This article was downloaded by: [University of Illinois Chicago] On: 15 October 2014, At: 18:23 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

FACILE PREPARATION OF O-SUBSTITUTED ACYCLIC PHENOL-FORMALDEHYDE OLIGOMERS

Kazuaki Ito^a, Toshiro Takasawa^a & Yoshihiro Ohba^a

^a Department of Chemistry and Chemical Engineering , Faculty of Engineering , Yamagata University , Yonezawa, 992-8510, Japan Published online: 23 Aug 2006.

To cite this article: Kazuaki Ito, Toshiro Takasawa & Yoshihiro Ohba (2002) FACILE PREPARATION OF O-SUBSTITUTED ACYCLIC PHENOL-FORMALDEHYDE OLIGOMERS, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 32:24, 3839-3849, DOI: <u>10.1081/SCC-120015403</u>

To link to this article: http://dx.doi.org/10.1081/SCC-120015403

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SYNTHETIC COMMUNICATIONS Vol. 32, No. 24, pp. 3839–3849, 2002

FACILE PREPARATION OF O-SUBSTITUTED ACYCLIC PHENOL-FORMALDEHYDE OLIGOMERS

Kazuaki Ito,* Toshiro Takasawa, and Yoshihiro Ohba

Department of Chemistry and Chemical Engineering, Faculty of Engineering, Yamagata University, Yonezawa, 992-8510, Japan

ABSTRACT

Acyclic *p*-cresol-formaldehyde oligomers (dimer, trimer, and tetramer) having ester, carboxylic acid, amide groups on the phenolic OH groups were prepared in good yields.

Key Words: Acyclic phenol-formaldehyde oligomer; Calixarene; Molecular recognition

Calixarenes are cyclic phenol–formaldehyde condensation products, which are extensively investigated as host molecules and enzyme mimics.^[1] The corresponding acyclic oligomers have also been found to form stable complexes with organic molecules, although only a few examples are available.^[2] Recently, we have reported that acyclic phenol–formaldehyde oligomers with methylene bridges ortho to the phenolic OH group and their sulfur-bridged and carbonyl-bridged analogs.^[3] The inclusion behavior

3839

DOI: 10.1081/SCC-120015403 Copyright © 2002 by Marcel Dekker, Inc. 0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Corresponding author. E-mail: itokazu@yz.yamagata-u.ac.jp

MA.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ITO, TAKASAWA, AND OHBA

was remarkably influenced by the bridge moieties and the number of the phenol units. As an extension of our studies, we synthesized *O*-substituted acyclic phenol–formaldehyde oligomers by replacing the phenolic hydrogens with functional groups such as ester, carboxylic acid, and amide. It is known that calixarene derivatives having such functional groups serve as host molecules toward anions, cations, and neutral molecules.^[4–6] Here the results will be reported.

Acyclic *p*-cresol-formaldehyde oligomers (1) were synthesized by the stepwise method based on repeated hydroxymethylation-arylation reaction sequences.^[3a] 1 were treated with 2-bromoethyl acetate and NaH in N,N-dimethylformamide at 80°C to generate the ethyl ester derivatives (2) in 36-83% yields. Hydrolysis of 2 was carried out by the use of 10% tetramethylammonium hydroxide aqueous solution to afford the corresponding carboxylic acids (3) in 70-83% yields.^[5] We examined the synthesis of amide derivative (6) by the reaction of an amine with the acid chloride (4), which was prepared by the chlorination of **3** by using thionyl chloride.^[6] Reactions of monomer (4a) or dimer (4b) with L-phenylalanine methyl ester as an amine gave the required amide derivatives (6a and 6b) in 30 and 80% yields, respectively. However, the similar reactions using trimer (4c) and tetramer (4d) gave complex materials due to the instability of 4c and 4d. Therefore, we prepared the pentafluorophenyl ester (5c and 5d) in 86 and 66% yields, respectively, employing a dicyclohexylcarbodiimide (DCC) mediated esterifications of 3c and 3d with pentafluorophenol.^[7] The reactions of 5c and 5d with L-phenylalanine methyl ester gave the corresponding amides (6c and 6d) in 52 and 67% yields, respectively.

The structures of the products (2, 3, 4, 5, and 6) were established on the basis of their spectral data and elemental analysis. Their ¹H and ¹³C NMR spectral data are compatible with the deduced structures as shown in Schs. 1 and 2. In IR spectra, the characteristic absorptions of carbonyl stretching bands of the products (2: ca. 1758 cm⁻¹ for ester group, 3: ca.1730 cm⁻¹ for carboxylic acid group, 4: ca. 1800 cm⁻¹ for acid chloride group, 5: ca.1800 cm⁻¹ for ester group, 6: ca. 1750 cm⁻¹ for ester group and ca. 1670 cm⁻¹ for amide group) were observed. The Fab-mass spectra were shown at molecular ion peaks (M+H)⁺ corresponding to the products. Interestingly, trimer (2c and 3c) and tetramer (2d and 3d) bearing ethyl ester or carboxylic acid groups on the phenolic OH moieties also gave (M+Na)⁺ peaks clearly. This result suggests that these acyclic oligomers can serve as an ionophore for alkaline metal cations.

