Charge Effects in Photoinduced Electron-Transfer Reactions between [Ru(bpy)₃]²⁺ and Viologen Derivatives Taisuke Hamada,* Masaya Tsukamoto, Hiroshi Ohtsuka, and Shigeyoshi Sakaki* Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555 (Received February 23, 1998) Photoexcited *[Ru(bpy)₃]²⁺ is oxidatively quenched by methylviologen (MV²⁺) and 1,1'-bis(2-carboxyethyl)-4,4'-bipyridinium (BCEBP²⁺) with a similar rate constant at pH 2.2; $k_{\rm q}^{\rm obs} = 1.48 \times 10^9$ and 1.58×10^9 mol⁻¹ dm³ s⁻¹ (30 °C) for MV²⁺ and BCEBP²⁺, respectively. However, *[Ru(bpy)₃]²⁺ is much more slowly quenched by MV²⁺ than by BCEBP⁰ at pH 5.0, where the superscript "0" represents that BCEBP is neutral; $k_{\rm q}^{\rm obs} = 1.01 \times 10^9$ and 1.74×10^9 mol⁻¹ dm³ s⁻¹ for MV²⁺ and BCEBP⁰, respectively. The reverse electron-transfer reaction between [Ru(bpy)₃]³⁺ and one-electron-reduced ·BCEBP⁺ ($k_{\rm rev}^{\rm obs} = 3.33 \times 10^9$ mol⁻¹ dm³ s⁻¹) proceeds slightly more rapidly than the reaction between [Ru(bpy)₃]³⁺ and ·MV⁺ ($k_{\rm rev}^{\rm obs} = 2.80 \times 10^9$ mol⁻¹ dm³ s⁻¹) at pH 2.2 (30 °C), while the former reaction ($k_{\rm rev}^{\rm obs} = 5.85 \times 10^9$ mol⁻¹ dm³ s⁻¹) proceeds 2-times as rapidly as the latter reaction ($k_{\rm rev}^{\rm obs} = 2.74 \times 10^9$ mol⁻¹ dm³ s⁻¹) at pH 5.0. These differences at pH 5.0 between MV²⁺ and BCEBP⁰ are interpreted in terms of charge effects on the diffusion and diffusional dissociation of an exciplex and an encounter complex. The electron-transfer reactions in the exciplex and the encounter complex have been analyzed according to Marcus theory. The difference in an electronic coupling matrix element ($H_{\rm rp}$) between MV²⁺ and BCEBP²⁺ or ⁰ is discussed in terms of the charge effects and steric effects. Tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)₃]²⁺, has been actively investigated so far, because protons in water can be successfully photoreduced to hydrogen gas with this complex, as is well-known.^{1—5)} This photocatalytic reaction consists of many elementary steps: Namely, the photoexcitation of [Ru(bpy)₃]²⁺ yields the metal-to-ligand charge-transfer triplet excited state (³MLCT) of [Ru(bpy)₃]²⁺ (the ³MLCT excited state of [Ru(bpy)₃]²⁺ is represented with *[Ru(bpy)₃]²⁺, hereafter), the deactivation of *[Ru(bpy)₃]²⁺; the formation of an encounter complex, charge separation, and back electron transfer.^{1,6)} Detailed knowledge of their reaction rates is of crucial importance for a good understanding of the photoinduced electron-transfer reaction of [Ru(bpy)₃]²⁺ and finding an efficient photoenergy conversion system with [Ru(bpy)₃]²⁺. In order to effectively perform the photoreduction of MV²⁺, several interesting attempts have been reported.