Synthesis of Non-Symmetric Functionalized Polyfluoroalkyl Phosphites

N. K. Gusarova^a, S. F. Malysheva^a, N. A. Belogorlova^a, S. I. Verkhoturova^a, L. A. Oparina^a, S. N. Arbuzova^a, N. A. Chernysheva^a, A. M. Nalibayeva^b, G. K. Bishimbayeva^b, S. V. Yas'ko^c, and B. A. Trofimov^a,*

^a A.E. Favorskii Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033 Russia ^b Sokol'skii Institute of Fuel, Catalysis, and Electrochemistry, Almaty, 050000 Kazakhstan ^c Irkutsk State University of Communications, Irkutsk, 664074 Russia *e-mail: boris_trofimov@irioch.irk.ru

Received November 28, 2019; revised November 28, 2019; accepted December 5, 2019

Abstract—Two ways for the synthesis of new representatives of non-symmetric organic phosphites with polyfluoroalkyl substituents were developed based on organic dichlorophosphites. The reaction of polyfluoroalkyl dichlorophosphites with allyl alcohol, proceeding at a temperature of $-10-22^{\circ}C$ (2 h) in the presence of triethylamine, gave diallyl polyfluoroalkyl phosphites in a yield of 75–77%. Under similar conditions ($-30-22^{\circ}C$, 2-4 h, Et₃N), alkyl (or aryl) dichlorophosphites reacted with polyfluoroalkanols to form alkyl (or aryl) bis(polyfluoroalkyl) phosphites (yield 56–67%). Unlike diallylpolyfluoroalkyl- and alkylbis(polyfluoroalkyl) phosphites, arylbis(polyfluoroalkyl)-phosphites are symmetrized under storage conditions (room temperature, inert atmosphere), forming the corresponding triaryl- and tris(polyfluoroalkyl) phosphites.

Keywords: dichlorophosphites, allyl alcohol, polyfluoroalkanols, diallyl polyfluoroalkyl phosphites, alkylbis(polyfluoroalkyl) phosphites, arylbis(polyfluoroalkyl) phosphites

DOI: 10.1134/S1070363220050138

In recent years, special attention of researchers has been given to fluorinated organic phosphites, which are used as additives in lithium-ion battery electrolytes to increase their fire and explosion safety [1-7], as well as drug precursors [8-11], ligands for special metal complexes [12-18], reactive building blocks for organic synthesis [10, 11, 19–25]. Typical methods for the synthesis of fluorine-substituted phosphites are based on the use of phosphorus trichloride or diorganyl chlorophosphites as phosphorylating reagents of alkanols [10-12, 20, 22, 26]. Organic dichlorophosphites have been much less studied in these reactions [27-30]. Polyfluoroalkylphosphites with allyl substituents are also unknown; however the introduction of these moieties allows the use of such compounds in the synthesis of promising non-combustible polymeric materials [7].

Herein, we reported a convenient method for the synthesis of new representatives of non-symmetric functionalized polyfluoroalkyl phosphites based on the reactions of polyfluoroalkyl dichlorophosphites with allyl alcohol and organic dichlorophosphites with polyfluoroalkanols.

Polyfluoroalkyl dichlorophosphites 1a-1c reacted with allyl alcohol under mild conditions (-10-22°C, 2 h, CH₂Cl₂ or Et₂O) in the presence of triethylamine to furnish diallyl polyfluoroalkyl phosphites 2a-2c with a yield of 75–77% (Scheme 1). The reaction proceeded chemoselectively: no prototropic isomerization of the allyl fragment to prop-1-enyl under the indicated conditions was observed (³¹P NMR data). Compounds 2a-2c are stable during storage in an inert atmosphere and do not undergo symmetrization with the formation of triallyl and tris(polyfluoroalkyl) phosphites.

The developed method allows us to synthesize new representatives of non-symmetric polyfluoroalkyl phosphites starting from dichlorophosphites 3a-3c and fluoroalkanols 4, 5. Under similar conditions (Et₃N, an organic solvent, -10-22°C for ethyl dichlorophosphite 3a and -30-22°C for aryl phosphites 3b, 3c) the reaction proceeded within 2–4 h to afford organyl

 $R = 4-MeOC_6H_4$ (6c, 8), $4-FC_6H_4$ (6d, 9).

bis(polyfluoroalkyl) phosphites **6a–6d** with a moderate yield of 56–67% (Scheme 2).

Alkyl phosphites **6a** and **6b** derived from ethyl dichlorophosphite **3a** are relatively stable upon standing under standard conditions (room temperature, argon, 14 days), while 4-methoxyphenyl and 4-fluorophenyl phosphites **6c** and **6d** under the same conditions undergo conversions with the formation of symmetric tris(trifluoroethyl) phosphite **7** and triaryl phosphites **8**, **9** (Scheme 3). Within two weeks, the compounds ratio was **6c** : **7** : **8** = 24 : 1 : 0.5 and **6d** : **7** : **9** = 24 : 2 : 1 (by ¹H, ³¹P NMR data).