In order to elucidate the sodium cation affinity of **2**, we measured ¹³C NMR spectra of **2** (50 mM) in the presence of sodium picrate (50 mM) in CDCl₃: CD₃OD, 1:1 solution at 20°C. The large downfield shift was observed for the carbonyl carbon atom of **2c** ($\Delta\delta$ co = +0.31, +0.14 ppm)

3840

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PHENOL-FORMALDEHYDE OLIGOMERS

Scheme 1.

Scheme 2.

XX

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3842

ITO, TAKASAWA, AND OHBA

and $2d (\Delta \delta co = +0.35, +0.12 \text{ ppm})$ in the presence of sodium picrate. It can be rationalized by the C=O···Na⁺ interaction. In contrast, the chemical shifts of $2a (\Delta \delta co = +0.05 \text{ ppm})$ and $2b (\Delta \delta co = +0.08 \text{ ppm})$ scarcely changed. These results suggest that the phenol-formal dehyde trimer and tetramer skeleton play an important role to bind sodium cation.

In summary, we have achieved the preparation of acyclic phenolformaldehyde oligomers bearing ester, carboxylic acid, and amide groups on the hydroxyl groups. The study of the molecular recognition using 2, 3, and 6 is now in progress.

EXPERIMENTAL

Melting points were measured by Yanagimoto micro melting point apparatus and were not corrected. ¹H and ¹³C NMR spectra were measured by Varian INIOVA 500 spectrophotometers (500 MHz for ¹H, 125 MHz for ¹³C). Fab-mass spectra were collected by JEOL JMS AX-505HA spectrometer using *m*-nitrobenzyl alcohol as a matrix. IR spectra were recorded on FORIBA FT-720 spectrophotometer. All chemicals were reagent grade and were used without further purification. Compounds (**1b–1d**) were prepared by methods already reported in the literature.^[3a]

General Procedure for the Preparation of 2

To a solution of 1 (10 mmol) in 90 mL of DMF was added NaH (17 mmol for 1a, 34 mmol for 1b, 51 mmol for 1c, 68 mmol for 1d). Subsequently, 2-bromoethyl acetate (13 mmol for 1a, 26 mmol for 1b, 39 mmol for 1c, 52 mmol for 1d) was added and the mixture was heated at 80° C for 2 h. The reaction mixture was cooled and treated with a second portion of NaH. 2-Bromoethyl acetate was then added. The reaction mixture was heated again at 80° C for a further 2 h. This operation was repeated untile no starting materials, followed by ¹H NMR spectra. Removal of DMF under reduced pressure gave oily residue, which was dissolved with chloroform. The solution was washed with water and then the organic layer was dried over anhydrous sodium sulfate. Removal of chloroform gave oily residue, which was subjected to column chromatography on silica gel using hexane : ethyl acetate 1:4 as an eluent to give **2** as a pure form.

2a: The yield is 83%. Oil. IR (CDCl₃) 1758 (ν_{CO}) cm⁻¹. Fab-mass m/z 195 (M+H)⁺. ¹H NMR (CDCl₃) δ 1.30 (t, J = 7.0 Hz, $-OCH_2CH_3$, 3H), 2.29 (s, Ar-CH₃, 3H), 4.27 (q, J = 7.0 Hz, $-OCH_2CH_3$, 2H), 4.59 (s, $-OCH_2CO-$, 2H), 6.81 (m, Ar-H × 2, 2H), 7.09 (m, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ

YYA.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PHENOL-FORMALDEHYDE OLIGOMERS

3843

14.2, 20.5, 61.3, 65.6, 114.5, 130.0, 131.0, 155.7, 169.1. Elemental Analysis Calcd for $C_{11}H_{14}O_3 \cdot 0.25$ (H₂O): C, 66.48; H, 7.35. Found: C, 66.16; H, 7.60.

2b: The yield is 56%. M.p. 87–92°C. IR (CDCl₃) 1758 (ν_{CO}) cm⁻¹. Fab-mass m/z 401 (M+H)⁺. ¹H NMR (CDCl₃) δ 1.29 (t, J=7.0 Hz, –OCH₂CH₃ × 2, 6H), 2.22 (s, Ar-CH₃ × 2, 6H), 4.05 (s, ArCH₂Ar, 2H), 4.25 (q, J=7.0 Hz, –OCH₂CH₃ × 2, 4H), 4.58 (s, –OCH₂CO– × 2, 4H), 6.65 (d, J= 8.0 Hz, Ar-H × 2, 2H), 6.93 (dd, J= 1.5, 8.0 Hz, Ar-H × 2, 2H), 7.02 (d, J= 1.5 Hz, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 14.2, 20.6, 29.7, 61.1, 66.2, 111.6, 127.3, 129.7, 130.8, 131.8, 153.9, 169.3. Elemental Analysis Calcd for C₂₃H₂₈O₆: C, 68.98; H, 7.05. Found: C, 69.17; H, 7.36.

