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A Concise Synthesis of Enantiomerically Pure Taxane C-Ring
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Abstract: An efficient, stereoselective synthesis of an enantiomerically pure C-ring precursor
14-S of O-cinnamoyltaxicins-I and -II has been achieved from 3-methyl-2-cyclohexen-1-ol, using
a [2,3] Wittig rearrangement as the key step.

We have recently demonstrated the utility of the Ni(I)/Cr(II)-mediated coupling reaction for construction
of the taxane ring system.! In this communication, we would like to report the efficient synthesis of an
enantiomerically pure C-ring precursor 14-S of O-cinnamoyltaxicins-I and -n.2

O-Cinnamoyttaxicin-| Triacetats (X=OH) 1e-s
O-Cinnamoyttacin-if Triscetate ((=H)

The utility of the [2,3] Wittig rearrangement in the stereocontrolled construction of carbon-carbon bonds
has been well documented.3 We were hopeful that such a rearrangement, cf. 355, could be used to: a) generate
the desired C.9 alcohol stereochemistry, b) stereoselectively install the C.8 quaternary carbon, and ¢) provide a
suitable handle for functionalization at C.3, C.4 and C.5.4 Two possible transition states for the proposed [2,3]
Wittig rearrangement are depicted in Scheme 1. Transition state B, leading to the undesired alcohol 6, contains
an unfavorable steric interaction between the carbocycle and the methyl group of the oxazoline. Conversely,
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transition state A lacks such a destabilizing steric interaction, resulting in the desired stereochemistry at C.9.5
Obviously, optically active (S)-3-methyl-2-cyclohexen-1-ol should yield a precursor of the C-ring with the
desired absolute configuration at C.8 and C.9.

Thus, racemic 3-methyl-2-cyclohexen-1-ol (1) was kinetically resolved according to Noyori's procedure
to provide a mixture of (S)-3-methyl-2-cyclohexen-1-ol (1-S) and (1R, 3R)-3-methylcyclohexan-1-ol (2.R),6.7
This mixture was slightly contaminated with (R)-3-methyl-2-cyclohexen-1-ol and (15,35)-3-methylcyclohexan-
1-ol (Scheme 2).8 Treatment of this mixture with potassium hydride and 2-chloromethyloxazoline? afforded a
mixture of the methyloxazoline-ethers 3-S and 4-R, along with trace amounts of their respective enantiomers.

The [2,3] Wittig rearrangement of cyclic allylic ethers has been reported to be accompanied with
substantial amounts of products arising from [1,2] rearrangement, cf. 3-§-7.3 Indeed, when the reaction
temperature was elevated to 0 °C during the first hour of reaction time, this side-reaction was observed to the
extent of a 4:1 ratio of [2,3]:[1,2] rearrangement products. However, an 8-10:1 ratio of [2,3]:[1,2]
rearrangement products was observed when the reaction temperature was maintained at -78 °C.10,11 The
diastereoselectivity, i.e. 5-8:6-S, for the [2,3] Wittig rearrangement was 12:1, as determined by 1H NMR. It
is worthwhile to note that after this rearrangement 4-R (recovered largely unchangedlz) and7,as well as a
minor amount of their respective enantiomers, were removed by silica gel chromatography. Unfortunately, we
were unable to separate 6-S from 5-8 at this point. Conversion of the oxazolines 5-S and 6-S to their iminium
salts, followed by base hydrolysis, 13 furnished the corresponding a-hydroxy acids. The yields associated with
hydride-reduction of these acids under a variety of conditions were uniformly poor; therefore the a-hydroxy acids
were first converted into the corresponding a-hydroxy methyl esters, which were then cleanly reduced to the