New representatives of non-symmetric functionalized triorganyl phosphites with polyfluoroalkyl substituents obtained by a convenient effective method can be used as components for lithium-ion batteries, drug precursors, and ligands for the production of metal complexes.

EXPERIMENTAL

¹H, ¹³C, ¹⁹F, ³¹P NMR spectra were obtained on a Bruker DPX 400 and a Bruker AV-400 spectrometers

(400.13, 101.61, 376.50, and 161.98 MHz, respectively) from CDCl₃ solutions relative to internal HMDS (¹H, ¹³C), CFCl₃ (¹⁹F), and external 85% H₃PO₄ (³¹P). IR spectra were recorded on a Bruker IFS 25 spectrometer from thin layer.

The starting polyfluoroalkyl dichlorophosphites 1a-1c were obtained from PCl₃ and polyfluoroalkanols in the presence of triethylamine (1 mol %) [31]. The starting ethyl dichlorophosphite **3a** was synthesized according to the procedure [32]. Aryl dichlorophosphites **3b** and **3c** were obtained by a modified procedure [33] from PCl₃ and 4-substituted phenols (1.5 : 1). All experiments were carried out in a dry inert atmosphere (argon).

General procedure for the synthesis of diallyl polyfluoroalkyl phosphites 2a–2c. A solution of 40.3 mmol of polyfluoroalkyl dichlorophosphite 1 in 20 mL of dichloromethane was added dropwise with stirring for 1 h at $-10-7^{\circ}$ C to a solution of 89.5 mmol (6.45 g) of allyl alcohol and 93.9 mmol (9.5 g) of triethylamine in 60 mL of anhydrous dichloromethane. The formation of a white precipitate of triethylamine hydrochloride was observed. The reaction mixture was stirred for 1 h at room temperature, then 100 mL of hexane was added and the resulting mixture was kept overnight. Triethylamine hydrochloride was filtered off, washed with hexane $(5 \times 30 \text{ mL})$. Washings and the filtrate were combined, the solvents were distilled off under reduced pressure, and the residue was distilled in vacuum. Phosphite **2b** was synthesized in diethyl ether (120 mL).

Diallyl (2,2,2-trifluoroethyl) phosphite (2a). Yield 7.4 g (75%), clear liquid, bp 38–39°C (1 mmHg), d_4^{20} $1.1649, n_D^{20} 1.4013, \eta 1.37 \text{ cP. IR spectrum, v, cm}^{-1}$: 3089 m, 3020 w, 2986 m, 2940 m, 2879 m, 1649 m, 1456 m, 1424 m, 1410 m, 1339 w, 1283 s, 1168 s, 1089 s, 1068 s, 1023 s, 988 s, 963 s, 924 s, 846 m, 794 s, 656 w, 558 w, 512 w. ¹H NMR spectrum, δ , ppm: 4.12 d. q (2H, CF₃CH₂, ${}^{3}J_{\rm HP} = 7.1, {}^{3}J_{\rm HF} = 8.4 \,{\rm Hz}$, 4.36 d. d (4H, CH₂CH=, ${}^{3}J_{\rm HP} =$ 8.1, ${}^{3}J_{HH} = 5.4$ Hz), 5.19 d (2H, =CH₂, H_{cis}, ${}^{3}J_{cis} =$ 10.4 Hz), 5.30 d (2H, =CH₂, H_{trans}, ${}^{3}J_{trans}$ = 18.2 Hz), 5.90 d. d. t (2H, CH=, ${}^{3}J_{trans} = 18.2$, ${}^{3}J_{cis} = 10.4$, ${}^{3}J_{HH}$ = 5.4 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 59.0 q. d $(CF_3CH_2, {}^2J_{CF} = 36.2, {}^2J_{CP} = 8.6 \text{ Hz}), 63.6 \text{ d} (CH_2CH=,$ ${}^{2}J_{CP}$ = 12.1 Hz), 116.8 (CH₂=), 123.4 q. d (CF₃, ${}^{1}J_{CF}$ = 278.0, ${}^{3}J_{CP} = 6.0$ Hz), 133.8 d (CH=, ${}^{3}J_{CP} = 5.2$ Hz). ${}^{19}F$ NMR spectrum: $\delta_{\rm F}$ –75.3 ppm. ³¹P NMR spectrum: $\delta_{\rm P}$ 139.7 ppm. Found, %: C 39.12; H 4.78; F 23.48; P 12.48. C₈H₁₂F₃O₃P. Calculated, %: C 39.36; H 4.95; F 23.34; P 12.69.