^{7–13)} In those attempts, polyelectrolytes, ^{7,8)} micelles, ^{9–11)} bilayers, ¹²⁾ and charged colloids ¹³⁾ were employed to suppress back electron transfer and/or to accelerate the charge separation by a coulombic repulsion between one electron reduced viologen and the charged aggregate including the ruthenium(III) bipyridine complex. Although such a coulombic repulsion would suppress the oxidative quenching of a photoexcited ruthenium(II) bipyridine complex by viologen, the photoreduction of viologen was certainly accelerated in those attempts. This results suggests that the suppression of back electron transfer and/or the acceleration of charge separation occurs to a greater extent than does the suppression of oxidative quenching. However, the details are still ambiguous. In this regard, it is worth clarifying how elementary steps, such as encounter complex formation, charge separation, and back electron transfer are influenced by the columbic interaction. Coulombic effects have been investigated in photoin-duced electron-transfer reactions between phenotiazines and viologens¹⁴⁾ and between zinc porphyrin and methylviologen.¹⁵⁾ In the above-mentioned elementary processes of the photoinduced electron-transfer reaction between [Ru-(bpy)₃]²⁺ and viologens, however, coulombic effects were not investigated in detail, to our knowledge, whereas quenching and reverse electron-transfer reactions between [Ru-(bpy)₃]²⁺ and viologen have been investigated in detail in several studies.^{16,17)} In the present work, photoinduced electron-transfer reactions of $[Ru(bpy)_3]^{2+}$ with methylviologen (MV²⁺) and 1,1'bis(2-carboxyethyl)-4,4'-bipyridinium (BCEBP²⁺) were investigated at pH 2.2¹⁸⁾ and 5.0. Although BCEBP¹⁹⁾ is 2+ positively charged at pH 2.2, it is neutral at pH 5.0, since its pK_a is about 3.7, as described below. On the other hand, MV²⁺ has 2+ charges at both pH regions. We can thus expect to shed clear light on the charge effects by comparing the electron-transfer reactions between MV²⁺ and BCEBP²⁺ at pH 2.2 and 5.0. We mainly performed here: (1) a measurement of the reaction rate constants of the quenching and reverse electron-transfer reactions, (2) estimated the reorganization energy (λ) and the electronic coupling matrix element ($H_{\rm m}$) based on Marcus theory, ^{20,21)} and (3) investigated the charge effects in the quenching and reverse electron-transfer reactions and H_{rp} . The main purpose of this work was to clearly elucidate the origin of charge effects in photoinduced electron-transfer reaction between [Ru(bpy)₃]²⁺ and viologen derivatives. ## **Experimental** $[Ru(bpy)_3]Cl_2$ was synthesized according to the literature²²⁾ and its purity was ascertained by elemental analysis. Found: C, 49.31; H, 4.46; N, 11.51%. Calcd for $C_{30}H_{24}N_6Cl_2Ru \cdot 5H_2O$: C, 49.32; H, 4.69; N, 11.50%. Differential thermal analysis clearly indicated that five water molecules were involved in the crystal. 