene groups in the region 3.75–4.13 ppm.

Fig. 1. Molecular structure of 8-benzoyl-2-phenyl-3,4-dihydropyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-trione **2a**.

According to XRD data on compound **2a** (Fig. 1), the five-membered heterocycle of the heterobicyclic system is flat, and the six-membered ring is present in the *pseudo-sofa* conformation. The benzoyl fragment is virtually planar and turned at a considerable angle with respect to the plane of the heterobicyclic system.

As known, 4-acyl-substituted 1*H*-pyrrole-2,3diones and hetareno[*e*]pyrrole-2,3-diones {3acylpyrrolo[2,1-*c*][1,4]benzoxazine-1,2,4-triones and $\{3$ -acylpyrrolo[1,2-*a*]quinoxaline-1,2,4(5*H*)-triones} may reversibly add OH-nucleophiles (water and alcohol) to the carbon atom in the position 5 of the 1*H*pyrrole-2,3-dione ring giving the corresponding 4acyl-3,5-dihydroxy- and 5-alkoxy-4-acyl-3-hydroxy-2,5-dihydro-1*H*-pyrrol-2-ones [7].

At keeping 2-aryl-8-aroyl-3,4-dihydropyrrolo[1,2a]pyrazine-1,6,7(2H)-triones 2a-2c in toluene saturated with water for 8–12 h (till discoloration) we obtained (E)-2-aryl-8-[aryl(hydroxy)methylene]-8ahydroxytetrahydropyrrolo[1,2-a]pyrazine-1,6,7(2H)triones 3a-3c, whose structure was confirmed by XRD analysis by an example of compound 3b.

Compounds 3a-3c are light-yellow crystalline substances melting with decomposition, readily soluble in DMF and DMSO, sparingly soluble in chloroform, benzene, toluene, insoluble in alkanes and water. The light yellow solutions of compounds 3a-3c in glacial acetic acid or DMSO at heating become bright red, and the intensity of color grows proportionally to the growing temperature, apparently due to the reversibility of water addition to pyrrolopyrazinetriones 2.

The IR spectra of compounds 3a-3c contain the bands of the stretching vibrations of the alcohol group $C^{8a}OH$ as a narrow peak in the region 3185–3290 cm⁻¹, of enol group $C^8=C(Ar)OH$ involved in the formation of the intramolecular hydrogen bond as a broad peak in

Fig. 2. Molecular structure of (*E*)-8a-hydroxy-8-[hydroxy(phenyl)methylidene]-2-(4-tolyl)tetrahydropyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-trione **3b**.

the region 3064–3079 cm⁻¹, of carbonyl groups C⁶=O, C⁷=O of the pyrroledione ring (1693–1723 cm⁻¹), and of lactam carbonyl group C¹=O (1585–1603 cm⁻¹) involved in the formation of the intramolecular hydrogen bond.

In ¹H NMR spectra of compounds **3a–3c** along with the signals of aromatic protons two doublets of doublets are present belonging to four protons of two methylene groups in the region 3.90–4.11 ppm, a broadened singlet of the proton of the alcohol group C^{8a}OH in the region 7.31–7.38 ppm, and a three- proton singlet of the methyl group at 2.28 ppm (in the spectrum of compound **3b**) are observed. The signal of enol group C⁸=C(Ar)OH involved in the formation of the intramolecular hydrogen bond is strongly broadened (9–13 ppm) and is not seen in the spectrum.

According to XRD data compound **3b** crystallized in a centrosymmetric space group in the form of a hydrate in a ratio 1 : 2 (Fig. 2). The heterobicyclic system is not planar, it is bent along the axis $C^{11}-C^{14}$. The enol hydroxy group forms a strong intramolecular hydrogen bond with the lactam carbonyl group $C^{12}=O^3$. The tolyl substituent is disordered by two positions with approximately 0.5 occupancy; it may be described as the ring rotation around the $C^{15}-C^{18}$ axis (this disordering is not shown in Fig. 2). The water molecules are also disordered by two positions with equal occupancy. The molecules in the crystal form an infinite two-dimensional net parallel to the [0 0 1] plane due to the developed system of intermolecular hydrogen bonds involving the groups O^2-H^2 , $C^1=O^4$, $C^2=O^5$ and water molecules.

Pyrrolopyrazinetriones 2a-2c react with water adding OH groups to the carbon atom in the position 5 of the 1*H*-pyrrole-2,3-dione ring as has been previously observed with 4-acyl-substituted 1*H*-pyrrole-2,3-diones [7], yet in the addition products 3a-3c the proton is located not at the oxygen atom of the carbonyl group in the position 3 of the 1*H*-pyrrole-2,3-dione ring, but at the oxygen atom of the aroyl group followed by the formation of the intramolecular hydrogen bond of this group with the oxygen atom of the carbonyl group in the position *I* of the pyrrolopyrazinetriones.

