2-ARYL-4-QUINOLONE SYNTHESIS USING THE THERMAL REARRANGEMENT OF IMINOCYCLOBUTENONES

Iwao Hachiya, Keiichi Yokoyama, Akinori Ito, and Makoto Shimizu*

Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan. E-mail: mshimizu@chem.mie-u.ac.jp

Abstract – 2-Aryl-4-quinolone synthesis is developed using the thermal rearrangement of iminocyclobutenones formed by a conjugate addition reaction of ketene silyl acetals to alkynyl imines.

Since the discovery of nalidixic acid as an antimicrobial agent in 1962, several 4-quinolone derivatives have been investigated as a chemotherapeutic agent. While 4-quinolone derivatives possessing a 3-carboxy group such as norfloxacin, ciprofloxacin, and levofloxacin have been introduced (Scheme 1),¹ 2-aryl-4-quinolones are also significant biologically active compounds because of antimitotic, antiplatelet, and antiviral activities. Therefore, numerous methods for the synthesis of 2-aryl-4-quinolone derivatives have been reported.²

Scheme 1. 4-Quinolone Antimicrobial Agents

Alkynyl imines are some of the most useful nitrogen-containing starting materials and extensively used in the synthesis of nitrogen-containing compounds including heterocycles.³ We have been interested in the reactivity at the β -position of alkynyl imines as a Michael acceptor and developed efficient synthetic methods for several nitrogen containing heterocycles such as 2-pyridones,⁴ bicyclo-pyridones,⁵ iminopyridines,⁶ and aminopyridines.⁶ During these investigations, we have found that aluminum chloride promoted conjugate addition reactions of alkynyl imines **1** with ketene silyl acetals **2** proceed to give the iminocyclobutenones **3** in good yields. Furthermore, it has been also developed that

This paper is dedicated to Professor Isao Kuwajima on the occasion of his 77th birthday.

chemoselective reduction of iminocyclobutenones **3** proceeds to give the aminocyclobutenones **4** in high yields, and the subsequent thermal rearrangement of aminocyclobutenone **4** in the presence of an appropriate amine affords either *cis*- or *trans*- β -lactams **7** in good yields and with high diastereoselectivities (Scheme 2).⁷ We propose a plausible reaction mechanism of the thermal rearrangement of aminocyclobutenones **4** via aminoketene **5**, which is considered to be one of the intermediates in the Kinugasa reaction.⁸ Aminoketene **5** would be generated by ring opening reaction of aminocyclobutenone **4** and undergoes a cyclization to give the enol **6**. Protonation of the enol **6** and/or concomitant epimerization would occur in the presence of an appropriate amine to afford either *cis*- or *trans*- β -lactams **7** with high diastereoselectivities.

Scheme 2. Diastereoselective Synthesis of β -Lactams 7 Using the Thermal Rearrangement of Aminocyclobutenones 4

Scheme 3. 2-Aryl-4-quinolone 10 Synthesis Using the Thermal Rearrangement of Iminocyclobutenones 3

We next envisioned that a ring opening reaction of iminocyclobutenone **3** followed by a cyclization of iminoketene **8'** would give 4-quinolone **10** via an intermediate **9** (Scheme 3). Although several 4-quinolone syntheses via iminoketene intermediates have already been reported, there still remain some drawbacks such as a limited substrate scope and/or forcing cyclization conditions at high temperatures.⁹ Herein, this paper describes the 2-aryl-4-quinolone synthesis using the thermal rearrangement of iminocyclobutenones.¹⁰