corresponding diols.
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Scheme 2. Reagents and Reaction conditions. a. H2, Noyori's catalysis, MeOH. b. KH, DME,
2-chloromethyloxazoline. ¢. n-BuLi, THF, followed by silica gel column chromatography. d. 1. Mel, DMSO.
2. KOH, Hzo 3. MeOH, p-TsOH 4. LAH, Et0. 5. 3,5-(NO2)2C6¢H3COCl, pyr, DMAP followed by
fractional recrystallization. 6. MeOH, NaOH, H0. 7. TBSOTY, 2,6-lutidine, CH2Cl>.
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In order to obtain enantiomerically pure 8-S, it was necessary to remove approximately 8% of the
undesired C.9-diastereomeric diol and its enantiomer as well as to increase the enantiomeric excess of 8-S from
its current value of 90%. Derivatization of impure 8-S to the bis-3,5-dinitrobenzoate, followed by two fractional
recrystallizations, afforded enantiomerically pure 9-S (mp 159-160 °C). Base-hydrolysis of this bis-benzoate,
gave enanuomencauy pure diol 8-8 ({a]D -45° (c 1.3, CHCls)) in 66% overall yieid from impure 8-S. !H and
19 NMR analysis of the C.10 Mosher ester of 8-S confirmed it to be pure. Conversion of 8-S to the bis(ters-

butyldimethylsilyl)ether 10-S was achieved under the standard conditions.

With enantiomerically pure material in hand, we continued functionalization of the C-ring (Scheme 3). 14
Allylic oxidation of 10-S by PDC/tert-butyl hydroperoxidel3 furnished the enone 11-S in 78% yield (90% yield
based on recovered starting material). Addition of 11-S to a THF solution of higher order vinyl cuprate, 16
followed by TMSCI quench, afforded 12-S in a 16:1 diastereoselectivity. Incorporation of the C.16 carbon was
originally planned via trapping of formaldehyde or its synthetic equivalent with the enolate resulting from the
conjugate addition. However, several attempts provided irreproducible results. This difficulty was overcome by
using the ene-type chemistry recently developed by Yamamoto. Addition of 12-S to a solution of 1,3,5-trioxane
in the presence of the Yamamoto MAPH reagent, 17 followed by acid hydrolysis, cleanly gave the p-hydroxy
ketone 13-8 in 60% yield from 11-S. Selectride reduction of 13-8, followed by acetonide formation,
furnished the C-ring precursor 14-S ([a]D -6.4° (¢ 1.3, CHCI3))18 in 60% yield. The structure of 14-S was
established on comparison with a racemic sample prepared via a different route. 14

7880
05 o
a ) b
— ——
()

10-8 : 11-8

.° l"'g

Scheme 3. Reagents and Reaction conditions. a. PDC, Celite, +-BuOOH, PhH.
b. (CH2=CH)»Cu(CN)Li2, THF, followed by TMSCVEt3N. c. 1. MAPH, 1,3,5-trioxane, CH2Clp. 2. HCI,
H20. d. 1. LS-Selectride, Et0, followed by H202/ag. NaOH work-up. 2. 2,2-(CH30)2CH(CH3),, p-TsOH.

In summary, the enantiomerically pure C-ring precursor 14-S of taxicins-I and -II was synthesized in 14
steps from (§)-3-methyl-2-cyclohexen-1-ol (90% ee). This synthesis was routinely carried out on a scale of 25-
50 grams of 1-S. Efforts for conversion of 14-S to O-cinnamoyltaxicins-I and -II are in progress in this
laboratory.
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1H NMR of 14-S (CDCl3; 500 MHz): 8 5.47 ppm (1H, dt, J=17.0, 10.0 Hz), 5.19 (1H, dd, J=11.0,
2.0), 5.10 (1H, dd, J=17.0, 2.0), 4.13 (1H, d, J=2.0), 3.98 (1H, dd, J=15.0, 8.0), 3.87 (1H, dd,
J=12.0, 3.0), 3.79 (1H, d, J=12.0), 3.51 (2H, m), 2.86 (1H, dd, J= 10.5, 10.0), 1.63 (3H, m), 1.44
(3H, s) 1.39 (3H, s), 1.31 (1H, m), 1.24 (1H, d, J=12.0), 0.92 (3H, s), 0.90 (94, s), 0.89 (9H, s),
0.08 (3H, s), 0.06 (3H, s), 0.05 (3H, s), 0.03 (3H, s).
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