Diallyl (2,2,3,3-tetrafluoropropyl) phosphite (2b). Yield 8.6 g (77%), clear colorless liquid, bp 59–60°C (1 mmHg), d_4^{20} 1.2067, n_D^{20} 1.4076, η 1.80 cP. IR spectrum, v, cm⁻¹: 3089 m, 3020 m, 2988 s, 2946 s, 2880 s, 1650 m, 1458 s, 1425 s, 1416 m, 1380 m, 1359 m, 1282 s, 1265 s, 1230 s, 1210 s, 1130 s, 1105 s, 1051 s, 1022 s, 989 s, 932 s, 835 s, 793 s, 680 m, 673 w, 645 w, 583 w, 549 m, 385 w. ¹H NMR spectrum, δ , ppm: 3.96 t. d. t (2H, CH₂CF₂, ${}^{3}J_{\text{HF}} = 12.7$, ${}^{3}J_{\text{HP}} = 6.2$, ${}^{4}J_{\text{HF}} =$ 1.6 Hz), 4.17 d. d. t (4H, CH₂CH=, ${}^{3}J_{HP} = 8.4$, ${}^{3}J_{HH} =$ 5.3, ${}^{4}J_{\text{HH}} = 1.6$ Hz), 5.03 d. m (2H, =CH₂, H_{cis}, ${}^{3}J_{cis} =$ 10.5 Hz), 5.20 d. d. t (2H, =CH₂, H_{trans}, ${}^{3}J_{trans} = 17.1$, ${}^{2}J_{HH} =$ 1.7, ${}^{4}J_{\text{HH}} = 1.6 \text{ Hz}$), 5.52 t. t. d (1H, CF₂H, ${}^{2}J_{\text{HF}} = 53.1$, ${}^{3}J_{\rm HF} = 4.9, {}^{5}J_{\rm HP} = 1.5$ Hz), 5.75 d. d. t (2H, CH=, ${}^{3}J_{trans} =$ 17.1, ${}^{3}J_{cis} = 10.5$, ${}^{3}J_{HH} = 5.3$ Hz). 13 C NMR spectrum, $\delta_{\rm C}$, ppm: 58.8 t. d (CH₂CF₂, ²J_{CF} = 29.5, ²J_{CP} = 7.9 Hz), 63.6 d (CH₂CH=, ${}^{2}J_{CP}$ = 12.1 Hz), 109.5 t. t (CF₂H, ${}^{1}J_{CF}$ = 249.3, ${}^{2}J_{CF} = 34.4$ Hz), 115.2 t. t. d (CH₂CF₂, ${}^{1}J_{CF} =$ 249.7, ${}^{2}J_{CF} = 26.7$, ${}^{3}J_{CP} = 5.0$ Hz), 117.4 (CH₂=), 134.5 d (CH=, ${}^{3}J_{CP} = 5.1$ Hz). ${}^{19}F$ NMR spectrum, δ , ppm: -139.2 d. t (CF₂H, ²J_{HF} = 53.1, ³J_{FF} = 4.6 Hz), -125.7 m

(CF₂). ³¹P NMR spectrum: δ_P 139.5 ppm. Found, %: C 39.12; H 4.85; F 27.65; P 11.38. C₉H₁₃F₄O₃P. Calculated, %: C 39.14; H 4.74; F 27.52; P 11.22.