The heating in capillary of compounds 3a-3c to the temperatures close to the melting point (130–140°C) led to water elimination and the formation of initial pyrrolopyrazinetriones 2a-2c.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 51 No. 11 2015

Thus we developed a new method of synthesis of functionalized heterobicyclic system of pyrrolo[1,2-a]-pyrazine, analog of 2,5-diketopiperazine, the smallest of known cyclic peptides. The natural 2,5-diketopiperazines (brevianamides [11], tryprostatins [12], maculosin [13], etc.), as well as synthetic *N*-substituted pyrrolopyrazines exhibit antitumor, phytotoxic, and other kinds of activity [14].

EXPERIMENTAL

IR spectra were recorded on a spectrophotometer Perkin Elmer Spectrum Two from mulls in mineral oil or in perfluorinated oil. ¹H NMR spectra were registered on a spectrometer Bruker Avance III (operating frequency 500 MHz), internal reference TMS. Elemental analysis was carried out on an analyzer vario MICRO cube. The homogeneity of compounds synthesized was confirmed by TLC (Silufol plates, eluents benzene–ethvl acetate, 5 : 1, ethyl acetate, development in iodine vapor), the optimization of the reaction conditions and registration of mass spectra were performed by procedure ultra-HPLC-MS, column Acquity UPLC C18 1.7 µm, mobile phase acetonitrile-water, flow rate 0.3-0.6 mL/min, detector ESI MS Xevo TQD, electrospray ionization in the mode of positive ions registration ESI⁺, temperature 150°C, voltage on the capillary 3500 V, on the cone 50 V.

(Z)-3-(2-Oxo-2-phenylethylidene)-1-phenyl-piperazin-2-one (1a). To 15.0 g (72.7 mmol) of methyl 4aryl-2-hydroxy-4-oxobut-2-enoate in a mixture of 100 mL of toluene and 40 mL of glacial acetic acid was added 9.5 mL (72.7 mmol) of N-phenylethylenediamine, and the reaction mixture was boiled for 1 h (TLC monitoring), evaporated to 40 mL volume, the precipitate was filtered off. Yield 92%, mp 154-156°C (toluene). IR spectrum, v, cm⁻¹: 3214 br (NH in intramolecular hydrogen bond), 1671 (C²=O), 1607 br (COPh). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.70 m (2H, $C^{5}H_{2}$), 3.97 m (2H, $C^{6}H_{2}$), 6.60 s (1H, $C^{3}=CH$), 7.31 m (1H_{arom}), 7.42–7.56 group of signals (7H_{arom}), 7.89 d (2H, H^o in COPh, J 6.8 Hz), 10.86 s (1H, NH). Found, %: C 73.83; H 5.38; N 9.65. C₁₈H₁₆N₂O₂. Calculated, %: C 73.95; H 5.52; N 9.58.

Compounds 1b and 1c were synthesized similarly.

(Z)-3-(2-Oxo-2-phenylethylidene)-1-(4-tolyl)piperazin-2-one (1b). Yield 89%, mp $177-178^{\circ}C$ (toluene). IR spectrum, v, cm⁻¹: 3150 br (NH in intra-

molecular hydrogen bond), 1670 (C²=O), 1605 br (COPh). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 2.31 s (3H, Me), 3.69 m (2H, C⁵H₂), 3.91 m (2H, C⁶H₂), 6.63 s (1H, C³=CH), 7.23 d (2H, H^m in C₆H₄Me-4, J 8.4 Hz), 7.31 d (2H, H^o in C₆H₄Me-4, J 8.4 Hz), 7.50 m (3H_{arom}), 7.90 d (2H, H^o in COPh, J 7.0 Hz), 10.88 s (1H, NH). Found, %: C 74.35; H 5.95; N 9.20. C₁₉H₁₈N₂O₂. Calculated, %: C 74.49; H 5.92; N 9.14.

(*Z*)-3-[2-Oxo-2-(4-chlorophenyl)ethylidene]-1phenylpiperazin-2-one (1c). Yield 80%, mp 201–202°C (toluene). IR spectrum, v, cm⁻¹: 3213 br (NH in intramolecular hydrogen bond), 1668 (C²=O), 1603 br (COC₆H₄). ¹H NMR spectrum [(CD₃)₂CO)], δ , ppm: 3.67 m (2H, C⁵H₂), 3.97 m (2H, C⁶H₂), 6.57 s (1H, C³=CH), 7.31 m (1H_{arom}), 7.41–7.45 m (4H_{arom}), 7.54 d (2H, H^m in COC₆H₄Cl-4, *J* 8.5 Hz), 7.90 d (2H, H^o in COC₆H₄Cl-4, *J* 8.5 Hz), 10.88 s (1H, NH). Found, %: C 66.00; H 4.71; N 8.53. C₁₈H₁₅ClN₂O₂. Calculated, %: C 66.16; H 4.63; N 8.57.

