Reduction of Np(VI) with Carbohydrazide in a Perchloric Acid Solution

V. P. Shilov*^{*a*} and A. M. Fedoseev^{*a*}

^a Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, korp. 4, Moscow, 119071 Russia *e-mail: shilovV@ipc.rssi.ru

Received May 23, 2018; revised May 23, 2018; accepted June 19, 2018

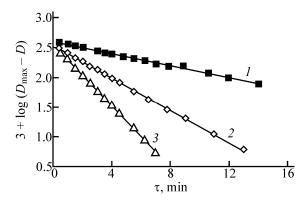
Abstract—The stoichiometry of the reaction of Np(VI) with carbohydrazide $(NH_2NH)_2CO$ in a 0.02 M HClO₄ solution was studied by spectrophotometry. With Np(VI) taken in excess, 1 mol of carbohydrazide reduces 5 mol of Np(VI) to Np(V). In 0.1–2.0 M HClO₄ solutions (the ionic strength of 2.0 was supported by adding LiClO₄) containing 3–100 mM (NH₂NH)₂CO, Np(VI) at a concentration of 1 mM at 20–45°C is consumed in accordance with a first-order rate law until less than 0.2 mM Np(VI) remains. Then the reaction decelerates. The reaction is first-order with respect to carbohydrazide and has the order of –1.45 with respect to H⁺ ions. The activated complex is formed with the loss of 1 and 2 H⁺ ions. The activation energy is 86 ± 5 kJ mol⁻¹.

Keywords: neptunium(VI), carbohydrazide, stoichiometry, perchloric acid, kinetics

DOI: 10.1134/S1066362219030044

The extraction reprocessing of high-burn-up spent nuclear fuel based on uranium dioxide and on uranium nitride (for fast reactors) requires that the reagents used for reducing Pu(IV, VI), Np(VI), and Tc(VII) should form ultimately the minimal amount of mineral salts. Carbohydrazide (NH₂NH)₂CO was suggested as one of such reagents [1]. It should be borne in mind, however, that carbohydrazide forms explosive compounds with some metal ions. For example, the carbohydrazide complex of iron(II) perchlorate exhibits properties of a high explosive [2]. Nevertheless, proper organization of the process allows accidents to be avoided. Therefore, it is quite justified to study reactions of actinides(VI, V, IV) and Tc(VII) with carbohydrazide. Volk et al. [1] studied the reaction of Np(VI) and Np(V) with carbohydrazide in HNO₃ solutions. They noted high rate of the Np(VI) reduction to Np(V) at room temperature. However, the kinetics of this reaction was not studied in detail.

In this work, we studied the stoichiometry and kinetics of the reaction of Np(VI) with carbohydrazide in $HClO_4$ solutions and outlined the process mechanism.


EXPERIMENTAL

The procedures for purifying 237 Np, preparing a stock solution of NpO₂(ClO₄)₂ in 0.02 M HClO₄, determining the Np concentration, and monitoring the va-

lence forms were similar to those used previously [3]. The stock aqueous solution of carbohydrazide was prepared from a weighed portion of the compound (Acros Organics, the United States) containing no less than 97% main substance.

Perchloric acid and lithium perchlorate were of chemically pure grade; lithium perchlorate was additionally purified by recrystallization from water, followed by drying in air at 190°C. The stock and working solutions were prepared using double-distilled water. The HClO₄ concentration was determined by titration with a standard NaOH solution. The LiClO₄ solution was prepared from a weighed portion of the anhydrous recrystallized compound.

The experiment procedure was as follows. When studying the reaction stoichiometry, a temperaturecontrolled quartz cell (l = 1 cm) was charged with approximately 3 mL of an Np(VI) solution in 0.02 M HClO₄, the absorption spectrum in the range 950–990 nm was recorded with a Shimadzu PC 3100 (Japan) or SF-46 (Leningrad Optical and Mechanical Association, Russia) spectrophotometer, an (NH₂NH)₂CO aliquot was added, and the absorption at a wavelength of 980.8 nm, corresponding to the main absorption band of Np(V), was measured at regular intervals. When studying the reaction kinetics, the cell was charged with a solution containing HClO₄, LiClO₄, and

Fig. 1. Linearization of the kinetic curves of the Np(VI) reduction with carbohydrazide. [HClO₄] = 2 M, [Np(VI)] = 1 mM, $T = 30^{\circ}$ C, l = 1 cm; [(NH₂NH)₂CO], mM: (*l*) 20, (*2*) 50, and (*3*) 100.