2c: The yield is 36%. Oil. IR (CDCl₃) 1758 (v_{CO}) cm⁻¹. Fab-mass m/z 607 (M+H)⁺, 629 (M+Na)⁺. ¹H NMR (CDCl₃) δ 1.28 (t, J=7.0 Hz, -OCH₂CH₃ × 3, 9H), 2.16 (s, Ar-CH₃, 3H), 2.23 (s, Ar-CH₃ × 2, 6H), 4.06 (s, ArCH₂Ar × 2, 4H), 4.25 (q, J=7.0 Hz, -OCH₂CH₃ × 3, 6H), 4.37 (s, -OCH₂CO-, 2H), 4.59 (s, -OCH₂CO- × 2, 4H), 6.66 (d, J=8.0 Hz, Ar-H × 2, 2H), 6.76 (s, Ar-H × 2, 2H), 6.91 (d, J=2.5 Hz, Ar-H × 2, 2H), 6.95 (dd, J=2.5, 8.0 Hz, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 14.1, 20.5, 20.9, 29.5, 60.9, 61.0, 66.1, 70.2, 111.7, 127.5, 129.5, 129.7, 130.9, 131.6, 133.2, 133.7, 152.8, 153.9, 169.1, 169.6. Elemental Analysis Calcd for C₃₅H₄₂O₉· 1.4(H₂O) C, 66.52; H, 7.15. Found: C, 66.74; H, 7.15.

2d: The yield is 50%. Oil. IR (CDCl₃) 1758 (ν_{CO}) cm⁻¹. Fab-mass m/z813 (M+Na)⁺, 835 (M+Na)⁺. ¹H NMR (CDCl₃) δ 1.27 (t, J=7.0 Hz, -OCH₂CH₃ × 2, 6H), 1.28 (t, J=7.0 Hz, -OCH₂CH₃ × 2, 6H), 2.15 (s, Ar-CH₃ × 2, 6H), 2.23 (s, Ar-CH₃ × 2, 6H), 4.05 (s, ArCH₂Ar × 2, 4H), 4.07 (s, ArCH₂, 2H), 4.21 (q, J=7.0 Hz, -OCH₂CH₃ × 2, 4H), 4.24 (q, J=7.0 Hz, -OCH₂CH₃ × 2, 4H), 4.35 (s, -OCH₂CO- × 2, 4H), 4.59 (s, -OCH₂CO- × 2, 4H), 6.65 (d, J=8.5 Hz, Ar-H × 2, 2H), 6.68 (d, J=2.5 Hz, Ar-H × 2, 2H), 6.77 (d, J=1.5 Hz, Ar-H × 2, 2H), 6.90 (d, J=1.5 Hz, Ar-H × 2, 2H), 6.95 (dd, J=2.5, 8.5 Hz, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 14.1, 14.2, 20.6, 20.9, 29.5, 61.0, 61.1, 66.0, 70.1, 111.5, 127.5, 129.4, 129.5, 129.7, 130.9, 131.6, 133.2, 133.3, 133.9, 152.8, 153.8, 169.1, 169.2. Elemental Analysis Calcd for C₄₇H₅₆O₁₂·2.7(H₂O), C, 65.52; H, 7.18. Found: C, 65.43; H, 6.95.

General Procedure for the Preparation of 3

A solution of 2 (10 mmol) in THF (125 mL for 2a, 250 mL of 2b, 375 mL for 2c, 500 mL for 2d) was added to 10% aqueous tetramethylammonium hydroxide (125 mL for 2a, 250 mL of 2b, 375 mL for 2c, 500 mL for 2d). The mixture was refluxed for 24 h. After cooling to room temperature, the reaction mixture was acidified with 35% HCl aqueous solution and stirred for

XX

3844

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ITO, TAKASAWA, AND OHBA

12 h. The resulting white precipitate was collected by filtration and washed with water. The precipitate was dried under reduced pressure.

3a: The yield is 70%. M.p. 137–140°C. IR (CDCl₃) 3430 (ν_{OH}), 1733 (ν_{CO}), 1702 (ν_{CO}) cm⁻¹. Fab-mass m/z 166 (M+H)⁺. ¹H NMR (CDCl₃) δ . 2.30 (s, Ar-CH₃, 3H), 4.66 (s, –OCH₂CO–, 2H), 6.83 (m, Ar-H × 2, 2H), 7.11 (m, Ar-H × 2, 2H), 7.80 (bs, OH, 1H). ¹³C NMR (DMSO- d_6) δ 20.5, 65.0, 114.5, 130.1, 131.4, 155.2, 174.2. Elemental Analysis Calcd for C₉H₁₀O₃: C, 65.05; H, 6.07. Found: C, 65.20; H, 6.40.

