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ABSTRACT

Although trimethylsilyl triflate (TMSOTf) has been widely used to promote glycosyl

trichloroacetimidates in oligosaccharide synthesis, silver triflate (AgOTf) was proved

to be a mild and in some cases more efficient catalyst in TMSOTf-sensitive glyco-

sylations. Migration and degradation in some specific coupling reactions can be

reduced significantly under this alternative glycosylation condition.

INTRODUCTION

In synthetic carbohydrate chemistry, trichloroacetimidates have become the most

widely used glycosyl donors.[1] They can be easily prepared by a base-catalyzed

reaction of a lactol with trichloroacetonitrile. The standard glycosylation step

corresponding to this kind of donor is usually activated by a catalytic amount of

Lewis acid, with trimethylsilyl triflate (TMSOTf) and boron trifluoride etherate

(BF3 � Et2O) being the reagents most commonly used.[2 – 4]O-Trichloroacetimidates
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exhibit outstanding donor properties in terms of easy formation, stability, reactivity, and

applicability, and generally give high yields of the products. In addition to TMSOTf

and BF3 � Et2O, TsOH, TfOH, Sn(OTf)2 and ZnCl2 have been occasionally applied to

activate trichloroacetimidates.[5 – 8]

In our efforts to synthesize active avermectin B1a analogues, we need to couple a

monosaccharide to the avermectin macrolactone. To this end, glucopyranosyl tri-

chloroacetimdate 1[9] was selected to couple with a modified avermectin lactone 2[10]

with reaction promotion with TMSOTf in anhydrous methylene chloride. To our

surprise, sluggish glycosylation results were obtained although solvents and reaction

temperatures were considered seriously.a Further investigation found that the

macrolactone alone is highly unstable and decomposed quickly in the presence of

TMSOTf. However, when AgOTf, first introduced by Krepinsky and co-workers,[11]

was used to catalyze the glycosylation between imidate 1 and aglycone 2, a very clean

reaction was observed and a 91% yield of desired compound 3 was isolated (see

Scheme 1). Attracted by this result, we studied the AgOTf catalyzed glycosylation

carefully using trichloroacetimidates as donors.b Here, we wish to report more

examples of using silver triflate as a mild alternative catalyst for glycosylation con-

ditions using trichloroacetimidates as glycosyl donors.

RESULTS AND DISCUSSION

Glycosylation of 2,3,4,6-tetra-O-benzoyl-a-D-glucopyranosyl trichloroacetimdate

(1, Scheme 1) and avermectin derivative 2 in dry CH2Cl2 at – 42�C with AgOTf as

promoter afforded avermectin derivative 3 in a yield of 91%. Attempted preparation of

3 using TMSOTf, BF3 � Et2O, TfOH and ZnCl2 in CH2Cl2 as catalysts gave no desired

product at all. We thus explored more examples to see the scope and limitation of this

method. In our previous research project, we found that the condensation of

trichloroacetimidate 4 (Scheme 2) and 1,2:5,6-di-O-isopropylidene-a-D-glucofuranose

(5) gave the desired disaccharide 6 in 56% yield.[15] The by-product was proved to be

the 3,5-O-isopropylidenated product, presumably due to migration of the 5,6-O-

isopropylidene group of 5. We reinvestigated this glycosylation using AgOTf (0.5

equiv) in CH2Cl2 at – 42�C and found that the yield was significantly improved (88%).

The efficacy of this method was further demonstrated by the high yield reaction of

trisaccharide imidate 7[15] and furanosyl acceptor 5 using 0.5 equiv of AgOTf to give

schizophyllan tetrasacharide derivative 8 (85%). Doublets at d 5.64, 4.97, 5.10 and 5.16

ppm from 1H NMR spectra corresponding to H-1I (J 3.6 Hz), H-1II (J 9.5 Hz), H-1III (J

8.0 Hz) and H-1IV (J 8.4 Hz), respectively, confirming the structural assignment of 8.

Partially acetylated glycosyl imidate 9[16] was reacted with 1,6-hexanediol in CH2Cl2 in

the presence of TMSOTf and gave an acceptable yield of dimer 10 by consuming more

equiv of donor 9 (up to 4 equiv). The same reaction processed well using 1 equiv of