 $(NH_2NH)_2CO$ and was kept for 10–15 min at the preset temperature. After introducing an aliquot of the stock solution of Np(VI), the Np(V) accumulation was monitored. Each experiment was performed no less than in triplicate.

RESULTS AND DISCUSSION

The reaction stoichiometry was studied at 25–28°C. The Np(V) accumulation was observed in a 0.02 M HClO₄ solution containing 2 mM Np(VI) after adding (NH₂NH)₂CO to a concentration of 0.2 mM. From the initial rate, we calculated the bimolecular rate constant and estimated the time of the 99.9% reaction completion. It should be equal to 10–11 min. Actually the optical density ceased to increase in 16 min. In the subsequent 3 h, the optical density increased by only 0.010. The Np(V) concentration was calculated using the molar extinction coefficient of Np(V), equal to 410 L mol⁻¹ cm⁻¹ [4]. In three experiments, we obtained Δ [Np(VI)]/ Δ [(NH₂NH)₂CO] = 5.

Hydrazine exists in acid solutions in the cationic form. Presumably, carbohydrazide also takes up one or two protons in an HClO₄ solution. Therefore, the following reactions occur between Np(VI) and carbohydrazide:

$$NpO_2^{2+} + H_n(NH_2NH)_2CO^{n+} \rightarrow NpO_2^{+} + H^{+} + R_1, \quad (1)$$

$$NpO_2^{2+} + R_1 \rightarrow NpO_2^+ + R_2, \qquad (2)$$

$$NpO_2^{2+} + R_2 \rightarrow NpO_2^{+} + R_3,$$
 (3)

$$NpO_2^{2+} + R_3 \rightarrow NpO_2^{+} + R_4, \qquad (4)$$

$$NpO_2^{2+} + R_4 \rightarrow NpO_2^+ + products.$$
 (5)

As noted in [5], excess carbohydrazide reacts with Np(VI) to form a gas phase containing N_2 , CO_2 , and a

small amount of N₂O. Hence, a certain step of reactions (2)–(5) involves the hydrolysis of the radical with the elimination of N₂H_x and H₂CO₃ groups.

The kinetics of the Np(VI) + $H_n(NH_2NH)_2CO^{n+}$ reaction was studied in 0.1–2.0 M HClO₄ solutions at the ionic strength I = 2.0, supported by adding LiClO₄. The reaction stoichiometry allowed performing studies at the carbohydrazide concentration exceeding the Np(VI) concentration by a factor of only 3. Figure 1 shows the kinetic curves in the coordinates $log(D_{\infty} - D)$ -time at $T = 30^{\circ}$ C. For a 2 M HClO₄ solution containing 1 mM Np(VI) and 100 mM carbohydrazide, the kinetic dependence is a straight line up to 95% conversion. In solutions containing 50 and 20 mM carbohydrazide, the reaction noticeably decelerates after 86 and 77% conversion, respectively. We failed to account for this fact.

Linearization of the kinetic curves in the semilog coordinates shows that the reaction is first-order with respect to Np(VI). Therefore, the rate equation can be presented in the form

$$-d[Np(VI)]/dt = k'[Np(VI)] = k'([Np(V)]_{\infty} - [Np(V)]), (6)$$

where k' is the first-order rate constant. In the integral form, after the replacement of [Np(V)] by the proportional quantity D, Eq. (6) transforms into the expression

$$2.303\log(D_{\infty} - D) = k't + \text{const.}$$
⁽⁷⁾

Here, D and D_{∞} are the running and final optical densities, respectively.

The first-order rate constant increases proportionally to the carbohydrazide concentration. The data obtained in a 2 M HClO₄ solution containing 1 mM Np(VI) are given in Table 1.

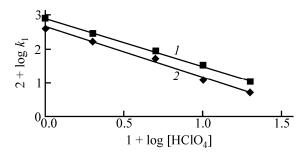
The fact that the bimolecular rate constant $k_1 = k'[(NH_2NH)_2CO]$ is independent of the carbohydrazide concentration shows that the reaction is first-order with respect to the reductant; here, k_1 includes the rate constant of reaction (1) and of the subsequent fast reactions of the radicals with Np(VI). The k_1 values obtained under different conditions are given in Table 2.