8-Benzoyl-2-phenyl-3,4-dihydropyrrolo[1,2-*a*]**pyrazine-1,6,7**(2*H*)-trione (2a). To a solution of 5.0 g (17.1 mmol) of piperazinone 1a in 250 mL of anhydrous toluene was added 2.2 mL (25.7 mmol) of oxalyl chloride, the mixture was maintained for 1 h, boiled for 2 h, and cooled. The solvent was distilled off in a vacuum on a rotary evaporator. Yield 90%, mp 150–151°C (toluene). IR spectrum, v, cm⁻¹: 1755 (C⁶=O), 1731 (C⁷=O), 1663 (C¹=O), 1650 (COPh). ¹H NMR spectrum (CDCl₃), δ , ppm: 4.02 d.d (2H, C⁴H₂, *J* 6.8, 4.2 Hz), 4.13 d.d (2H, C³H₂, *J* 6.8, 4.2 Hz), 7.24–7.50 group of signals (7H_{arom}), 7.57 t (1H_{arom}), 7.87 d (2H, H^o in COPh, *J* 7.3 Hz). Found, %: C 69.42; H 4.09; N 8.03. C₂₀H₁₄N₂O₄. Calculated, %: C 69.36; H 4.07; N 8.09.

Compounds **2b** and **2c** were synthesized similarly.

8-Benzoyl-2-(4-tolyl)-3,4-dihydropyrrolo[1,2-*a***]-pyrazine-1,6,7(2***H***)-trione (2b).** Yield 70%, mp 147– 148°C (toluene). IR spectrum, v, cm⁻¹: 1755 (C⁶=O), 1726 (C⁷=O), 1672 (C¹=O), 1660 (COPh). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.30 s (3H, Me), 3.75–4.05 group of signals (4H, CH₂CH₂), 7.07–7.87 group of signals (9H_{arom}). Found, %: C 70.09; H 4.42; N 7.74. C₂₁H₁₆N₂O₄. Calculated, %: C 69.99; H 4.48; N 7.77.

2-Phenyl-8-(4-chlorobenzoyl)-3,4-dihydropyrrolo[1,2-*a***]pyrazine-1,6,7(2***H***)-trione (2c).** Yield 77%, mp 147–149°C (toluene). IR spectrum, v, cm⁻¹: 1755 (C⁶=O), 1721 (C⁷=O), 1691 (C¹=O), 1665 (COC₆H₄). ¹H NMR spectrum (DMSO-*d*₆), δ , ppm:

intramolecular hydrogen bond). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.33 s (3H, Me), 4.02 d.d (2H, C⁴H₂, J 3.8, 6.6 Hz), 4.10 d.d (2H, C³H₂, J 3.8, 6.6 Hz), 0.7.13–7.24 group of signals (4H_{arom}), 7.31 s (1H, C^{8a}OH), 7.44 t (2H_{arom}), 7.57 t (1H_{arom}), 7.86 d [2H, H^o in C

H]⁺. Found, %: C 66.72; H 4.68; N 7.31. C₂₁H₁₈N₂O₅. Calculated, %: C 66.66; H 4.80; N 7.40. *M* 379.13.

3.83 m (2H, C⁴H₂), 4.04 m (2H, C³H₂), 7.20–7.39 m

(5H, Ph), 7.50 d (2H, H^m in COC₆H₄Cl-4, J 8.5 Hz),

7.96 d (2H, H^o in COC₆H₄Cl-4, J 8.5 Hz). Found, %: C

63.24; H 3.30; N 7.34. C₂₀H₁₃ClN₂O₄. Calculated, %:

idene]-2-phenyltetrahydropyrrolo[1,2-a]pyrazine-

1,6,7(2H)-trione (3a). A beaker with a solution of 0.50 g

(1.40 mmol) of pyrrolopyrazinetrione 2a in 20 mL of

toluene and a beaker with 50 mL of heated to boiling

water were placed in a vacuum desiccator, the air was

pumped out, and the desiccator was left standing for 12 h.