1,1'-bis(2-carboxyethyl)-4,4'-bipyridinium dichloride, [BCEBP]Cl₂ was synthesized from 4,4'-bipyridine and acrylic acid in dry chloroform²³⁾ and its purity was ascertained by elemental analysis. Found: C, 50.82; H, 4.94; N, 7.41%. Calcd for $C_{16}H_{18}N_2O_4Cl_2$: C, 51.48; H, 4.86; N, 7.50%. Commercially available methylviologen (Nakalai Tesque Co., Ltd. guaranteed reagent grade) was used without further purification. The absorption spectra were measured with a spectrophotometer (Hitachi 150-20). The lifetime of *[Ru(bpy)₃]²⁺ was measured with a time-resolved fluorometer (Horiba NAES-550) in which the decay of *[Ru(bpy)₃]²⁺ was monitored at the emission maximum. The solution employed for the lifetime measurement was prepared by adding [Ru(bpy)₃]Cl₂ (1.0 or 0.5×10^{-5} mol dm⁻³) and viologen (0.0—1.5×10⁻³ mol dm⁻³) to a buffer solution (HCl/KCl for pH 2.2¹⁸) and HOAc/NaOAc for pH 5.0), followed by deaeration through 5 cycles of freeze-pump-thaw, where the ionic strength was adjusted to 0.1 mol dm⁻³ with KCl. One-electron-reduced viologen was produced when a solution involving $[Ru(bpy)_3]^{2+}$ and viologen was irradiated with 355 nm light from a pulsed Nd: YAG laser (Continuum NY-60). The absorption maximum of one-electron-reduced viologen (605 nm for MV²⁺ and 600 nm for BCEBP²⁺) was monitored with a 150 W Xe-lamp, a monochrometer (JOBIN YVON H-20UV), a photomultiplier (Hamamatsu R955), and a digital oscilloscope (Philips PM3350A). The solution used for this reaction was prepared in the same way as described above, while concentrations of $[Ru(bpy)_3]Cl_2$ and viologen were different from the above; $[Ru(bpy)_3]^{2+} = 1.0 - 8.0 \times 10^{-4}$ mol dm⁻³ and $[viologen] = 1.0 - 4.0 \times 10^{-3}$ mol dm⁻³. Measurements were repeated 30—100 times for 3 to 5 solutions prepared independently. The molar extinction coefficient (ε) of one-electron-reduced viologen was measured by monitoring the absorption maxima of viologen and its one-electron-reduced viologen radical, where iron powder was used to produce a one-electron-reduced viologen radical. The solution used for this measurement was deaerated by passing N_2 gas for 10 min. The determined ε is $11000~cm^{-1}~mol^{-1}~dm^3$ ($\lambda_{max}=605~nm$) for $\cdot MV^+$ and $13500~cm^{-1}~mol^{-1}~dm^3$ ($\lambda_{max}=600~nm$) for $\cdot BCEBP^-$ at pH 5.0. pK_a of BCEBP²⁺ was spectroscopically determined to be 3.7, where the shift of λ_{max} was plotted against pH. From this result, BCEBP is considered to be neutral at pH 5.0. ## **Results and Discussion** Quenching of ³MLCT-Excited *[Ru(bpy)₃]²⁺. The quenching reaction of *[Ru(bpy)₃]²⁺ was carried out at both pH 2.2 and 5.0^{18} with MV²⁺ and BCEBP,¹⁹⁾ where the excited-state lifetime (τ) was measured as a function of the concentration of MV²⁺ and BCEBP.²⁴⁾ As shown in Fig. 1, a plot of τ_0/τ vs. the quencher concentration yields a good linear relation, as expected from the Stern–Volmer relationship, where τ represents the lifetime and subscript "0" represents (A) pH 2.2 (B) pH 5.0 Fig. 1. τ_0/τ of $[\text{Ru}(\text{bpy})_3]^{2+}$ vs. concentration of methylviologen (MV²⁺) or 1,1'-bis(2-carboxyethyl)-4,4'-bipyridinium (BCEBP). (A) HCI/KCl buffer at pH 2.2 (μ = 0.1), (B) HOAc/NaOAc buffer at pH 5.0 (μ = 0.1). the absence of a quencher. At pH 2.2, the Stern–Volmer relation for MV^{2+} coincides well with that for BCEBP²⁺ (Fig. 1A), and