As seen from Table 2, the Np(VI) reduction sharply decelerates with increasing H⁺ concentration. Figure 2 shows the log–log dependences of k_1 on [H⁺]. At 25 and 30°C, the experimental points fall on straight lines with a slope of -1.45. Hence, the reduction occurs via formation of an activated complex with the elimination of one and two protons. The activated complex is

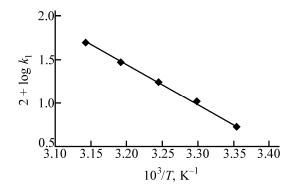
	-	- · ·	
T, ℃	[(NH ₂ NH) ₂ CO], mM	$k' \times 10^3$, s ⁻¹	k_1 , L mol ⁻¹ s ⁻¹
25	3	0.157	0.0523
	6	0.32	0.0533
	10	0.51	0.051
	20	1.02	0.051
	40	2.04	0.051
	100	5.97	0.060
30	3	0.312	0.104
	10	1.057	0.106
	20	2.034	0.102
	50	5.5	0.11
	100	9.91	0.099

 Table 1. Results of kinetic experiments in a 2 M HClO₄

 solution containing 1 mM Np(VI)


Table 2. Influence of conditions on the bimolecular rate constant of the Np(VI) + (NH₂NH)₂CO reaction. I = 2 M, [Np(VI)] = 1 mM, [(NH₂NH)₂CO] = 3–100 mM

[1,b(,1)]		5 100 11101
<i>T</i> , °C	[HClO ₄], M	k_1 , L mol ⁻¹ s ⁻¹
	2	0.052
	1	0.12
25	0.5	0.54
	0.2	1.76
	0.1	4.06
	2	0.104
	1	0.345
30	0.5	0.857
	0.2	2.79
	0.1	8.03
35	2	0.176
40	2	0.296
45	2	0.495


formed by the reactions

 $NpO_2^{2+} + H(NH_2NH)_2CO^+ \rightleftharpoons NpO_2(NH_2NH)_2CO^{2+} + H^+,$

 $NpO_2^{2^+} + H_2(NH_2NH)_2CO^{2^+} \rightleftharpoons NpO_2(NH_2NH)_2CO^{2^+} + 2H^+.$

Fig. 2. Influence of the concentration of H^+ ions on the bimolecular rate constant of the Np(VI) reduction with carbohydrazide in a solution with the ionic strength I = 2 M. *T*, °C: (*I*) 25 and (*2*) 30.

Fig. 3. $\log k_1$ of the Np(VI) reduction with carbohydrazide as a function of reciprocal temperature. [HClO₄] = 2 M and [(NH₂NH)₂CO] = 3 mM.

This is followed by the intramolecular charge transfer with the formation of NpO_2^+ and R.

The rate equation taking into account all the participants of the Np(VI) reduction with carbohydrazide in an HClO₄ + LiClO₄ solution can be written in the form

$$-d[Np(VI)]/dt = k'[NpO_2^{2^+}][(NH_2NH)_2CO][H^+]^{-1.45},$$

where $k = 0.12 \text{ L}^{-0.45} \text{ mol}^{0.45} \text{ s}^{-1}$ at $[\text{H}^+] = 1 \text{ M}$ and $T = 25^{\circ}\text{C}$.

From the temperature dependence of k_1 in the coordinates $10^3/T$ (K⁻¹)–log k_1 (Fig. 3), we found the activation energy: 86 ± 5 kJ mol⁻¹.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

- Volk, V.I., Marchenko, V.I., Dvoeglazov, K.N., et al., *Radiochemistry*, 2012, vol. 54, no. 2, pp. 143–148.
- 2. Riu Liu, Zunning Zhou, Shuykan Qi, et al., *Centr. Eur. J. Energet. Mater.*, 2013, vol. 10, no. 1, pp. 17–36.
- 3. Shilov, V.P. and Fedoseev, A.M., *Radiochemistry*, 2015, vol. 57, no. 3, pp. 255–258.
- Shilov, V.P., Fedoseev, A.M., and Gogolev, A.V., *Ra*diochemistry, 2017, vol. 59, no. 3, pp. 229–232.
- Dvoeglazov, K.N., Bessonov, A.A., Fedosseev, A.M., and Mitricas, P.V., Study of the gas phase composition formed during oxidation-reduction reactions of hydrazine organic derivatives, *Sixth Int. Conf. on Radiation* and Applications in Various Fields of Research, Ohrid, Macedonia (FYROM), June 18–22, 2018, http:// rad2018.rad-conference.org/.

Translated by G. Sidorenko

RADIOCHEMISTRY Vol. 61 No. 3 2019