Diallyl (2,2,3,3,4,4,5,5-octafluoropentyl) phosphite (2c). Yield 11.4 g (75%), clear colorless liquid, bp 70–72°C (1 mmHg), d_4^{20} 1.3534, n_D^{20} 1.3882, η 3.63 cP. IR spectrum, v, cm⁻¹: 3090 m, 3021 m, 2988 m, 2954 m, 2889 m, 1650 m, 1459 m, 1426 m, 1411 m, 1360 m, 1287 s, 1263 s, 1173 s, 1132 s, 1023 s, 988 s, 928 s, 904 s, 806 s, 689 w, 673 w, 628 m, 609 m, 546 m, 506 m. ¹H NMR spectrum, δ , ppm: 4.24 t. d. t (2H, CH₂CF₂, ³J_{HF} = 14.0, ${}^{3}J_{\text{HP}} = 6.5$, ${}^{4}J_{\text{HF}} = 1.4$ Hz), 4.36 d. d. d. (4H, $CH_2CH=$, ${}^{3}J_{HP}=8.4$, ${}^{3}J_{HH}=5.4$, ${}^{4}J_{HH}=1.4$, ${}^{4}J_{HH}=$ 0.7 Hz), 5.19 d. d. d. d (2H, =CH₂, H_{cis}, ${}^{3}J_{cis} = 10.4$, ${}^{2}J_{\rm HH} = 1.5, \, {}^{4}J_{\rm HH} = 1.4, \, {}^{4}J_{\rm HH} = 0.7$ Hz), 5.28 d. d. t (2H, =CH₂, H_{trans}, ${}^{3}J_{trans} = 17.1$, ${}^{2}J_{HH} = 1.5$, ${}^{4}J_{HH} = 1.4$ Hz), 5.91 d. d. t (2H, CH=, ${}^{3}J_{trans} = 17.1$, ${}^{3}J_{cis} = 10.4$, ${}^{3}J_{HH} =$ 5.4 Hz), 6.03 t. t (1H, CF_2H , ${}^2J_{HF} = 51.9$, ${}^3J_{HF} = 5.4$ Hz). ¹³C NMR spectrum, δ_C , ppm: 58.4 t. d (CH₂CF₂, ² J_{CF} = 26.3, ${}^{2}J_{CP} = 8.2$ Hz), 63.9 d (CH₂CH=, ${}^{2}J_{CP} =$ 12.1 Hz), 107.7 t. t (CF₂H, ${}^{1}J_{CF} = 254.0$, ${}^{2}J_{CF} = 31.0$ Hz), 110.1 t. q (CF₂CF₂H, ${}^{1}J_{CF} = 250.0$, ${}^{2}J_{CF} = 29.0$ Hz), 110.9 t. q ($CF_2CF_2CF_2H$, ${}^1J_{CF} = 264.7$, ${}^2J_{CF} = 30.6$ Hz), 115.1 t. t. d (CF₂CH₂, ${}^{1}J_{CF} = 256.5$, ${}^{2}J_{CF} = 31.0$, ${}^{3}J_{CP} =$ 3.5 Hz), 117.0 (CH₂=), 134.1 d (CH=, ${}^{3}J_{CP} = 5.2$ Hz). ¹⁹F NMR spectrum, $\delta_{\rm E}$, ppm: -137.2 d (CF₂H, ² $J_{\rm HE}$ = 51.9 Hz), -130.2 m (CF₂CF₂H), -125.3 m (CF₂CF₂CF₂H), $-120.4 \text{ m} (CF_2CH_2)$. ³¹P NMR spectrum: δ_P 140.8 ppm. Found, %: C 35.10; H 3.47; F 40.18; P 8.10. C₁₁H₁₃F₈O₃P. Calculated, %: C 35.12; H 3.48; F 40.40; P 8.23.

General procedure for the synthesis of organyl bis(polyfluoroalkyl) phosphites 6a-6d. To a solution of 64.7 mmol of organyl dichlorophosphite 3 in 150 mL of an organic solvent [diethyl ether (3a), dichloromethane (60 mL) (3b), hexane (3c, 3d)] was added dropwise with stirring a solution of 155 mmol of polyfluoroalkanol 4 or 5 and 155 mmol (15.7 g) of triethylamine in 30 mL of the corresponding solvent for 1-2 h at low temperature [-10-8°C $(3a, 3b), -30-25^{\circ}C(3c, 3d), dry ice-acetone]$. The formation of a white precipitate of triethylamine hydrochloride was observed. The reaction mixture was stirred for 1-2 h at room temperature, argon was passed to remove HCl, and the mixture was kept overnight in the case of obtaining compounds 6a and **6b**. The precipitate (triethylamine hydrochloride) was filtered off, washed $(3 \times 30 \text{ mL})$ with diethyl ether (3a) or hexane (**3b–3d**). Washings and the filtrate were combined, the solvents were distilled off under reduced pressure, and the residue was distilled in vacuum. To prevent symmetrization

of the aryl bis(polyfluoroalkyl) phosphites **6c** and **6d**, the distillation flask was placed into a heated glycerin bath (100–120°C) and distillation was carried out rapidly.