OMe R^1 toluene, reflux, time ОМе 3 10 \mathbf{R}^2 \mathbf{R}^{3} 3 \mathbf{R}^1 10 Time (h) Yield (%) Entry 94 1 3a Ph 2-thienyl Me 10a 3.0 2 Ph 10a 2.0 84 3a 2-thienyl Me 3 3a Ph 2-thienyl Me 10a 1.0 74 4 2-thienyl 10a 3a Ph Me 0.5 17 5 Ph **3b** Ph Me 10b 3.0 95 6 3c Ph 2-furyl Me 10c 3.0 91 7 Ph 2-naphthyl Me 10d 81 **3d** 3.0 8 3e 2-thienyl 2-naphthyl **10e** 3.0 76 Me 9 3f 2-naphthyl Ph **10f** 3.0 87 Me 10 2-thienyl Ph 3.0 91 Me 10g 3g $68(29)^b$ 11 3h Ph Ph 10h 5.0 Et 12^{c} Ph Ph 10h 3h Et 5.0 86

Table 1. Synthesis of 4-Quinolones 10 Using the Thermal Rearrangement of Iminocyclobutenones 3

^aIsolated yield. ^bYield of the recovered **3h** in parenthesis. ^cReaction performed in xylenes.

We first examined reaction time in the thermal rearrangement of iminocyclobutenone **3a** in toluene at reflux. When the reaction was carried out for 3 h, the desired 4-quinolone **4a** was obtained in 94% yield (Table 1, entries 1-4).¹¹ Several iminocyclobutenones **3b**-h were subjected to the thermal rearrangement conditions. The reaction of diphenylated iminocyclobutenone **3b** gave the 4-quinolone **10b** in 95% yield (entry 5). The reaction of iminocyclobutenone **3c** having a 2-furyl group as a hetero aromatic group also

afforded 4-quinolone **10c** in 91% yield (entry 6). When iminocyclobutenones **3d** and **3e** possessing a 2-naphthyl group at the R^2 moiety were used, both yields slightly decreased probably due to the steric bulkiness (entries 7 and 8). The reactions of the iminocyclobutenones **3f** and **3g** possessing a 2-thienyl or a 2-naphthyl group at the R^1 moiety gave 4-quinolones **10e** and **10f** in high yields, respectively (entries 9 and 10). When the iminocyclobutenone **3h** having an ethyl group at the R^3 moiety was carried out in toluene at reflux for 5 h, 4-quinolone **10h** was obtained in 68% yield along with the recovered iminocyclobutenone **3h** in 29% yield (entry 11). The reaction of **3h** was next carried out in xylenes at reflux for 5 h to consume the remaining iminocyclobutenone **3h**. The reaction proceeded to reach completion to afford 4-quinolone **10h** in 86% yield (entry 12).

We next examined the effects of the substituents on a phenyl group at the nitrogen atom, and Table 2 summarizes the results. The reactions of *N*-phenylated iminocyclobutenones **11a** and **11b** gave 4-quinolones **12a** and **12b** in 93% and 98% yields, respectively (entries 1 and 2). When *para*-halophenylated iminocyclobutenones **11c-e** were used, 4-quinolones **12c-e** were obtained in high yields irrespective of the kind of the halogen (entries 3-5). The reaction of *ortho*-methoxyphenylated iminocyclobutenone **11f** gave 4-quinolone **12f** in quantitatively yield (entry 6), whereas use of 2,4-disubstituted iminocyclobutenone **11g** decreased the yield (entry 7).

Table 2. Ef	ffects of o	ortho, para-	Substituents	of Pheny	l Group	ps at the l	Nitrogen A	Atom
							<u> </u>	

	Ph R ¹	$\mathbb{R}^{\mathbb{R}^2} - \mathbb{R}^3$	oluene, reflux, 3	h Ph R^1	$ \begin{array}{c} 0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Entry	11	R ¹	R ²	R ³	12	Yield $(\%)^a$
1	11a	Ph	Н	Н	12a	93
2	11b	2-thienyl	Н	Н	12b	98
3	11c	2-thienyl	Н	F	12c	98
4	11d	2-thienyl	Н	Br	12d	89
5	11e	2-thienyl	Н	Cl	12e	87
6	11f	Ph	OMe	Н	12f	quant
7	11g	2-thienyl	Cl	OMe	12g	77

^{*a*}Isolated yield.

We next examined the thermal rearrangement of iminocyclobutenones **13** having *meta*-substituents on a phenyl group at the nitrogen atom. These iminocyclobutenones have two reaction sites on the phenyl moiety to form 4-quinolones **14** or **15** (Scheme 4).