the quenching rate constant (k_q^{obs}) of MV^{2+} is almost the same as that of BCEBP²⁺ (Table 1). On the other hand, the Stern–Volmer relation is very different between MV^{2+} and BCEBP⁰ at pH 5.0 (Fig. 1B), and k_q^{obs} of MV^{2+} is much smaller than that of BCEBP⁰. Although MV^{2+} is positively charged at both pH 2.2 and 5.0, BCEBP⁰ is neutral at pH 5.0, since p K_a of BCEBP is 3.7. Thus, the k_q^{obs} difference observed at pH 5.0 between MV^{2+} and BCEBP⁰ can be attributed to the charge difference between MV^{2+} and BCEBP⁰, as is discussed below in detail. Table 1. Quenching Reaction Rate Constant $k_{\rm q}^{\rm obs}$ of
Excited State of [Ru(bpy)₃]²⁺ with Methylviologen (MV²⁺) and 1,1'-Bis(2-carboxyethyl)-4,4'-bipyridinium (BCEBP²⁺) at pH 2.2 and 5.0^a) | | $10^{-9} k_{\rm q}^{\rm obs}/{\rm mol}^{-1} {\rm dm}^3 {\rm s}^{-1}$ | | | |------------------|--|-----------------|--| | | pH 2.2 | 5.0 | | | MV ²⁺ | 1.48 ± 0.04 | 1.01 ± 0.02 | | | BCEBP | 1.58 ± 0.02 | 1.75 ± 0.03 | | a) at 30 °C. All of the $k_{\rm q}^{\rm obs}$ values are in the range $1.0-1.8\times10^9$ mol dm⁻³ s⁻¹. Since these $k_{\rm q}^{\rm obs}$ values are near to the diffusion rate constant, we must correct $k_{\rm q}^{\rm obs}$ by taking into consideration the diffusion rate constant. If the overall quenching process is separated into diffusional steps and an electron-transfer step, as shown in Eq. 1, the observed quenching rate constant ($k_{\rm q}^{\rm obs}$) is given by Eq. 2 through an approximation $${^*[Ru(bpy)_3]^{2+} + V_{oxid}} \xrightarrow{k_{dif}^q} {^{*}Ru(bpy)_3^{2+} \cdots V_{oxid}]}$$ $$\xrightarrow{k_q^{cor}} {^{*}Ru(bpy)_3^{3+} \cdots V_{red}]}$$ $$(1)$$ of the steady-state concentration of the exciplex [*Ru-(bpy) $_3^{2+}\cdots V_{oxid}$], where k_{dif}^q and k_{-dif}^q are the diffusion rate constant for the exciplex formation and the diffusional dissociation rate constant of the exciplex, respectively. $$k_{\rm q}^{\rm obs} = \frac{k_{\rm dif}^{\rm q} k_{\rm q}^{\rm cor}}{k_{\rm -dif}^{\rm q} + k_{\rm q}^{\rm cor}}.$$ (2) According to Debye–Smoluchowski, the diffusion rate constant ($k_{\rm dif}$) of a charged particle was estimated using Eq. 3a.²⁶⁾ The diffusional dissociation rate constant ($k_{\rm dif}$) was given by Eq. 3b, considering Eigen's treatment of the diffusional dissociation of the encounter complex.²⁷⁾ Although several different expressions were reported for $\omega(r,\mu)$,^{26,28)} we adopted here Eq. 3c, according to Chiorboli et al.,²⁶⁾ since they applied this equation to estimating the diffusion rate constant in the oxidative quenching of *[Ru(bpy)₃]²⁺ by MV²⁺; $$k_{\text{dif}} = \frac{2k_{\text{B}}TN}{3000\eta} \left(2 + \frac{r_{\text{A}}}{r_{\text{B}}} + \frac{r_{\text{B}}}{r_{\text{A}}}\right) \frac{1}{\alpha \int_{\alpha}^{\infty} r^{-2} \exp[\omega(r,\mu)/k_{\text{B}}T]dr},$$ (3a) $$k_{-\mathrm{dif}} = \frac{k_{\mathrm{B}}T}{2\pi\eta} \frac{1}{\alpha^2} \left(\frac{1}{r_{\mathrm{B}}} + \frac{1}{r_{\mathrm{A}}}\right) \frac{\exp[\omega(r,\mu)/k_{\mathrm{B}}T]}{\alpha \int_{\alpha}^{\infty} r^{-2} \exp[\omega(r,\mu)/k_{\mathrm{B}}T]\mathrm{d}r}, (3b)$$ $$\omega(r,\mu) = \frac{Z_{A}Z_{B}}{2Dr} \left(\frac{\exp(\beta\sigma_{A}\sqrt{\mu})}{1 + \beta\sigma_{A}\sqrt{\mu}} + \frac{\exp(\beta\sigma_{B}\sqrt{\mu})}{1 + \beta\sigma_{B}\sqrt{\mu}} \right) \exp(-\beta r\sqrt{\mu}),$$ (3c) $$\beta = \{8\pi N e^2 / (1000Dk_B T)\}^{1/2},\tag{3d}$$ where A and B represent *[Ru(bpy)₃]²⁺ and viologen, respectively, α is the sum of r_A (diameter of [Ru(bpy)₃]²⁺) and r_B (diameter of quencher), σ_A is the sum of the diameters of [Ru(bpy)₃]²⁺ and a dominant counter ion, and μ is the ionic strength. To estimate $k_{\rm dif}$ and $k_{\rm -dif}$ using Eq. 3, we need values of r_A , r_B , η (biscosity of solvent), and D (dielectric constant of solvent). r_A and r_B were estimated using the following approximation in the usual way;²⁹⁾ $$r = (d_x d_y d_z)^{1/3},$$ where d_x , d_y , and d_z are the diameters of the molecule along the x, y, and z axes, respectively, which were evaluated by the MM2 calculation.³⁰⁾ The r_A value was estimated to be 7.1 Å³¹⁾ and the r_B value was 3.6 Å for MV²⁺, 4.56 Å for BCEBP²⁺ (at pH 2.2), and 4.44 Å for BCEBP⁰ (at pH 5.0). The molecular size of BCEBP depends on the pH, since BCEBP takes a zwitter ion form at pH 5.0 (vide infra), but a dication form at pH 2.2. The values of η and D were taken from Refs. 29 and 32 (see Ref. 33 for their values). Several approximations for a $k_{\rm dif}$ estimation have been reported. For instance, $k_{\rm dif}$ is approximately represented by considering the Brønsted–Bjerrum ionic strength dependence, as follows:²⁷⁾ $$k_{\rm dif} = k_{\rm dif} (\mu = 0) \exp \left(\frac{\omega(\alpha, 0)}{k_{\rm B}T} + \frac{\beta \alpha \sqrt{\mu}}{1 + \beta \alpha \sqrt{\mu}} \right),$$ (4a) $$k_{\rm dif}(\mu = 0) = \frac{2k_{\rm B}TN}{3000\eta} \left(2 + \frac{r_{\rm A}}{r_{\rm B}} + \frac{r_{\rm B}}{r_{\rm A}} \right) \frac{\omega(\alpha, 0)/k_{\rm B}T}{\exp[\omega(\alpha, 0)/k_{\rm B}T] - 1}. \tag{4b}$$ In this case, k_{-dif} is given by Eq. 4c through the well-known Fuoss equation (Eq. 4d), which represents the stability of an ion-pair adduct:³⁴⁾ $$k_{-\text{dif}} = \frac{k_{\text{B}}T}{2\pi\eta} \frac{1}{\alpha^2} \left(\frac{1}{r_{\text{A}}} + \frac{1}{r_{\text{B}}} \right) \frac{\omega(\alpha, 0)/k_{\text{B}}T}{1 - \exp[-\omega(\alpha, 0)/k_{\text{B}}T]}, \quad (4c)$$ $$K = \frac{k_{\text{dif}}}{k_{\text{orb}}} = \frac{4\pi N\alpha^3}{3000} \exp[-\omega(\alpha, \mu)/k_{\text{B}}T], \tag{4d}$$ $$\omega(\alpha,0) = (Z_A Z_B e^2 / D\alpha). \tag{4e}$$ Also, the empirical Eq. 5a was proposed for k_{dif} , where $k_{-\text{dif}}$ is given by Eq. 5b through Eq. 4d: $$k_{\rm dif} = \frac{2k_{\rm B}TN}{3000\eta} \left(2 + \frac{r_{\rm A}}{r_{\rm B}} + \frac{r_{\rm B}}{r_{\rm A}}\right) \frac{\omega(\alpha,\mu)/k_{\rm B}T}{\exp[\omega(\alpha,\mu)/k_{\rm B}T] - 1}, \tag{5a}$$ $$k_{-\text{dif}} = \frac{k_{\text{B}}T}{2\pi\eta} \frac{1}{\alpha^2} \left(\frac{1}{r_{\text{A}}} + \frac{1}{r_{\text{B}}} \right) \frac{\omega(\alpha,\mu)/k_{\text{B}}T}{1 - \exp[-\omega(\alpha,\mu)/k_{\text{B}}T]}.