Bis(2,2,2-trifluoroethyl) ethyl phosphite (6a). Yield 9.9 g (56%), clear colorless liquid, bp 23°C (1 mmHg), d_{4}^{20} 1.3743, $n_{\rm D}^{20}$ 1.3022, η 1.92 cP. IR spectrum, v, cm⁻¹: 2980 m, 2950 m, 2921 m, 2880 w, 2854 w, 1806 w, 1483 m, 1458 m, 1424 s, 1400 m, 1375 m, 1273 s, 1174 s, 1083 s, 1041 s, 965 s, 894 s, 842 s, 769 m, 661 s, 559 m, 510 m, 483 m. ¹H NMR spectrum, δ, ppm: 1.28 t (3H, CH₃, ${}^{3}J_{\text{HH}} = 7.1$ Hz), 3.95 d. q (2H, CH₃CH₂, ${}^{3}J_{\text{HP}} =$ 8.4, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}$), 4.13 q (4H, CF₃CH₂, ${}^{3}J_{\text{HF}} = {}^{3}J_{\text{HP}} =$ 8.4 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 16.4 d (CH₃, ³ $J_{\rm CP}$ = 5.2 Hz), 59.5 q. d (CF₃CH₂, ${}^{2}J_{CF} = 36.9$, ${}^{2}J_{CP} = 9.6$ Hz), 59.9 d (CH₃CH₂, ${}^{2}J_{CP}$ = 12.5 Hz), 123.4 q. d (CF₃, ${}^{1}J_{CF}$ = 277.9, ${}^{3}J_{CP} = 5.9$ Hz). 19 F NMR spectrum, δ_{F} , ppm: -75.5 t. d (CF₃, ${}^{3}J_{\text{FH}} = 8.4$, ${}^{4}J_{\text{FP}} = 4.5$ Hz). ${}^{31}\text{P}$ NMR spectrum: δ_P 139.5 ppm. Found, %: C 26.08; H 3.51; F 41.33; P 11.50. C₆H₉F₆O₃P. Calculated, %: C 26.29; H 3.31; F 41.59; P 11.30.

Bis(2,2,3,3,4,4,5,5-octafluoropentyl) ethyl phosphite (6b). Yield 22.6 g (65%), clear colorless liquid, bp 105°C (1 mmHg), d_4^{20} 1.3466, n_D^{20} 1.5876, η 9.49 cP. IR spectrum, v, cm⁻¹: 2989 m, 2950 m, 2897 m, 1481 w, 1457 m, 1402 m, 1395 m, 1361 m, 1331 m, 1291 s, 1172 s, 1133 s, 1058 s, 1030 s, 991 s, 958 s, 940 s, 904 s, 873 m, 806 s, 717 m, 690 m, 674 w, 629 m, 609 m, 546 m, 523 m, 453 w, 446 w. ¹H NMR spectrum, δ, ppm: 1.30 t (3H, CH₃, ${}^{3}J_{HH} = 7.1$ Hz), 3.98 d. q (2H, CH₃CH₂, ${}^{3}J_{\rm HP} = 8.4, {}^{3}J_{\rm HH} = 7.1 \text{ Hz}$, 4.27 t. d (4H, CF₂CH₂, ${}^{3}J_{\rm HF} =$ 13.5, ${}^{3}J_{\text{HP}} = 6.6 \text{ Hz}$), 6.05 t. t (2H, CF₂H, ${}^{2}J_{\text{HF}} = 52.2$, ${}^{3}J_{\rm HF}$ = 5.5 Hz). 13 C NMR spectrum, $\delta_{\rm C}$, ppm: 16.6 d $(CH_3, {}^{3}J_{CP} = 5.2 \text{ Hz}), 58.9 \text{ t. d} (CF_2CH_2, {}^{2}J_{CF} = 26.4,$ ${}^{2}J_{CP} = 9.2$ Hz), 60.2 d (CH₃CH₂, ${}^{2}J_{CP} = 13.2$ Hz), 107.8 t. t (CF₂H, ${}^{1}J_{CF} = 253.7$, ${}^{2}J_{CF} = 31.2$ Hz), 111.1 t. q (CF₂CF₂CF₂CF₂H, ${}^{1}J_{CF} = 265.2$, ${}^{2}J_{CP} =$ 31.2 Hz), 115.0 t. t. d (OCH_2CF_2 , $^1J_{CF} = 256.8$, $^2J_{CF} =$ 31.6, ${}^{3}J_{CP} = 4.4$ Hz). ${}^{19}F$ NMR spectrum, δ_{F} , ppm: -137.4 d. m (CF₂H, ²J_{HF} = 52.0 Hz), -130.3 m (CF₂CF₂H), -125.5 m (CF₂CF₂CF₂H), -120.7 m (CH₂CF₂). ³¹P NMR spectrum: δ_P 139.8 ppm. Found, %: C 26.68; H 2.11; F 56.33; P 5.55. C₁₂H₁₁F₁₆O₃P. Calculated, %: C 26.78; H 2.06; F 56.48; P 5.76.