3b: The yield is 85%. M.p. 248–253°C. IR (CDCl₃) 3403 (ν_{OH}), 1737 (ν_{CO}) cm⁻¹. Fab-mass m/z 345 (M+H)⁺, 367 (M+Na)⁺. ¹H NMR (DMSO- d_6) δ 2.14 (s, Ar-CH₃ × 2, 6H), 3.87 (s, ArCH₂Ar, 2H), 4.63 (s, -OCH₂CO- × 2, 4H), 6.73 (d, J = 8.0 Hz, Ar-H × 2, 2H), 6.91 (dd, J = 1.5, 8.0 Hz, Ar-H × 2, 2H), 6.96 (d, J = 1.5 Hz, Ar-H × 2, 2H). ¹³C NMR (DMSO- d_6) δ 20.4, 29.2, 65.2, 111.6, 127.5, 128.8, 129.6, 131.3, 153.8, 170.7. Elemental Analysis Calcd for C₁₉H₂₀O₆: C, 66.27; H, 5.85. Found: C, 66.18; H, 6.03.

3c: The yield is 73%. M.p. 243–245°C. IR (CDCl₃) 3437 (ν_{OH}), 1726 (ν_{CO}) cm⁻¹. Fab-mass m/z 523 (M+H)⁺, 545 (M+Na)⁺. ¹H NMR (DMSO- d_6) δ 2.06 (s, Ar-CH₃, 3H), 2.17 (s, Ar-CH₃ × 2, 6H), 3.91 (s, ArCH₂Ar × 2, 4H), 4.33 (s, $-OCH_2CO-$, 2H), 4.64 (s, $-OCH_2CO-$ × 2, 4H), 6.74 (s, Ar-H × 2, 2H), 6.76 (d, J=8.0 Hz, Ar-H × 2, 2H), 6.88 (d, J=1.5 Hz, Ar-H × 2, 2H), 6.96 (dd, J=1.5, 8.0 Hz, Ar-H × 2, 2H). ¹³C NMR (DMSO- d_6) δ 20.3, 20.6, 29.1, 65.0, 69.8, 111.7, 127.6, 128.7, 129.1, 129.5, 131.2, 132.9, 133.2, 152.5, 153.7, 170.3, 170.5. Elemental Analysis Calcd for C₂₉H₃₀O₉: C, 66.66; H, 5.79. Found: C, 66.67; H, 6.03.

3d: The yield is 70 %. M.p. 237–240°C. IR (CDCl₃) 3448 (ν_{OH}), 1728 (ν_{CO}) cm⁻¹. Fab-mass m/z 701 (M+H)⁺, 723 (M+Na)⁺. ¹H NMR (DMSOd₆) δ 2.07 (s, Ar-CH₃ × 2, 6H), 2.16 (s, Ar-CH₃ × 2, 6H), 3.91 (s, ArCH₂Ar × 2, 4H), 3.96 (s, ArCH₂Ar, 2H), 4.28 (s, $-OCH_2CO- \times 2$, 4H), 4.61 (s, $-OCH_2CO- \times 2$, 4H), 6.63 (d, J=1.5 Hz, Ar-H × 2, 2H), 6.75 (d, J=8.0 Hz, Ar-H × 2, 2H), 6.77 (d, J=1.5 Hz, Ar-H × 2, 2H), 6.86 (d, J=1.5 Hz, Ar-H × 2, 2H), 6.95 (dd, J=1.5 Hz, Ar-H × 2, 2H), 6.86 (d, J=1.5 Hz, Ar-H × 2, 2H), 6.95 (dd, J=1.5, 8.0 Hz, Ar-H × 2, 2H). ¹³C NMR (DMSO- d_6) δ 20.5, 20.8, 29.3, 29.4, 65.2, 70.0, 111.9, 127.9, 128.9, 129.3, 129.6, 129.8, 131.4, 133.3, 133.4, 133.5, 152.9, 153.8, 170.5, 170.7. Elemental Analysis Calcd for C₃₉H₄₀O₁₂: C, 66.85; H, 5.75. Found: C, 66.59; H, 6.06.

General Procedure for the Preparation of 4

To a suspention of 3 (4 mmol) in dry benzene (40-200 mL) was added thionyl chloride (40 mmol for 3a, 80 mmol for 3b, 120 mmol for 3c,

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PHENOL-FORMALDEHYDE OLIGOMERS

3845

150 mmol for 3d) at room temperature over 1 h. After the addition was completed, the mixture was stirred at 50°C for 3 h. Removal of benzene and excess thionyl chloride by rotary evaporator gave 4 as pale yellow crystals. The product is instability on the purification process. Therefore, 4 were used at next step without further purification.