AgOTf and 2.2 equiv of 9, thus giving at 0�C a 69% yield of 10. When cholesterol 11
was glycosylated with 1 using 0.3 equiv of AgOTf, an orthoester intermediate was

aWe have tried to apply CH2Cl2, ether, toluene, acetonitrile, nitromethane, hexane and THF as

glycosylation solvents under temperatures from – 42�C to rt.
bExamples using AgOTf in glycosylation reactions: Refs. [12–14].
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observed based on TLC and in situ transformation to the expected compound 12 (90%)

was carried out smoothly by adding more AgOTf (additional 0.7 equiv) into the

mixture. Silver triflate catalyzed regioselective glycosylation of furanosyl trichloro-

acetimidate 13 with triol 14 at 0�C gave desired (1 ! 5)-linked disaccharide 13 in 78%

yield, comparable to that of TMSOTf catalyzed regioselective glycosylation.[17] It is

noteworthy that the above AgOTf catalyzed reactions did not occur in THF or CH3CN

under similar glycosylation conditions (Scheme 3).

Scheme 1.

Scheme 2. Reaction conditions: AgOTf, CH2Cl2, � 42�C – 0�C; 88% for 6; 85% for 8; 69% for

10; 90% for 12; 78% for 15.
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To further investigate the scope and the limitation of this reaction, more examples

were subjected to the AgOTf-imidate glycosylation system. When fully benzylated a-

trichloroacetimidate 16,[18] without a C-2 neighboring participation group, was coupled

with hexanediol derivative 17[19] in the presence of 0.3 equiv of AgOTf in anhydrous

CH2Cl2 at – 42�C, b product 18 was formed predominantly (b:a > 9:1 based on NMR

spectra) in 95% isolated yield. However the same donor, in parallel reactions, gave

inseparable a,b mixtures when employing acceptors as glucuronate lactone 19
(! inseparable 20, 85%, a:b = 7:10) and macrolactone 21 (! inseparable 22, 80%,

a:b = 2:5).c The reactions gave generally better total yields in CH2Cl2 (>80%) than

in THF and toluene (< 30%) for benzylated imidate 16. Condensation of acetylated

Scheme 3. Reaction conditions: AgOTf, CH2Cl2, � 42�C – 0�C; 95% for 18 (a:b = 1:9); 85%

for 20 (a:b = 7:10); 80% for 22 (a:b = 2:5); 73% for 25 (a:b = 6:1); 83% for 28.

cFor inseparable mixture of 20, MALDITOF-MS Calcd for C43H46O11: 738.30; Found 761

(M + Na). Selected 1H NMR (CDCl3): b isomer, d 4.51 (d, 1 H, J 8.1 Hz, H-1’), 6.13 (d, 1 H, J 1.7

Hz, H-1); a isomer, d 4.92 (d, 1 H, J 3.5 Hz, H-1’), 6.05 (d, 1 H, J 1.2 Hz, H-1). Inseparable mixture

of 22 gave highly overlapped 1H NMR spectra. MALDITOF-MS Calcd for C74H96O13Si: 1220.66;

Found 1243.6 (M + Na).
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2-deoxy-a-D-glucopyranosyl imidate 23[20] with saponin derivative 24[21] under the

same reaction conditions gave 25 as a mixture in favor of a product (6:1, 73% of

total yield). More impressively, when fucosyl imidate 26[22] was reacted with fucosyl

thioglycoside 27 in the presence of TMSOTf, only a 50% yield of the disaccharide

28 was isolated. The major side reaction was the formation of the thioglycoside of

the donor, i.e., ethyl 3,4-di-O-acetyl-2-O-benzyl-1-thio-L-fucopyranoside.[23] When the

above reaction was catalyzed with 0.1 equiv of AgOTf in CH2Cl2 at –42�C, a-L-

disaccharide 28 was afforded in an excellent yield (83%) with no detectable thio-

migration product. This advantage may be applicable to the one-pot sequential

synthesis of fucosyl oligosaccharides.[24]

In summary, we have demonstrated that the silver triflate promoted glycosylation

reactions of various trichloroacetimidate donors are highly efficient. The stereochemical

outcome of C-2 benzoylated imidates gave exclusively 1,2-trans linked products but

differed case by case in C-2 benzylated counterparts. Side reactions such as migration

and degradation in coupling reactions could be reduced significantly under this mild

glycosylation condition.

EXPERIMENTAL

General methods. Optical rotations were determined at 20�C with a Perkin–

Elmer Model 241-Mc automatic polarimeter. 1H NMR, 13C NMR, 1H–1H COSY and

HMQC spectra were recorded with ARX 400 spectrometers for solutions in CDCl3.