$$ (5b) In our work, we numerically integrated Eq. 3a over the range of $r = (r_A + r_B)$ to 10000 Å, instead of using Eqs. 4 and 5. However, the $k_{\rm dif}$ and $k_{\rm -dif}$ values estimated using Eqs. 4 and 5 are also given in Table 2, to compare Eq. 3 with Eqs. 4 and 5. Although $k_{\rm q}^{\rm cor}$ of BCEBP is almost the same in all of these equations, $k_{\rm q}^{\rm cor}$ of MV²⁺ and BCEBP²⁺ increase in the order Eq. 3 < Eq. 4 < Eq. $5,^{35}$ as shown in Table 2. Thus, we adopted Eq. 3 here. Since the diffusion rate constant $(6.6-6.7\times10^9 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$; see Table 2) is much larger than the deactivation rate constant of *[Ru(bpy)₃]²⁺ ($k_{\text{deact}} = 1.86\times10^6 \text{ s}^{-1}$ at 30 °C), *[Ru(bpy)₃]²⁺ can collide and form an adduct with viologen before deactivation. This means that the quenching reaction proceeds through an exciplex formation, as shown in Eq. 1. Using these $k_{\text{dif}}^{\text{q}}$ and $k_{-\text{dif}}^{\text{q}}$ values, the rate constant $(k_{\text{q}}^{\text{cor}})$ of electron transfer in the exciplex was estimated according | | $10^{-9} k_{\rm dif}^{\rm q}/{\rm mol}^{-1} {\rm dm}^3 {\rm s}^{-1}$ | | $10^{-9} k_{-\text{dif}}^{\text{q}}/\text{s}^{-1}$ | | $10^{-9} k_{\rm q}^{\rm cor}/{\rm s}^{-1}$ | | |--------------|--|--------|--|--------|--|-------------------| | | pH 2.2 | pH 5.0 | pH 2.2 | pH 5.0 | pH 2.2 | pH 5.0 | | Eq. 3 | | | | | | | | MV^{2+} | 6.59 | 6.51 | 6.15 | 6.26 | 1.78 ± 0.06 | 1.15 ± 0.03 | | BCEBP | 6.64 | 8.91 | 4.09 | 2.30 | 1.28 ± 0.02 | 0.556 ± 0.011 | | Eq. 4 | | | | | | | | MV^{2+} | 5.25 | 5.16 | 4.91 | 4.97 | 1.92 ± 0.07 | 1.21 ± 0.03 | | BCEBP | 5.42 | 8.86 | 3.34 | 2.28 | 1.37 ± 0.03 | 0.557 ± 0.011 | | Eq. 5 | | | | | | | | MV^{2+} | 7.62 | 7.62 | 8.68 | 8.68 | 2.09 ± 0.07 | 1.33 ± 0.03 | | BCEBP | 7.81 | 8.86 | 5.92 | 2.28 | 1.50 ± 0.03 | 0.557 ± 0.011 | Table 2. Diffusion Rate Constant $(k_{\text{dif}}^{\text{q}})$, Diffusional Dissociation Rate Constant $(k_{-\text{dif}}^{\text{cor}})$, and Quenching Rate Constants $(k_{\text{q}}^{\text{cor}})$ with the Correction of Diffusion Rate^{a)} a) 30 °C. to Eq. 2. Interestingly, $k_{\rm q}^{\rm cor}$ of MV²⁺ is larger than that of BCEBP at both pH 2.2 and 5.0, independent of the viologen's charge. Since the redox potential of MV²⁺ is more negative than that of BCEBP²⁺ at both pHs,³⁶⁾ the redox potential is not responsible for the larger $k_{\rm q}^{\rm cor}$ of MV²⁺. Thus, we need to investigate the electron transfer in the exciplex, based on Marcus theory.^{20,21)} Analysis of Electron-Transfer Reaction in the Exciplex by Marcus Theory. According to Marcus theory, 20,21) the rate constant of the electron-transfer reaction is given by Eq. 6: $$k = \frac{2\pi}{\hbar} \frac{H_{\rm rp}^2}{(4\pi k_{\rm B} T \lambda)^{1/2}} \exp\left[-\frac{(\Delta G^{\circ} + \lambda)^2}{4\lambda k_{\rm B} T}\right],\tag{6}$$ where $H_{\rm rp}$ is the electronic coupling matrix element, λ is the reorganization energy, and ΔG° is the Gibbs energy change. From this equation, the following Eq. 7 is easily obtained: $$\ln (T^{1/2} k) = \ln \frac{2\pi}{\hbar} \frac{H_{\rm rp}^2}{(4\pi k_{\rm B} \lambda)^{1/2}} - \frac{(\Delta G^{\circ} + \lambda)^2}{4\lambda k_{\rm B} T}.