4a: The yield 98%. M.p. 68–71°C. IR (KBr) 1809 (ν_{CO}) cm⁻¹. Fabmass m/z 185 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.30 (s, Ar-CH₃, 3H), 4.92 (s, –OCH₂CO, 2H), 6.80 (m, Ar-H × 2, 2H), 7.11 (m, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 20.5, 72.9, 114.7, 130.2, 132.2, 154.8, 170.4.

4b: The yield 98%. M.p. 110–113°C. IR (KBr) 1822 (ν_{CO}) 1801 (ν_{CO}) cm⁻¹. Fab-mass m/z 381 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.17 (s, Ar-CH₃ × 2, 6H), 3.92 (s, ArCH₂Ar, 2H), 4.83 (s, -OCH₂CO × 2, 4H), 6.55 (d, J=8.0 Hz, Ar-H × 2, 2H), 6.88 (d, J=2.0 Hz, Ar-H × 2, 2H), 6.89 (dd, J=2.0, 8.0 Hz, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 20.5, 29.8, 73.0, 111.5, 127.6, 131.9, 152.7, 170.3.

4c: The yield is 95%. M.p. 99–104°C. IR (KBr) 1801 (ν_{CO}) cm⁻¹. Fabmass m/z 577 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.19 (s, Ar-CH₃, 3H), 2.24 (s, Ar-CH₃ × 2, 6H), 3.97 (s, ArCH₂Ar × 2, 4H), 4.52 (s, $-OCH_2CO-$, 2H), 4.81 (s, $-OCH_2CO-$ × 2, 4H), 6.63 (d, J = 8.0Hz, Ar-H × 2, 2H), 6.71 (s, Ar-H × 2, 2H), 6.88 (d, J = 2.0 Hz, Ar-H × 2, 2H), 6.98 (dd, J = 2.0, 8.0 Hz, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 20.5, 20.8, 30.1, 73.0, 76.7, 111.8, 128.0, 129.3, 130.0, 131.8, 132.1, 132.8, 134.6, 151.8, 152.7, 169.7, 170.2.

4d: The yield is 93%. M.p. 101–103°C. IR (KBr) 1805 (ν_{CO}) cm⁻¹. Fab-mass m/z 774 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.20 (s, Ar-CH₃ × 2, 6H), 2.24 (s, Ar-CH₃ × 2, 6H), 3.97 (s, ArCH₂Ar × 2, 4H), 3.98 (s, ArCH₂Ar, 2H), 4.53 (s, $-OCH_2CO- \times 2$, 4H), 4.92 (s, $-OCH_2CO- \times 2$, 4H), 6.64 (d, J = 8.0Hz, Ar-H × 2, 2H), 6.73 (d, J = 2.0 Hz, Ar-H × 2, 2H), 6.78 (d, J = 2.0 Hz, Ar-H × 2, 2H), 6.88 (d, J = 2.0 Hz, Ar-H × 2, 2H), 7.00 (dd, J = 2.0, 8.0 Hz, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 20.6, 20.9, 30.1, 30.6, 72.8, 76.6, 111.6, 128.0, 129.0, 129.7, 130.3, 131.7, 132.1, 132.8, 132.9, 134.8, 151.9, 152.6, 169.8, 170.3.

General Procedure for the Preparation of 6a and 6b

To a mixture of L-phenyl alanine methyl ester (1.0 mmol for 4a, 2.0 mmol for 4b) and pridine (1.5 mmol for 4a, 3.0 mmol for 4b) in dry chloroform (10 mL) was added a solution of 4 (0.5 mmol) in dry chloroform (10 mL) at 0°C over 1 h. After the addition was complete, the mixture was stirred at room temperature for 24 h. The reaction mixture was washed with 10% HCl aqueous solution and water. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent gave oily residue, which was

MA.

3846

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ITO, TAKASAWA, AND OHBA

subjected to column chromatography on silica gel using hexane: ethyl acetate 1:2 as an eluent to give **6** as colorless crystals.

6a: The yield is 30%. M.p. 68–71°C. IR (KBr) 3415 (ν_{NH}), 1751 (ν_{CO}), 1664 (ν_{CO}) cm⁻¹. Fab-mass m/z 327 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.30 (s, Ar-CH₃, 3H), 3.14 (d, J = 6.0 Hz, CH₂Ph, 2H), 3.72 (s, CO₂Me, 3H), 4.94 (d, J = 6.0, 8.4 Hz, NCHR, 1H), 6.30–6.80 (m, Ar-H × 2, 2H), 6.98–7.12 (m, Ar-H × 2, Ph-H × 2 and NH, 5H), 7.21-7.26 (m, Ph-H × 3, 3H). ¹³C NMR (CDCl₃) δ 20.5, 37.9, 52.4, 52.5, 67.4, 114.5, 127.2, 128.6, 129.2, 130.1, 131.4, 135.5, 155.1, 168.1, 171.4. Elemental Analysis Calcd for C₁₉H₂₁NO₄·H₂O: C, 66.07; H, 6.71; N, 4.06. Found: C, 66.36; H, 6.83; N, 3.55.