Chemical shifts are given in ppm downfield from internal Me4Si. Mass spectra were

measured using MALDI-TOF-MS with a-cyano-4-hydroxycinnamic acid (CCA) as

matrix. Thin-layer chromatography (TLC) was performed on silica gel HF254 with

detection by charring with 30% (v/v) H2SO4 in MeOH or in some cases by a UV

detector. Column chromatography was conducted by elution of a column (10 � 250

mm, 18 � 300 mm, 35 � 400 mm) of silica gel (100–200 mesh) with EtOAc–

petroleum ether (bp 60–90�C) as the eluent. Solutions were concentrated at < 60�C
under diminished pressure.

Typical procedure for AgOTf catalyzed glycosylation: To a solution of imidate

donor (1.05 mmol) and alcohol acceptor (1 mmol) in dry CH2Cl2 (5–8 mL) was

added 4Å molecular sieves. The mixture was stirred at rt for about 15 min under an

N2 atmosphere, then cooled down to � 42�C. AgOTf (0.1–1.0 equiv) was then

added avoiding light. The mixture was stirred under these conditions for 30 to 60

min, then neutralized with triethylamine, diluted with CH2Cl2 (20 mL) and washed

with water (2 � 10 mL). The organic phase was dried over MgSO4, concentrated and

purified on a silica gel column using EtOAc-petroleum ether as the eluent to give the

desired compound.

Avermectin B1a derivative 3. [a]D
20 + 15 (c 1, CHCl3); 1H NMR (CDCl3) d

0.12–0.13 (m, 6 H), 0.80–0.92 (m, 19 H), 1.11 (d, 3 H), 1.23–1.25 (m, 3 H), 1.45–

1.60 (m, 6 H), 1.70–1.79 (m, 4 H), 2.0–2.05 (m, 4 H), 2.13–2.27 (m, 5 H), 2.47–2.51

(m, 1 H), 3.31–3.46 (m, 4 H), 3.76–3.87 (m, 4 H), 4.10–4.14 (m, 3 H), 4.43–4.50 (m,

2 H), 4.59 (dd, 1 H), 4.62–4.67 (m, 2 H), 4.72 (d, 1 H, J 3.7 Hz, H-1’), 4.97 (br t, 1 H),
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5.25 (d, 1 H, J 8.0 Hz, H-1@), 5.31–5.36 (m, 2 H), 5.50 (dd, 1 H, H-2@), 5.54 (dd, 1 H),

5.62-5.68 (m, 2 H), 5.70–5.75 (m, 2 H), 5.80–5.86 (m, 1 H, H-9), 5.93 (t, 1 H, H-3@),
7.15–7.35 (m, 20 H). MALDITOF-MS Calcd for C81H100O20Si: 1420.66; Found

1443.6 (M + Na).

Anal. Calcd for C81H100O20Si: C, 68.43; H, 7.09. Found: C, 68.18; H, 7.23.

2,3-Di-O-benzoyl-4,6-O-benzylidene- -D-(1 ��!!!! 3)-1,2:5,6-di-O-isopyopylidene-aa-
D-glucopyranose (6). [a]D

20� 29 (c 2.1, CHCl3); 1H NMR (CDCl3) d 1.17, 1.24,

1.26, 1.38 (4 s, 12 H, CH3), 3.70 � 3.74 (m, 1 H, H-5’), 3.87–3.91 (m, 2 H, H-3, H-4),

3.96 (t, 1 H, J 9.6 Hz, H-4’), 4.04 (d, 1 H, J 1.8 Hz, H-6a), 4.35 (br s, 1 H, H-5), 4.40–

4.46 (m, 2 H, 2 H-6’), 4.52 (d, 1 H, J 1.8 Hz, H-6b), 4.55 (d, 1 H, J 3.6 Hz, H-2), 4.83

(d, 1 H, J 7.9 Hz, H-1’), 5.54 (s, 1 H, PhCH), 4.56 (dd, 1 H, J 7.9, 9.6 Hz, H-2’), 5.81

(t, 1 H, J 9.6 Hz, H-3’), 5.95 (d, 1 H, J 3.6 Hz, H-1), 7.31–8.00 (m, 10 H, Ph).

MALDITOF-MS Calcd for C39H42O13: 718; Found 741.15 (M + Na).