Table 3 summarizes the results. The reaction of iminocyclobutenones **13a** and **13b** having an electron-withdrawing group such as fluoro or bromo group afforded a mixture of 4-quinolones **14** and **15** in high yields and with a moderate preference of 7-substituted-4-quinolone **14** (entries 1 and 2). On the other hand, use of iminocyclobutenone **13c** having an electron-donating group such as a methyl group gave a mixture of 4-quinolones **14c** and **15c** in high yields and with a slight 5-substituted-4-quinolone **15** selectivity (entry 3). The reason of the reversal of the selectivity is not yet clear at the present stage.

Scheme 4. Thermal Rearrangement of Iminocyclobutenones 13

Table 3. Effects of *meta*-Substituents of Phenyl Groups at the Nitrogen Atom

^aIsolated yield.

In conclusion, we have developed a 2-aryl-4-quinolone synthesis using the thermal rearrangement of iminocyclobutenones. The present 2-aryl-4-quinolone synthesis is an attractive alternative method because iminocyclobutenones are readily available using a conjugate addition reaction of ketene silyl acetals to alkynyl imines and thermal rearrangements occur under mild reaction conditions to afford the corresponding 2-aryl-4-quinolones in high yields.

ACKNOWLEDGEMENTS

This work was supported by Grants-in Aid for Scientific Research (B), (C) and Innovative Areas "Organic Synthesis Based on Reaction Integration. Development of New Methods and Creation of New Substances" from JSPS and MEXT.

REFERENCES AND NOTES

- For reviews on 4-quinolone agents and synthesis, see: (a) L. A. Mitscher, *Chem. Rev.*, 2005, 105, 559; (b) A. A. Beteva and O. P. Krasnykh, *Chem. Heterocycl. Comp.*, 2009, 45, 757.
- For recent examples of the 2-aryl-4-quinolone synthesis, see: (a) Y. J. Song, J. S. Choi, and J. I. Lee, *Bull. Korean Chem. Soc.*, 2013, **34**, 3117; (b) W. Yang, L. Xu, Z. Chen, L. Zhang, M. Miao, and H. Ren, *Org. Lett.*, 2013, **15**, 1282; (c) L. Klier, T. Bresser, T. A. Nigst, K. Karaghiosoff, and P. Knochel, *J. Am. Chem. Soc.*, 2012, **134**, 13584; (d) F. Sun, X. Zhao, and D. Shi, *Tetrahedron Lett.*, 2011, **52**, 5633; (e) T. Zhao and B. Xu, *Org. Lett.*, 2010, **12**, 212; (f) A. Romek and T. Opatz, *Eur. J. Org. Chem.*, 2010, 5841; (g) Y. Yoshino, T. Kurahashi, and S. Matsubara, *J. Am. Chem. Soc.*, 2009, **131**, 7494; (h) J. Huang, Y. Chen, A. O. King, M. Dilmeghani, R. D. Larsen, and M. M. Faul, *Org. Lett.*, 2008, **10**, 2609; (i) P. Hradil, M. Grepl, J. Hlavác, M. Soural, M. Malon, and V. Bertolasi, *J. Org. Chem.*, 2007, **72**, 7968; (j) C. P. Jones, K. W. Anderson, and S. L. Buchwald, *J. Org. Chem.*, 2007, **72**, 7968 and references therein.
- For recent examples of alkynyl imines, see: (a) T. Kano, T. Yurino, and K. Maruoka, *Angew. Chem. Int. Ed.*, 2013, **52**, 11509; (b) G. Cheng and X. Cui, *Org. Lett.*, 2013, **15**, 1480; (c) F. Sha, L. Wu, and X. Huang, *J. Org. Chem.*, 2012, **77**, 3754; (d) C. Olier, N. Azzi, G. Gil, S. Gastaldi, and M. P. Bertrand, *J. Org. Chem.*, 2008, **73**, 8469 and references therein.
- 4. (a) I. Hachiya, K. Ogura, and M. Shimizu, *Org. Lett.*, 2002, 4, 2755; (b) I. Hachiya, K. Ogura, and M. Shimizu, *Synthesis*, 2004, 1349; (c) I. Hachiya, S. Fukushima, and M. Shimizu, *Heterocycles*, 2006, 69, 43.
- (a) I. Hachiya, M. Atarashi, and M. Shimizu, *Heterocycles*, 2006, 67, 523; (b) I. Hachiya, W. Maehara, Y. Yamada, T. Kamiki, and M. Shimizu, *Synlett*, 2006, 3271.
- 6. I. Hachiya, Y. Minami, T. Aramaki, and M. Shimizu, Eur. J. Org. Chem., 2008, 1411.