6b: The yield is 80%. M.p. 48–50°C. IR (KBr) 3411 ($\nu_{\rm NH}$), 1747 ($\nu_{\rm CO}$), 1687 ($\nu_{\rm CO}$) cm⁻¹. Fab-mass *m/z* 666 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.16 (s, Ar-CH₃ × 2, 6H), 2.80 (dd, *J* = 7.5, 14.0 Hz, CHHPh × 2, 2H), 2.99 (dd, *J* = 5.0, 14.0 Hz, CH*H*Ph × 2, 2H), 3.61 (s, CO₂Me × 2, 6H), 3.75 (s, ArCH₂Ar, 2H), 4.31 (d, *J* = 14.5 Hz, -OC*H*HCO- × 2, 2H), 4.39 (d, *J* = 14.5 Hz, -OCH*H*CO- × 2, 2H), 4.78 (ddd, *J* = 5.0, 7.5, 8.0 Hz, NCHR × 2, 2H), 6.60 (d, *J* = 8.0 Hz, Ar-H × 2, 2H), 6.73 (d, *J* = 2.0 Hz, Ar-H × 2, 2H), 6.76 (d, *J* = 8.0 Hz, NH × 2, 2H), 6.88–6.93 (m, Ar-H × 2, and Ph-H × 4, 6H) 7.04-7.07 (m, Ph-H × 6, 6H). ¹³C NMR (CDCl₃) δ 20.6, 30.2, 37.8, 52.3, 52.7, 67.5, 111.7, 127.0, 128.0, 128.3, 128.5, 129.0, 131.1, 131.4, 135.6, 153.0, 168.2, 171.4. Elemental Analysis Calcd for C₃₉H₄₂N₂O₈·0.2(H₂O): C, 69.88; H, 6.38; N, 4.18. Found: C, 69.61; H, 6.48; N, 4.10.

General Procedure for the Preparation of 5c and 5d

To a solution of **3** (1.0 mmol) in DMF (20 mL) was added pentafluorophenol (3.3 mmol for **3c**, 4.4 mmol for **3d**) and ethyl acetate (3 mL). After cooloing the mixture to 0°C in an ice-bath, a solution of N,N-dicyclohexylcarbodiimide (3.3 mmol for **3c**, 4.4 mmol for **3d**) in DMF (5 mL) was added over 15 min at 0°C. After the addition was completed, the mixture was allowed to stir at 0°C for 1 h. The resulting precipitate was removed by filtration. The filtrate was condensed by rotary evaporator gave colorless oily residue, which was subjected to column chromatography on silica gel using hexane : ethyl acetate 3 : 1 as an eluent to give **5** as colorless crystals.

5c: The yield is 86%. M.p. 161–162°C. IR (KBr) 1803 (ν_{CO}) cm⁻¹. Fab-mass m/z 1020 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.14 (s, Ar-CH₃, 3H), 2.25 (s, Ar-CH₃ × 2, 6H), 4.07 (s, ArCH₂Ar × 2, 4H), 4.70 (s, $-OCH_2CO-$, 2H), 4.96 (s, $-OCH_2CO- \times 2$, 4H), 6.73 (d, J = 8.2 Hz, Ar-H × 2, 2H), 6.78 (s, Ar-H × 2, 2H), 6.94 (d, J = 2.0 Hz, Ar-H × 2, 2H), 7.02 (dd, J = 2.0, 8.2 Hz, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 20.6, 20.8, 29.7, 64.9, 68.9,

STA.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PHENOL-FORMALDEHYDE OLIGOMERS

3847

111.4, 124.4, 127.9, 129.7, 131.7, 131.8, 133.0, 134.4, 136.9, 138.7, 140.0, 140.6, 142.0, 152.4, 153.1, 165.3, 165.3. Elemental Analysis Calcd for $C_{47}H_{27}O_9F_{15}$: C, 55.31; H, 2.67. Found: C, 55.18; H, 2.55.