2,3,4,6-Tetra-O-benzoyl- -D-glucopyranosyl-(1 ��!!!! 3)-[2,3,4,6-tetra-O-benzoyl-
-D-glucopyranosyl-(1 ��!!!! 6)]-2,4-di-O-acetyl- -D-glucopyranosyl-(1 ��!!!! 3)-1,2:5,6-

di-O-isopropylidene-aa-D-glucofuranose (8). [a]D
20� 53 (c 1, CHCl3); 1H NMR

(CDCl3) d 1.27, 1.43, 1.45, 1.50 (4 s, 12 H), 1.60, 1.73 (2 s, 6 H, Ac), 3.55 (dd, 1 H),

3.65 (t, 1 H), 3.74–3.76 (m, 2 H), 3.82–3.86 (m, 2 H), 3.91–3.96 (m, 2 H), 4.06–4.08

(m, 2 H), 4.11–4.28 (m, 2 H), 4.36–4.39 (m, 2 H), 4.55–4.64 (m, 4 H), 4.97 (d, 1 H, J

9.5 Hz, H-1II), 5.10 (d, 1 H, J 8.0 Hz, H-1III), 5.16 (d, 1 H, J 8.4 Hz, H-1IV), 5.43–5.54

(m, 3 H), 5.64 (d, 1 H, J 3.6 Hz, H-1I), 5.72 (t, 1 H), 5.84 (t, 1 H), 5.92 (t, 1 H), 7.30–

8.0 (m, 40 H). MALDITOF-MS Calcd for C90H86O31: 1662.53; Found 1685.3

(M + Na).

Anal. Calcd for C90H86O31: C, 64.98; H, 5.21. Found: C, 64.72; H, 5.25.

1,6-Di-O-(2,4,6-tri-O-acetyl-3-O-benzyl-bb-D-glucopyranosyl)hexane (10).
[a]D

20 + 22 (c 1, CHCl3); 1H NMR (CDCl3) d 1.24–1.32 (m, 4 H), 1.50–1.60 (m, 6

H), 1.97, 2.00, 2.08 (3 s, 18 H, 6 Ac), 3.43, 3.84 (2 dt, 4 H, J 6.6, 9.5 Hz, 2 OCH2),

3.57 (ddd, 2 H, 2 H-5), 3.69 (t, 2 H, J 9.4 Hz, 2 H-3), 4.10 (dd, 2 H, J 2.5, 12.0 Hz, 2

H-6a), 4.20 (dd, 2 H, J 6.0, 12.0 Hz, 2 H-6b), 4.39 (d, 2 H, J 8.0 Hz, 2 H-1), 4.57, 4.61

(2 d, 4 H, J 12.0 Hz, 2 PhCH2), 5.03 (dd, 2 H, J 8.0, 9.6 Hz, 2 H-2), 5.12 (t, 2 H, J 9.6

Hz, 2 H-4), 7.21–7.35 (m, 10 H, Ph).

Anal. Calcd for C44H58O18: C, 60.40; H, 6.68. Found: C, 60.23; H, 6.80.

Cholest-5-en-3bb-yl 2,3,4,6-tetra-O-benzoyl-bb-D-glucopyranoside (12).
[a]D

20 + 41 (c 1, CHCl3); 1H NMR (CDCl3) d 0.64 (s, 3 H), 0.80–0.90 (m, 14 H),

0.95–1.0 (m, 3 H), 1.05–1.13 (m, 6 H), 1.24–1.41 (m, 8 H), 1.48–1.57 (m, 3 H),

1.68–1.72 (m, 2 H), 1.73–1.86 (m, 1 H), 1.88–1.92 (m, 2 H), 1.97–2.00 (m, 1 H),

2.12–2.16 (m, 2 H), 3.47–3.54 (m, 1 H), 4.11–4.16 (m, 1 H, H-5), 4.80–4.53 (dd, 1

H, J5,6a 6.0, J6a,6b 12.0 Hz, H-6a), 4.57–4.61 (dd, 1 H, J5,6b 3.4, J6a,6b 12.0 Hz, H-6b),

4.92 (d, 1 H, J1,2 7.8 Hz, H-1), 5.21 (br d, 1 H), 5.46–5.50 (dd, 1 H, J2,3 9.7, J1,2 7.8

Hz, H-2), 5.58–5.64 (dd, 1 H, J3,4 9.3, J4,5 9.7 Hz, H-4), 5.86–5.90 (dd, 1 H, J2,3 9.7,

J4,3 9.3 Hz, H-3), 7.24–8.0 (m, 20 H).

Anal. Calcd for C61H72O10: C, 75.91; H, 7.52. Found: C, 76.26; H, 7.69.
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Allyl 2,3,5-tri-O-benzoyl- -L-arabinofuranosyl-(1 ��!!!! 5)- -L-arabinofuranoside
(15). [a]D

20 + 105 (c 1, CHCl3); 13C NMR (100 MHz, CDCl3) d 54.9, 63.5, 67.0,

68.0, 77.5, 78.1, 79.5, 81.8, 82.0, 85.6, 106.1, 109.9, 117.0, 128.3, 128.5, 128.6, 128.7,

129.6, 129.8, 129.9, 130.1, 133.1, 133.5, 133.6, 165.2, 165.9, 166.0.