- 7. I. Hachiya, T. Yoshitomi, Y. Yamguchi, and M. Shimizu, Org. Lett., 2009, 11, 3266.
- (a) B. Baeza, L. Casarrubios, and M. A. Sierra, *Chem. Eur. J.*, 2013, **19**, 11536; (b) X. Zhang, R. P. Hsung, H. Li, Y. Zhang, W. L. Johnson, and R. Figueroa, *Org. Lett.*, 2008, **10**, 3477; (c) M.-C. Ye, J. Zhou, and Y. Tang, *J. Org. Chem.*, 2006, **71**, 3576; (d) R. Shintani and G. C. Fu, *Angew. Chem. Int. Ed.*, 2003, **42**, 4082.
- For examples of the 4-quinolone synthesis via iminoketene intermediates, see: (a) K. T. Potts, R. Ehlinger, and W. M. Nichols, *J. Org. Chem.*, 1975, 40, 2596; (b) B. E. Fulloon and C. Wentrup, *J. Org. Chem.*, 1996, 61, 1363; (c) L. George, K.-P. Netsch, G. Penn, G. Kollenz, and C. Wentrup, *Org. Biomol. Chem.*, 2006, 4, 558 and references therein.
- 10. Iminocyclobutenones were prepared using conjugate addition reactions of alkynyl imines with ketene silyl acetals according to the literature method in reference 7.
- Typical procedure (Table 1, entry 1): A solution of iminocyclobutenone 3a (38.7 mg, 0.0999 mmol) in toluene (1.0 mL) was stirred at reflux for 3 h. After cooling to room temperature, the solvent was removed in vacuo and then the residue was purified by preparative TLC on silica gel (CH₂Cl₂/MeOH = 19/1 as an eluent) to give 4-quinolone 10a (36.2 mg, 94%). Yellow white solid; Mp 279-280 °C; ¹H NMR (500 MHz, CDCl₃-(CD₃)₂SO (9:1)) δ 1.72 (s, 3H), 1.80 (s, 3H), 3.86 (s, 3H), 6.99-7.07 (m, 5H), 7.11 (dd, *J* = 3.1, 5.5 Hz, 1H), 7.19 (dd, *J* = 3.1, 9.2 Hz, 1H), 7.40 (d, *J* = 3.1 Hz, 1H), 7.58 (d, *J* = 5.5 Hz, 1H), 7.62 (d, *J* = 3.1 Hz, 1H), 7.66 (d, *J* = 9.2 Hz, 1H), 11.4 (s, 1H); ¹³C NMR (126 MHz, CDCl₃-(CD₃)₂SO) δ 20.1, 21.1, 53.8, 102.9, 118.7, 120.3, 120.8, 124.0, 124.0, 125.1, 125.6, 127.4, 127.6, 128.0, 133.2, 133.9, 134.2, 139.2, 140.8, 154.2, 173.8; IR (KBr) 3160, 3060, 2997, 2966, 2927, 2848, 1614, 1571, 1540, 1491, 1436, 1369, 1342, 1291, 1258, 1228, 1164, 1113, 1029, 1053, 832, 794, 765, 735, 694 cm⁻¹; HRMS (EI): Calcd for C₂₄H₂₁NO₂S (M)⁺ 387.1293, found 387.1308.