5d: The yield is 66%. M.p. 176–178°C. IR (KBr) 1799 (ν_{CO}) cm⁻¹. Fab-mass m/z 1365 (M+H)⁺, 1387 (M+Na)⁺. ¹H NMR (CDCl₃) δ 2.16 (s, Ar-CH₃ × 2, 6H), 2.24 (s, Ar-CH₃ × 2, 6H), 4.08 (s, ArCH₂Ar × 2, 4H), 4.12 (s, ArCH₂Ar, 2H), 4.70 (s, -OCH₂CO- × 2, 4H), 4.97 (s, -OCH₂CO- × 2, 4H), 6.74 (d, J = 8.5 Hz, Ar-H × 2, 2H), 6.75 (s, J = 2.0 Hz, Ar-H × 2, 2H), 6.80 (d, J = 2.0 Hz, Ar-H × 2, 2H), 6.93 (d, J = 2.0 Hz, Ar-H × 2, 2H), 7.02 (dd, J = 2.0, 8.5 Hz, Ar-H × 2, 2H). ¹³C NMR (CDCl₃) δ 20.5, 20.9, 29.8, 29.9, 64.9, 68.9, 111.3, 124.4, 127.9, 129.2, 129.7, 130.0, 131.7, 131.8, 133.0, 133.1, 134.6, 136.8, 138.7, 140.0, 140.6, 142.0, 152.4, 153.1, 165.3. Elemental Analysis Calcd for C₃₉H₃₆O₈Cl₄: C, 55.44; H, 2.66. Found: C, 55.45; H, 2.75.

General Procedure for the Preparation of 6c and 6d

To a solution of L-phenylalanine methyl ester (0.6 mmol for 5c, 0.8 mmol for 5d) and triethyl amine (0.3 mmol) in dry chloroform (5 mL) was added a solution of 5 (0.1 mmol) in dry chloroform (5 mL) at 0°C over 1 h. After the addition was complete, the mixture was allowed to stir at room temperature for 12 h. Removal of solvent gave oily residue, which was subjected to column chromatography on silica gel using hexane : ethyl acetate 1:2 as an eluent to give 6 as colorless crystals.

6c: The yield is 52%. M.p. 42–44°C. IR (KBr) 3411 (ν_{NH}), 1743 (ν_{CO}), 1685 ($\nu_{\rm CO}$) cm⁻¹. Fab-mass m/z 1006 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.13 (s, Ar-CH₃, 3H), 2.22 (s, Ar-CH₃ \times 2, 6H), 2.90 (dd, J = 7.0, 14.0 Hz, $CHHPh \times 2$, 2H), 2.94 (dd, J = 6.5, 13.5 Hz, CHHPh, 1H), 3.09 (dd, J = 5.5, 14.0 Hz, CH*H*Ph × 2, 2H), 3.12 (dd, J = 5.5, 13.5 Hz, CH*H*Ph, 1H), 3.67 (s, $CO_2Me \times 3$, 9H), 3.79 (d, J = 16.0 Hz, $ArCHHAr \times 2$, 2H), 3.87 (d, J = 16.0 Hz, ArCHHAr $\times 2$, 2H), 4.18 (s, $-\text{OCH}_2\text{CO}_-$, 2H), 4.37 (d, J = 15.0 Hz, $-\text{OC}H\text{HCO}- \times 2$, 2H), 4.42 (d, J = 15.0 Hz, $-OCHHCO- \times 2$, 2H), 4.88 (m, $-NHCH(CO_2Me)- \times 3$, 3H), 6.65 (d, J = 8.0 Hz, Ar-H $\times 2$, 2H), 6.66 (s, Ar-H $\times 2$, 2H), 6.79 (d, J = 2.0 Hz, Ar-H \times 2, 2H), 6.85 (d, J = 8.0 Hz, NH \times 2, 2H), 6.90–6.97 (m, Ph-H \times 6, 6H), 6.98 (dd, J = 2.0, 8.0 Hz, Ar-H $\times 2, 2$ H), 7.00–7.08 (m, Ph-H $\times 3, 3$ H), 7.10–7.17 (m, Ph-H × 6, 6H), 7.38 (d, J = 8.0 Hz, NH, 1H). ¹³C NMR (CDCl₃) § 20.6, 20.9, 29.9, 37.6, 37.9, 52.3, 52.4, 52.7, 52.8, 67.6, 71.2, 111.9, 126.9, 127.0, 128.2, 128.3, 128.4, 128.5, 129.0, 129.1, 129.5, 131.4, 131.5, 132.8, 134.6, 135.6, 135.9, 151.7, 153.0, 168.3, 168.5, 171.5, 171.6. Elemental Analysis Calcd for C₅₉H₆₃N₃O₁₂·0.5(H₂O): C, 69.81; H, 6.26; N, 4.14. Found: C, 69.69; H, 6.39; N, 4.01.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3848