4-Methoxyphenyl bis(2,2,2-trifluoroethyl) phosphite (6c). Yield 15.3 g (67%), clear colorless liquid, bp 99–100°C (1 mmHg), d_4^{20} 1.4181, n_D^{20} 1.4314, η 5.27 cP. IR spectrum, v, cm⁻¹: 3120 w, 3048 w, 3006 m, 2964 s, 2915 m, 2841 m, 1609 w, 1593 m, 1506 s, 1467 s, 1456 s, 1444 s, 1413 s, 1283 s, 1250 s, 1207 s, 1167 s, 1090 s, 1058 s, 1036 s, 1009 m, 963 s, 925 m, 886 s, 848 s, 834 s, 797 s, 720 m, 698 m, 654 s, 637 w, 567 m, 548 s, 534 w, 522 s, 496 w. ¹H NMR spectrum, δ, ppm: 3.71 s (3H, CH₃), 4.30 q (4H, CH₂, ${}^{3}J_{HP} = {}^{3}J_{HF} = 8.3$ Hz), 6.87 d (2H, C₆H₄, ${}^{3}J_{HH} = 8.9$ Hz), 6.99 d (2H, C₆H₄, ${}^{3}J_{HH} =$ 8.9 Hz). ¹³C NMR spectrum, δ_C, ppm: 55.4 (CH₃), 59.5 q. d (CH₂, ${}^{2}J_{CF} = 36.9$, ${}^{2}J_{CP} = 7.6$ Hz), 114.8 (C^{3.5}, C₆H₄), 121.0 d (C^{2.6}, C₆H₄, ${}^{3}J_{CP} = 6.7$ Hz), 123.5 q. d (CF₃, ${}^{1}J_{CF} = 275.3$, ${}^{3}J_{CP} = 5.3$ Hz), 144.4 d (C¹, C₆H₄, ${}^{2}J_{CP} = 6.9$ Hz), 156.5 (C⁴, C₆H₄). ¹⁹F NMR spectrum, δ_F, ppm: -75.3 t. d (CF₃, ${}^{3}J_{FH} = 8.2$, ${}^{4}J_{FP} = 4.0$ Hz). ³¹P NMR spectrum: δ_{P} 132.5 ppm. Found, %: C 37.40; H 2.96; F 32.10; P 8.68. C₁₁H₁₁F₆O₄P. Calculated, %: C 37.52; H 3.15; F 32.37; P 8.80.

Bis(2,2,2-trifluoroethyl) (4-fluorophenyl) phosphite (6d). Yield 14.6 g (66%), clear colorless liquid, bp 65–68°C (2 mmHg), d_4^{20} 1.4590, n_D^{20} 1.4082, η 2.89 cP. IR spectrum, v, cm⁻¹: 3119 w, 3084 w, 3057 m, 2968 s, 2892 m, 1602 w, 1505 s, 1455 s, 1413 s, 1305 w, 1284 s, 1199 s, 1171 s, 1091 s, 1060 s, 1013 s, 964 s, 932 m, 888 s, 848 s, 841 s, 812 s, 718 m, 695 m, 654 s, 633 w, 564 m, 548 s, 534 , 513 s, 477 m, 449 w. ¹H NMR spectrum, δ, ppm: 4.30 q (4H, CH₂, ${}^{3}J_{HF} = {}^{3}J_{HP} = 8.3$ Hz), 7.03 m $(4H, C_6H_4)$. ¹³C NMR spectrum, δ_C , ppm: 60.2 q. d (CH₂, $^{2}J_{CF} = 36.8$, $^{2}J_{CP} = 7.7$ Hz), 116.6 d (C^{3,5}, C₆H₄, $^{2}J_{CF} =$ 23.6 Hz), 121.6 t ($C^{2,6}$, C_6H_4 , ${}^3J_{CF} \approx {}^3J_{CP} = 7.5$ Hz), 123.3 q $(CF_3, {}^{1}J_{CF} = 278.3 \text{ Hz}), 147.1 (C^1, C_6H_4), 159.7 \text{ d}$ $(C^4, C_6H_4, {}^1J_{CF} = 243.4 \text{ Hz}). {}^{19}\text{F} \text{ NMR spectrum, } \delta_F,$ ppm: -118.6 q (FC₆H₄, ${}^{3}J_{FH} \approx {}^{4}J_{FH} = 6.1$ Hz), -75.2 t. d $(CF_3, {}^{3}J_{FH} = 8.0, {}^{4}J_{FP} = 4.0 \text{ Hz}). {}^{31}P \text{ NMR spectrum: } \delta_P$ 133.5 ppm. Found, %: C 35.08; H 2.31; F 39.13; P 8.90. C₁₀H₈F₇O₃P. Calculated, %: C 35.31; H 2.37; F 39.10; P 9.11.

Symmetrization of phosphites 6c and 6d. Phosphite 6c or 6d (1 g) was placed in an ampoule, which was filled with argon and then kept for 14 days. The reaction mixture was analyzed with the ¹H and ³¹P NMR spectroscopy methods. In the spectra, along with the signals of non-symmetric phosphites 6c and 6d, there are the signals of symmetric phosphites 7–9 (identified using authentic samples). The ratio of compounds was 6c: 7: 8 = 24: 1: 0.5 and 6d: 7-9 are identical to published data [34, 35].

Tris(2,2,2-trifluoroethyl) phosphite (7). ³¹P NMR spectrum (CDCl₃): δ_P 139.2 ppm (δ_P 139.3 ppm [34]).