Yield 95%, mp 147-149°C (decomp., toluene). IR

spectrum, v, cm⁻¹: 3290 (C^{8a}<u>OH</u>), 3078 br (C⁸=C<u>OH</u>),

1723 (C⁶=O), 1698 (C⁷=O), 1603 br (C¹=O in intramo-

lecular hydrogen bond). ¹H NMR spectrum (DMSO- d_6),

δ, ppm: 3.90 d.d (2H, C⁴H₂, *J* 6.5, 4.6 Hz), 4.11 d.d (2H, C³H₂, *J* 6.5, 4.6 Hz), 7.29 t (1H_{aron}), 7.33 d.d

(2H_{arom}), 7.35 s (1H, C^{8a}OH), 7.39–7.43 m (2H_{arom}),

7.50 t (2H_{arom}), 7.63 t (1H_{arom}), 8.00 d (2H, H^o in

COPh, J 8.2 Hz). Found, %: C 65.80; H 4.38; N 7.80.

C₂₀H₁₆N₂O₅. Calculated, %: C 65.93; H 4.43; N 7.69.

Compounds **3b**, **3c** were synthesized similarly.

(E)-8a-Hydroxy-8-[hydroxy(phenyl)methyl-

idene]-2-(4-tolyl)tetrahydropyrrolo[1,2-a]pyrazine-

1,6,7(2H)-trione (3b). Yield 93%, mp 149-151°C

(decomp., toluene). IR spectrum, v, cm^{-1} : 3450–3050

(2OH), 1720 (C⁶=O), 1698 (C⁷=O), 1585 br (C¹=O in

(E)-8a-Hydroxy-8-[hydroxy(phenyl)methyl-

C 63.09; H 3.44; N 7.36.

(*E*)-8a-Hydroxy-8-[hydroxy(4-chlorophenyl)methylidene]-2-phenyltetrahydropyrrolo[1,2-*a*]pyrazine-1,6,7(2*H*)-trione (3c). Yield 88%, mp 153–155°C (decomp., toluene). IR spectrum, v, cm⁻¹: 3185 ($C^{8a}OH$), 3064 br ($C^{8}=COH$), 1693 ($C^{6}=O$, $C^{7}=O$), 1597 br ($C^{1}=O$ in intramolecular hydrogen bond). ¹H NMR spectrum (CDCl₃), δ , ppm: 4.00 d.d (2H, $C^{4}H_{2}$, *J* 6.5, 4.2 Hz), 4.10 d.d (2H, $C^{3}H_{2}$, *J* 6.5, 4.2 Hz), 7.24–7.41 m (5H, Ph), 7.38 s (1H, $C^{8a}OH$), 7.39 d (2H, H^m in C₆H₄Cl-4, *J* 8.4 Hz), 7.77 d (2H, H^o in C₆H₄Cl-4, *J* 8.4 Hz). Found, %: C 60.39; H 3.66; N 6.89. C₂₀H₁₅ClN₂O₅. Calculated, %: C 60.24; H 3.79; N 7.02.

X-ray diffraction study. Unit cell parameters and the array of experimental reflections of single crystals of compound 2a and 3b were measured on automatic four-circle diffractometers with CCD-detectors Xcalibur S (2a) and Xcalibur R (3b) by the method of ω -2 θ -scanning with a monochromatized Mo K_{α} radiation at 295(2) K. The structures were solved by the direct statistical method and refined by full-matrix least-squares method with respect to F^2 in anisotropic approximation for all nonhydrogen atoms. A part of hydrogen atoms was placed in geometrically calculated positions and was included in the refinement in a *rider* model with thermal parameters depending on parent atoms; another part of hydrogen atoms was solved and refined independently in an isotropic approximation. All calculations were performed using SHELX 97 software [15].

The analysis of compound **2a** (empirical formula $C_{20}H_{14}N_2O_4$) was carried out using colorless crystal of the size $0.25 \times 0.17 \times 0.09$ mm. Crystal triclinic, space group P-1, *a* 5.9760(6), *b* 11.8515(11), *c* 13.5823(8) Å, α 100.406(7), β 90.771(7), γ 95.331(8) deg, *V* 941.60(14) Å³, *d*_{calc} 1.222 g/cm³, *Z* 2. In the angles range 3.05 < θ < 28.28° 4618 independent reflections were measured, 1875 with *I* > 2 σ (*I*). The completeness of the experiment for the angle θ 28.28° was 99.3%. No corrections for extinction were introduced (μ 0.087 mm⁻¹). Final refinement results were as follows: *R*₁ 0.0451, *wR*₂ 0.1205 for reflections with *I* > 2 σ (*I*), *R*₁ 0.0968, *wR*₂ 0.1260 (for all reflections), *S* 1.001. Maximum and minimum peaks of residual electron density are 0.156 and -0.182 ēÅ⁻³.

