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Abstract – An efficient oxidation of enantiopure piperidine 1 with bromine in 

acetic acid to generate the corresponding enantiopure (R)-3,3-dibromo-1- 

(2’-hydroxy-1’-phenylethyl)piperidin-2-one 2 is described. Then, aromatization of 

compound 2 to give enantiopure pyridin-2-one 3 in 71% overall yield is presented.

In general, pyridin-2-ones and dihydropyridin-2-ones are versatile synthetic building blocks, which are 

used as starting materials to carry out the synthesis of interesting and diversely functionalized nitrogen 

heterocycles.1 In this context, we previously reported a practical procedure to carry out the oxidation of 

enantiopure pyridinium salts Ia-c to the corresponding pyridin-2-ones IIa-c. This procedure involves the 

treatment of the pyridinium salts Ia-c with a mixture of potassium ferricyanide and potassium hydroxide 

to give the products IIa-c with yield of ca. 90%.2 However, it is remarkable mentioning that the 

pyridinium salts are obtained from the reaction of Zincke’s salts with (R)-(-)-2-phenylglycinol with 

average yields of 85%3 (Scheme 1). 

N

NO2

NO2

R

N

OH
Ph

enantiopure
pyridinium salts

Ia-c

O
N

OH
Ph

NH2

OH
Ph

80%

ClCl

Zincke's salt

R
R

enantiopure
pyridin-2-ones

IIa-c

1. K3Fe(CN)6, H2O, 5 ºC

2. KOH, H2O, toluene, 40 ºC

90%

R = H, Me, Et

 

Scheme 1 
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Herein, we report the oxidation of enantiopure piperidine 14 with bromine in the presence of acetic acid 

afforded 3,3-dibromopiperidin-2-one 2 in 80% yield.5 Then, the aromatization of compound 2 under basic 

conditions gave access quantitatively to the corresponding enantiopure pyridin-2-one 3 (Scheme 2). 

 

Scheme 2 

 

The oxidation of piperidine 1 into 3,3-dibromopiperidin-2-one 2 was achieved using 10.0 eq. of bromine 

in acetic acid (80%) and refluxing the solution for 1 h. Then, basic aqueous workup allowed to obtain the 

product 2 in 80% yield, after purification by flash chromatography (Scheme 3). 

 

Scheme 3 

 

Compound 2 was crystallized and submitted to X-ray analysis.6 The ORTEP view of product 2 is shown 

in the Figure 1. 

 

Figure 1. ORTEP of piperidin-2-one 2 
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The aromatization of compound 2 was carried out with 2.0 eq. of DBU in refluxing THF for 1 h. Thus, 

pyridin-2-one 3 was obtained in quantitative yield (Scheme 4). 

 

Scheme 4 

 

The spectroscopic data of compound 3 are in good agreement with the data reported in the literature for 

the (R) enantiomer.2 

The aromatization process can be explained by a first dehydrobromination to give 

5,6-dihydropyridin-2-one 4 which reacts through an aza-Michael reaction with DBU7 to afford the 

corresponding salt 5. Then, elimination of DBU, followed by a secondly dehydrobromination gave access 

to pyridin-2-one 3 (Scheme 5). 

 

Scheme 5 

 

It is worth mentioning that in a previous work we reported the oxidation of enantiopure piperidine 1 with 

bromine in acetic acid to achieve the corresponding enantiopure piperidin-2-one III in 96% yield8 

(Scheme 6). 
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Scheme 6 

 

Accordingly, starting from enantiopure piperidine 1, we can access to both compounds either 

pyridin-2-one 3 or piperidin-2-one III in good yields, through two different oxidation process (Scheme 

7). 

 

Scheme 7 

 

 

An efficient method for the preparation of pyridin-2-one 3 in good yield has been developed. Additionally, 

two different oxidation processes have been proven, which give access to either piperidin-2-ones or 

pyridin-2-ones. Further use of these oxidation processes for the oxidation of 2- or 3-alkylpiperidines is 

currently under investigation. 

 

EXPERIMENTAL 

General. The 1H and 13C NMR spectra were determined in CDCl3 using TMS as an internal reference 

with a Varian VX400 FT NMR spectrometer operating at 400 and 100 MHz respectively. IR spectra were 

obtained with a Nicolet FTIR Magna 750 spectrometer. Optical rotations were determined at room 

temperature with a Perkin-Elmer 341 polarimeter, using a 1dm cell with a total volume of 1 mL and are 

referenced to the D-line of sodium. Mass spectra were recorded with a JEOL JEM-AX505HA instrument 

at a voltage of 70 eV. 

Oxidation of compound 1. 

To a solution of 1 (0.205 g, 1.0 mmol) in acetic acid (1.0 mL, 80%) at 0 °C was added dropwise a solution 

of bromine (10.0 mmol, 0.51 mL) in acetic acid (2.0 mL, 80%) and water (3.0 mL). The resulting solution 

was stirred at room temperature for 2 h and, then, was heated at reflux for 1 h. After cooling to 0 ºC, the 

resulting solution was basified by dropwise addition of aqueous K2CO3 (0.50 M). The aqueous layer was 
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extracted with CH2Cl2 (3 × 50 mL), and the combined organic extracts were washed with saturated 

aqueous Na2S2O3 (25 mL), dried and concentrated to give a yellow solid. Purification by flash 

chromatography (SiO2, gradient from AcOEt to 95:5 AcOEt–MeOH) afforded pure lactam 2 in 80% 

yield. 

Aromatization of compound 2. 

To a solution of 2 (0.190 g, 0.50 mmol) in THF (5 mL) was added dropwise DBU (0.170 g, 1.1 mmol) 

and the mixture was heated at reflux for 1 h. Then, the reaction was quenched with saturated aqueous 

NH4Cl (3 mL) and extracted with AcOEt (3 x 10 mL). The combined organic layers were successively 

washed with 5% aqueous HCl, 5% aqueous NaHCO3, and brine, then dried, filtered, and concentrated to 

give pyridin-2-one 3 in quantitative yield. 
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