Tris(4-methoxyphenyl) phosphite (8). ³¹P NMR spectrum (CDCl₃): δ_P 127.5 ppm (δ_P 128.9 ppm [35]).

Tris(4-fluorophenyl) phosphite (9). ³¹P NMR spectrum (CDCl₃): δ_P 127.7 ppm (δ_P 127.5 ppm [35]).

This work was performed using equipment of the Baikal Analytical Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

1. Zhang, S.S., *J. Power Sources*, 2006, vol. 162, no. 2, p. 1379.

https://doi.org/10.1016/j.jpowsour.2006.07.074

- Yoon, J.-G., Doo, S.-G., Hwang, S.-S., Park, K.-S., Gusarova, N.K., and Trofimov, B.A., US Patent 20070048622; *C. A.*, 2007, vol. 146, p. 277725.
- Chernyshov, D.V., Krachkovskiy, S.A., Kapylou, A.V., Bolshakov, I.A., Shin, W.C., and Ue, M., *J. Electrochem. Soc.*, 2014, vol. 161, no. 4, p. 633. https://doi.org/10.1149/2.100404jes
- Aoki, M., Hirayama, D., and Mimura, H., Japan Patent 2017004603 A 20170105, 2017; C. A., 2017, vol. 166, p. 147888.
- Aspern, N., Röser, S., Rad, B.R., Murmann, P., Streipert, B., Mönnighoff, X., Tillmann, S.D., Shevchuk, M., Stubbmann-Kazakova, O., Röschenthaler, G.-V., Nowak, S., Winter, M., and Cekic-Laskovic, I., *J. Fluor. Chem.*, 2017, vol. 198, p. 24. https://doi.org/10.1016/j.jfluchem.2017.02.005
- Zhang, H., Eshetu, G.G., Judez, X., Li, C., Rodriguez-Martínez, L.M., and Armand, M., *Angew. Chem. Int. Ed.*, 2018, vol. 57, no. 46, p. 15002. https://doi.org/10.1002/anie.201712702
- Liu, K., Liu, Y., Lin, D., Pei, A., and Cui, Y., Sci. Adv., 2018, vol. 4, no. 6, p. eaas9820. https://doi.org/10.1126/sciadv.aas9820
- Lu, P., Jiang, S.H., Liu, J.X., Yang, Y.S., and Ji, R.Y., *Chin. Chem. Lett.*, 2009, vol. 20, no. 5, p. 507. https://doi.org/10.1016/j.cclet.2008.12.057
- Krutikova, V.V., Krutikov, V.I., and Erkin, A.V., *Russ. J. Gen. Chem.*, 2010, vol. 80, no. 3, p. 434. https://doi.org/10.1134/S1070363210030102
- Fu, X.Z., Ou, Y., Xin, J., and Yang, Y.S., *Chin. Chem. Lett.*, 2011, vol. 22, no. 12, p. 1387. https://doi.org/10.1016/j.cclet.2011.09.005
- Skoreński, M., Oleksyszyn, J., and Sieńczyk, M., *Tetrahedron Lett.*, 2013, vol. 54, no. 12, p. 1566. https://doi.org/10.1016/j.tetlet.2013.01.039
- 12. Gual, A., Godard, C., de la Fuente, V., and Castillyn, S., in *Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis*, Kamer, P.C.J.,

van Leeuwen, P.W.N.M., Eds., New York: John Wiley and Sons, 2012, p. 81. https://doi.org/10.1002/9781118299715.ch3