ITO, TAKASAWA, AND OHBA

6d: The yield is 67%. M.p. 58–61°C. IR (KBr) 3411 ($\nu_{\rm NH}$), 1743 ($\nu_{\rm CO}$), 1680 (amid I) cm⁻¹. Fab-mass m/z 1345 (M+H)⁺. ¹H NMR (CDCl₃) δ 2.13 (s, Ar-CH₃ \times 2, 6H), 2.23 (s, Ar-CH₃ \times 2, 6H), 2.93 (dd, J = 6.0, 13.5 Hz, $CHH \times 2$, 2H), 2.95 (dd, J = 6.0, 13.5 Hz, $CHH \times 2$, 2H), 3.10 (dd, J = 6.0, 13.5 Hz, $CHH \times 2$, 2H), 3.12 (dd, J = 6.0, 13.5 Hz, $CHH \times 2$, 2H), 3.65 (s, $CO_2Me \times 2, 6H$), 3.67 (s, $CO_2Me \times 2, 6H$), 3.79 (d, J = 16.0 Hz, ArCH₂Ar $\times 2$, 2H), 3.83 (d, J = 16.0 Hz, ArCH₂Ar \times 2, 2H), 3.85 (s, ArCH₂Ar, 2H), 4.10 (d, $J = 15.0 \text{ Hz}, -\text{OC}H\text{HCO}- \times 2, 2\text{H}), 4.17 \text{ (d, } J = 15.0 \text{ Hz}, -\text{OC}HH\text{CO}- \times 2, 2\text{H})$ 2H), 4.38 (d, J = 15.0 Hz, $-\text{OC}H\text{HCO}- \times 2$, 2H), 4.43 (d, J = 15.0 Hz, $-OCHHCO- \times 2, 2H$, 4.84–4.90 (m, $-NCH- \times 4, 4H$), 6.66–6.80 (m, Ar-H \times 6, 6H), 6.80 (d, J = 2.0 Hz, Ar-H $\times 2$, 2H), 6.89 (d, J = 8.0 Hz, NH × 2, 2H), 6.97–7.00 (m, Ar-H × 6, 6H), 7.04–7.10 (m, Ar-H × 10, 10H), 7.12–7.15 (m, Ar-H × 6, 6H), 7.36 (d, J = 8.0 Hz, NH × 2, 2H). ¹³C NMR (CDCl₃) & 20.5, 20.6, 20.8, 20.9, 29.8, 29.9, 37.6, 37.8, 52.3, 52.4, 52.4, 52.6, 52.7, 52.8, 52.9, 67.7, 71.4, 111.8, 126.9, 127.0, 128.1, 128.3, 128.4, 128.5, 129.0, 129.1, 129.2, 129.7, 131.3, 131.4, 132.7, 132.8, 134.7, 135.6, 135.9, 151.8, 153.0, 168.2, 171.5, 171.7. Elemental Analysis Calcd for C₇₉H₈₄N₄O₁₆·(H₂O): C, 69.59; H, 6.36, N, 4.11. Found: C, 69.65; H, 6.42; N, 4.07.

ACKNOWLEDGMENT

Authors wish to express sincere thanks to emeritus professor Tyo Sone (Yamagata University) for his useful suggestions.

REFERENCES

- (a) Gutsche, C.D. Calixarene. In *Monoguraphs in Supramolecular Chemistry*; Stoddart, J.F., Ed.; Royal Society of Chemistry: London, 1989; (b) Gutsche, C.D. Revisited Calixarene. In *Monoguraphs in Supramolecular Chemistry*; Stoddart, J.F., Ed.; Royal Society of Chemistry: London, 1998.
- (a) Casiragi, G.; Cornia, M.; Sartori, G.; Casnati, G.; Bocchi, V.; Andreetti, G.D. Makromol. Chem. **1982**, *183*, 2611; (b) Paulus, E.; Bohmer, V. Makromol. Chem. **1984**, *185*, 1921; (c) Dhawan, B.; Gutsche, C.D. J. Org. Chem. **1983**, *48*, 1536.
- (a) Sone, T.; Ohba, Y.; Yamazaki, Y. Bull. Chem. Soc. Jpn. 1989, 62, 1111; (b) Ohba, Y.; Moriya, K.; Sone, T. Bull. Chem. Soc. Jpn. 1991, 64, 576; (c) Ohba, Y.; Irie, K.; Zhang, F.S.; Sone, T. Bull. Chem. Soc. Jpn. 1993, 66, 828; (d) Sone, T.; Kobori, Y.; Ando, Y.; Ohba, Y. Bull. Chem. Soc. Jpn. 1994, 67, 3366.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PHENOL-FORMALDEHYDE OLIGOMERS

3849

- 4. Arena, G.; Casnati, A.; Contino, A.; Sciotto, D.; Ungaro, R. Tetrahedron Lett. **1997**, *38*, 4685.
- 5. Chang, S.-K.; Cho, I. J. Chem. Soc., Perkin Trans. 1, 1986, 211.
- Nomura, E.; Takagaki, M.; Nakaoka, C.; Uchida, M.; Taniguchi, H. J. Org. Chem. 1999, 64, 3151.
- Lashuel, H.A.; LaBrenz, S.R.; Woo, L.; Serpell, L.C.; Kelly, J.W. J. Am. Chem. Soc. 2000, 122, 5262.

Received in Japan September 13, 2001

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.