Anal. Calcd for C34H34O12: C, 64.35; H, 5.36. Found: C, 64.11; H, 5.45.

6-Tert-butyldimethylsilyloxyhexyl 2,3,4,6-tetra-O-benzyl-bb-D-glucopyranoside
(18). [a]D

20 + 5 (c 1, CHCl3); 1H NMR (CDCl3) d � 0.01 (s, 6 H, CH3), 0.89 (m,

9 H, (CH3)3C), 1.26–1.43 (m, 5 H), 1.47–1.57 (m, 3 H), 1.63–1.69 (m, 2 H), 3.42–

3.47 (m, 2 H, H-2, H-5), 3.50–3.54 (m, 1 H, one proton of O(CH)2), 3.56–3.73 (m, 3

H, H-6a, H-3, H-4), 3.75 (dd, 1 H, J 1.8, 10.8 Hz, H-6b), 3.93–3.99 (m, 1 H, one

proton of O(CH)2), 4.38 (d, 1 H, J1,2 7.8 Hz, H-1), 4.51, 4.54, 4.63, 4.72, 4.78, 4.83,

4.92, 4.95 (8 d, 8 H, 4 PhCH2), 7.15–7.35 (m, 20 H, Ph).

Anal. Calcd for C46H62O7Si: C, 73.17; H, 8.28. Found: C, 73.40; H, 8.31.

Cholest-5-en-3bb-yl 2-deoxy-3,4,6-tri-O-acetyl-aa-D-glucopyranosyl-(1 ��!!!! 2)-
3,4,6-tri-O-benzoyl-bb-D-glucopyranoside (25). [a]D

20 + 18 (c 1.7, CHCl3); 1H

NMR (CDCl3) d 0.67 (s, 3 H), 0.83–0.95 (m, 14 H), 1.00–1.03 (m, 1 H), 1.08–1.14

(m, 6 H), 1.24–1.40 (m, 8 H), 1.43–1.62 (m, 9 H), 1.75 (s, 3 H), 1.77 (s, 3 H), 1.97–

2.02 (m, 5 H), 2.25–2.30 (m, 2 H), 3.47–3.62 (m, 4 H, 2 H-6’, H-5’, H-3 of cholesterol),

3.90 (dd, 1 H, J 7.8, 9.7 Hz, H-2), 4.01–4.06 (m, 1 H, J 6.2, 3.7, 9.6 Hz, H-5), 4.47–

4.54 (m, 2 H, 2 H-6), 4.74 (d, 1 H, J 7.8 Hz, H-1), 4.83 (t, 1 H, J 9.8 Hz, H-4’), 5.01–

5.05 (m, 1 H, H-3’), 5.35 (br d, 1 H, J 5.2 Hz), 5.50 (dd, 1 H, J 9.7, 9.3 Hz, H-4), 5.56

(d, 1 H, J1,2a 3.2 Hz, H-1’), 5.70–5.75 (dd, 1 H, J 9.3, 9.7 Hz, H-3), 7.24–8.0 (m, 15 H).

Anal. Calcd for C66H84O16: C, 69.94; H, 7.47. Found: C, 70.29; H, 7.51.

Ethyl 3,4-di-O-acetyl-2-O-benzyl-aa-L-fucopyranosyl-(1 ��!!!! 2)-3,4-O-isopropyle-
dene-1-thio-bb-L-fucopyranoside (28). [a]D

20 � 63 (c 1, CHCl3); 1H NMR (CDCl3)

d 1.10 (d, 3 H), 1.23 (t, 3 H), 1.35 (s, 3 H), 1.39 (d, 3 H), 1.52 (s, 3 H), 1.99, 2.11 (2 s,

6 H, Ac), 2.70–2.74 (m, 2 H), 3.69 (dd, 1 H), 3.80–3.87 (m, 2 H), 4.05 (dd, 1 H), 4.18

(t, 1 H), 4.43 (d, 1 H, J 10.3 Hz, H-1), 4.53 (q, 1 H), 4.55, 4.88 (2 d, 2 H), 5.28–5.34

(m, 2 H), 5.52 (d, 1 H, J 3.6 Hz, H-1’), 7.25–7.36 (m, 5 H). MALDITOF-MS Calcd for

C28H40O10S: 568.23; Found 581.1 (M + Na).

Anal. Calcd for C28H40O10S: C, 59.14; H, 7.09. Found: C, 58.91; H, 6.94.
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