The analysis of compound **3b** (empirical formula $C_{21}H_{18}N_2O_5$ \cdot 2H₂O) was carried out using yellow crystal of the size $0.60 \times 0.40 \times 0.40$ mm, grown from the toluene saturated with water. Crystal triclinic, space group P-1, a 8.8608(10), b 8.9181(10), c 13.9454(15) Å, α 87.661(9), β 73.676(10), γ 72.816(10)°, V 1009.28(19) Å³, $d_{calc} 1.364$ g/cm³, Z 2. In the angles range $2.99 < \theta < 29.65^{\circ}$ 4778 independent reflections were measured, 3810 with $I > 2\sigma(I)$. The completeness of the experiment for the angle $\theta < 26.00^{\circ}$ was 99.6%. The extinction was accounted for empirically using the algorithm SCALE3 ABSPACK [16]. Final refinement results were as follows: R_1 0.0474, wR_2 0.1218 for reflections with $I > 2\sigma(I)$, R_1 0.0602, wR_2 0.1289 for all reflections, S 1.077. Maximum and minimum peaks of residual electron density are 0.274 and $-0.226 \bar{e} Å^{-3}$.

The results of structural experiments are deposited in the Cambridge Crystallographic Data Center under the numbers CCDC 1437902 and CCDC 1438227. The data may be obtained free at the address www.ccdc.cam.ac.uk.

The study was carried out under the financial support of the Ministry of Education and Science of the Russian Federation (project no. 965), Ministry of Education of Perm District (MIG competition), and of the Russian Foundation for Basic Research (grants nos. 13-03-96009, 14-03-96005, 14-03-92693).

REFERENCES

- Maslivets, A.N., Mashevskaya, I.V., Krasnykh, O.P., Shurov, S.N., and Andreychikov, Yu.S., *Zh. Org. Khim.* 1992, vol. 28, p. 2545.
- Kistanova, N.S., Mashevskaya, I.V., Bozdyreva, K.S., and Maslivets, A.N., *Chem. Heterocycl. Compd.*, 2003, vol. 39, p. 673.
- Bozdyreva, K.S., Smirnova, I.V., and Maslivets, A.N., Russ. J. Org. Chem., 2005, vol. 41, p. 1081.
- Silaichev, P.S., Kryuchkova, M.A., and Maslivets, A.N., *Russ. J. Org. Chem.*, 2009, vol. 45, p. 1730.
- Maslivets, A.N., Lisovenko, N.Yu., Golovnina, O.V., Vostrov, E.S., and Tarasova, O.P., *Chem. Heterocycl. Compd.*, 2000, vol. 36, p. 483.

- Milyutin, A.V., Safonova, N.V., Makhmudov, R.R., Novoselova, G.N., Goleneva, A.F., and Andreichikov, Yu.S., *Pharm. Chem. J.*, 1996, vol. 30, p. 186.
- Maslivets, A.N. and Mashevskaya, I.V., 2,3-Digidro-2,3-pyrrolidiony (2,3-Dihydro-2,3-Pyrrolediones), Perm: Perm. Gos. Univer., 2005.
- 8. Chervyakov, A.V. and Maslivets, A.N., *Russ. J. Org. Chem.*, 2013, vol. 49, p. 943.
- Andreichikov, Yu.S., Nalimova, Yu.A., Plakhina, G.D., Saraeva, R.F., and Tendryakova, S.P., *Chem. Heterocycl. Compd.*, 1975, vol. 11, p. 1252.
- Zhungietu, G.I. and Rikhter, M.A., *Izatin i ego proizvodnye* (Isatin and his Derivatives), Kishenev: Shtiintsa, 1997.
- Song, F., Liu, X., Guo, H., Ren, B., Chen, C., Piggott, A.M., Yu, K., Gao, H., Wang, Q., Liu, M., Liu, X., Dai, H., Zhang, L., and Capon, R.J., *Org Lett.*, 2012, vol. 14, p. 4770.
- 12. Yamakawa, T., Ideue, E., Shimokawa, J., and Fukuyama, T., *Angew. Chem., Int. Ed.*, 2010, vol. 49, p. 9262.
- Lou, J., Fu, L., Peng, Y., and Zhou, L., *Molecules*, 2013, vol. 18, p. 5891.
- 14. Wang, Y., Wang, P., Ma, H., and Zhu, W., *Expert Opin. Ther. Pat.*, 2013, vol. 23, p. 1415.
- 15. Sheldrick, G.M., Acta Cryst., Sect. A, 2008, vol. 64, p. 112.
- CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171.NET).