843

- Liu, R., Winston-McPherson, G.N., Yang, Z.-Y., Zhou, X., Song, W., Guzei, I.A., Xu, X., and Tang, W., *J. Am. Chem. Soc.*, 2013, vol. 135, no. 22, p. 8201. https://doi.org/10.1021/ja4047069
- Tahara, A., Miyamoto, Y., Aoto, R., Shigeta, K., Une, Y., Sunada, Y., Motoyama, Y., and Nagashima, H., *Organometallics*, 2015, vol. 34, no. 20, p. 4895. https://doi.org/10.1021/acs.organomet.5b00636
- Lee, J.P., Hankins, M.J., Riner, A.D., and Albu, T.V., J. Coord. Chem., 2016, vol. 69, no. 1, p. 20. https://doi.org/10.1080/00958972.2015.1114613
- Xu, F., Shuler, S.A., and Watson, D.A., *Angew. Chem. Int. Ed.*, 2018, vol. 57, no. 37, p. 12081. https://doi.org/10.1002/anie.201806295
- Schießl, J., Schulmeister, J., Doppiu, A., Wörner, E., Rudolph, M., Karch, R., and Hashmia, A.S.K., *Adv. Synth. Catal.*, 2018, vol. 360, no. 13, p. 2493. https://doi.org/10.1002/adsc.201800233
- Hussein, S., Priester, D., Beet, P., Cottom, J., Hart, S.J., James, T., Thatcher, R.J., Whitwood, A.C., and Slattery, J.M., *Chem. Eur. J.*, 2019, vol. 25, no. 9, p. 2262. https://doi.org/10.1002/chem.201804805
- Suzuki, H., Katayama, S., and Okada, F., Japan Patent 05186482 A 19930727, 1993; C. A., 1994, vol. 120, p. 9131.
- Mironov, V.F., Konovalova, I.V., Burnaeva, L.M., and Ofitserov, E.N., *Russ. Chem. Rev.*, 1996, vol. 65, no. 11, p. 935. https://doi.org/10.1070/RC1996v065n11ABEH00027
- 21. White, M.L. and Matyiaszewski, K., J. Polymer Sci. (A), 1996, vol. 34, no. 2, p. 277. h ttps://doi.org/10.1002/(SICI)1099-0518(19960130)34:2<277::AID-POLA14>3.0.CO;2-N
- Motoyoshiya, J., Kusaura, T., Kokin, K., Yokoya, S.-I., Takaguchi, Y., Narita, S., and Aoyama, H., *Tetrahedron*, 2001, vol. 57, no. 9, p. 1715. https://doi.org/10.1016/S0040-4020(01)00007-2
- Khasiyatullina, N.R., Mironov, V.F., Mironova, E.V., Krivolapov, D.B., and Litvinov, I.A., *Russ. J. Gen. Chem.*, 2016, vol. 86, no. 3, p. 551. https://doi.org/10.1134/S1070363216030105
- 24. Klaehn, J.R., Rollins, H.W., McNally, J.S., Arulsamy, N., and Dufek, E.J., *Inorg. Chim. Acta*, 2017, vol. 466, p. 254. https://doi.org/10.1016/j.ica.2017.05.075
- Krizkova, P.M., Roller, A., and Hammerschmidt, F., *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 2018, vol. 193, no. 8, p. 515. https://doi.org/10.1080/10426507.2018.1452235
- Timperley, C.M., Arbon, R.E., Saunders, S.A., and Waters, M.J., *J. Fluor. Chem.*, 2002, vol. 113, no. 1, p. 65. https://doi.org/10.1016/S0022-1139(01)00468-7

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 90 No. 5 2020

- Konovalova, I.V., Ofitserov, E.N., Mironov, V.F., and Pudovik, A.N., *Bull. Acad. Sci. USSR. Div. Chem. Sci.*, 1983, vol. 32, no. 6, p. 1300. https://doi.org/10.1007/BF00953181
- Kokin, K., Iitake, K., Takaguchi, Y., Aoyama, H., Hyashi, S., and Motoyoshiya, J., *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 1998, vol. 133, no. 1, p. 21. https://doi.org/10.1080/10426509808032451
- Nifantyev, E.E., Kukhareva, T.S., Dyachenko, V.I., Kolomietz, A.F., Bel'sky, V.K., and Vasyanina, L.K., *Russ. Chem. Bull.*, 1995, vol. 44, no. 9, p. 1748. https://doi.org/10.1007/BF01151304
- Gusarova, N.K., Verkhoturova, S.I., Arbuzova, S.N., Kazantseva, T.I., Albanov, A.I., Nalibaeva, A.M., Bishimbaeva, G.K., Apartsin, K.A., Kireeva, V.V., and Trofimov, B.A., *Russ. J. Gen. Chem.*, 2018, vol. 88, no. 4, p. 705. https://doi.org/10.1134/S107036321804014X

- Fokin, A.V., Kolomiets, A.F., Komarov, V.A., Rapkin, A.I., Krolevets, A.A., and Pasevina, K.I., *Bull. Acad. Sci. USSR. Div. Chem.*, 1979, vol. 28, no. 1, p. 148. https://doi.org/10.1007/BF00925413
- Kormachev, V.V. and Fedoseev, M.S., *Preparativnaya khimiya fosfora* (Phosphorus Preparative Chemistry), Perm: Ural. Otd. Ross. Akad. Nauk, 1992, p. 73.
- Verfürth, U. and Ugi, I., *Chem. Ber.*, 1991, vol. 124, no. 7, p. 1627.

https://doi.org/10.1002/cber.19911240725

 Denney, D.B., Denney, D.Z., Hammond, P.J., and Wang, Y.-P., *J. Am. Chem. Soc.*, 1981, vol. 103, no. 7, p. 1785.

https://doi.org/10.1021/ja00397a033

 Scotson, J.L., Andrews, B.I., Lawsa, A.P., and Page, M.I., Org. Biomol. Chem., 2016, vol. 14, p. 10840. https://doi.org/10.1039/c6ob02108e