$$ (7) This Eq. 7 indicates that a linear relationship must exist between $\ln(T^{1/2} k)$ and 1/T.³⁷⁾ Actually, the linear relation is experimentally obtained between $\ln(T^{1/2} k_{\rm q}^{\rm cor})$ and 1/T, as shown in Fig. 2. From its intercept and slope, one can estimate $H_{\rm rp}$ and λ , using the experimentally measured ΔG° value: ΔG° is -0.19 eV at pH 2.2 and -0.18 eV at pH 5.0 when the quencher is MV²⁺, and -0.28 eV at pH 2.2 and -0.19 eV at pH 5.0 when the quencher is BCEBP, where the redox potential of *[Ru(bpy)₃]²⁺ was taken to be -0.84 eV.³⁸⁾ These experimentally estimated λ and $H_{\rm rp}$ are listed in Table 3. The most important result to be noted is that $H_{\rm rp}$ of BCEBP is similar to that of MV²⁺ at pH 2.2, but much smaller than that of
MV²⁺ at pH 5.0. This is a main reason that $k_{\rm q}^{\rm cor}$ of BCEBP is similar to that of MV²⁺ at pH 2.2, but much smaller than that of MV²⁺ at pH 5.0, since the other term, $(1/\lambda)^{1/2} \exp{\{-(\Delta G^{\circ} + \lambda)^2/(4\lambda k_{\rm B}T)\}}$, of BCEBP^{2+ or 0} is similar to that of MV²⁺ at pH 2.2, but much larger than that of MV²⁺ at pH 5.0. The $H_{\rm rp}$ difference at pH 5.0 between MV²⁺ and BCEBP⁰ is easily interpreted in terms of the Fig. 2. $\ln (T^{1/2} k_{\rm q}^{\rm cor})$ vs. 1/T, where $k_{\rm q}^{\rm cor}$ is the electron-transfer rate constant in the exciplex after the correction of diffusion rate. (a) MV²⁺ at pH 2.2, (b) BCEBP²⁺ at pH 2.2, (c) MV²⁺ at pH 5.0, (d) BCEBP⁰ at pH 5.0. structure of BCEBP. Since pK_a of BCEBP is 3.7, BCEBP²⁺ has 2+ positive charges at pH 2.2, like MV²⁺; therefore, the geometry of BCEBP²⁺ is considered to be similar to that of MV²⁺, except for the $-CH_2CH_2COOH$ groups of BCEBP²⁺, as shown in Fig. 3. Here, we should remember that the 4,4'-bipyridinium moiety must approach the bpy ligand to cause an electron transfer from *[Ru(bpy)₃]²⁺ to viologen. Since the 4,4'-bipyridinium moiety of BCEBP²⁺ is similar to MV²⁺ at pH 2.2, BCEBP²⁺ can approach bpy to a similar extent to MV²⁺, which leads to a similar H_{rp} value in MV²⁺ and BCEBP²⁺ at this pH.³⁹⁾ However, a completely different situation appears when the pH changes to pH 5.0 from 2.2. Since deprotonation of carboxylic acid occurs at pH 3.7, BCEBP becomes neutral at pH 5.0. Thus, we might expect that neutral BCEBP more closely approaches $[Ru(bpy)_3]^{2+}$ than does MV^{2+} , because of the absence of a coulombic repulsion. This would lead | | pH 2.2 | | pH 5.0 | | |---|----------------------|----------------------|----------------------|----------------------| | | MV ²⁺ | BCEBP ²⁺ | MV ²⁺ | BCEBP ⁰ | | (a) Quenching reaction | | | | | | $H_{\rm rp}/{\rm eV}$ | 0.012 | 0.012 | 0.027 | 0.0064 | | λ / eV | 1.1 | 1.3 | 1.3 | 1.1 | | $\Delta G^{\circ}/\mathrm{eV}$ | -0.19 | -0.28 | -0.18 | -0.19 | | $(\Delta G^{\circ} + \lambda)/\text{eV}$ | 0.91 | 1.00 | 1.10 | 0.91 | | $(1/\lambda)^{1/2} \exp[-(\Delta G^{\circ} + \lambda)^2/(4\lambda k_B T)]/eV^{1/2}$ | 6.3×10^{-4} | 3.6×10^{-4} | 7.3×10^{-5} | 6.3×10^{-4} | | (b) Reverse electron-transfer reaction | | | | | | $H_{\rm rp}/{ m eV}$ | 0.023 | 0.016 | 0.018 | 0.0091 | | λleV | 0.87 | 0.84 | 0.89 | 0.90 | | ΔG° /eV | -1.72 | -1.64 | -1.72 | -1.70 | | $(\Delta G^{\circ} + \lambda)/\text{eV}$ | -0.83 | -0.76 | -0.81 | -0.80 | | $(1/\lambda)^{1/2} \exp[-(\Delta G^{\circ} + \lambda)^2/(4\lambda k_B T)]/eV^{1/2}$ | 4.8×10^{-4} | 1.4×10^{-3} | 8.1×10^{-4} | 1.0×10^{-3} | Table 3. Electron Coupling Matrix Element $(H_{\rm rp})$ and Reorganization Energy (λ) , ΔG° , and $(1/\lambda)^{1/2} \exp{[-(\Delta G^{\circ} + \lambda)^2/4\lambda k_{\rm B}T]^{\rm a})}$ (B) Protonated 1,1'-Bis(2-carboxyethyl)-4,4'-bipyridine (C) Deprotonated 1,1'-Bis(2-carboxyethyl)-4,4'-bipyridine (D) One-electron reduced 1,1'-Bis(2-carboxyethyl)-4,4'-bipyridine (-BCEBP') Fig. 3. CPK models of MV²⁺ and BCEBP^{2+,0,or -}. to the larger H_{rp} of BCEBP⁰ than that of MV²⁺. However, the $H_{\rm rp}$ value of BCEBP⁰ is much smaller than that of MV²⁺ (vide supra), against the above expectation. One plausible reason for the small H_{rp} value is a steric repulsion. Since the deprotonated BCEBP involves positively charged quarterly ammonium cation moieties and negatively charged carboxylato groups, BCEBP would take a zwitter ion form, in which the deprotonated carboxylato group takes a position near to the bipyridinium plane due to the coulombic attraction (Fig. 3C). This form would suppress the approach of BCEBP⁰ to bpy through a steric repulsion by the -CH₂CH₂COO⁻ moieties. As a result, H_{rp} of BCEBP⁰ becomes much smaller than that of MV²⁺ at pH 5.0. From the above discussion, it should be concluded here that although the steric effect is a determining factor for H_{rp} , the charge of viologen little influences H_{rp} , against the expectation that neutral BCEBP⁰ more easily approaches *[Ru(bpy)₃]²⁺ in the exciplex than does MV²⁺. Charge Effects in a Quenching Reaction. We have now completed all preparations for discussing the charge effects in the quenching reaction. At pH 2.2, both MV²⁺ and BCEBP²⁺ have a 2+ charge; therefore, the diffusion rate constant ($k_{\rm dif}^{\rm q}$) is similar in MV²⁺ and BCEBP²⁺. The diffusional dissociation rate constant ($k_{\rm dif}^{\rm q}$) of the exciplex of BCEBP²⁺ is slightly smaller than that of MV²⁺, probably because the molecular size of BCEBP²⁺ is slightly larger than that of MV²⁺. Though $k_{\rm q}^{\rm cor}$ of BCEBP²⁺ is slightly smaller than that of MV²⁺, the smaller $k_{\rm dif}^{\rm q}$ of BCEBP²⁺ mostly compensates for the smaller $k_{\rm q}^{\rm cor}$. As a result, the quenching reaction occurs with a similar rate constant in these two viologens. At pH 5.0, BCEBP⁰ is neutral, unlike MV²⁺. As a result, the diffusion rate constant $(k_{\rm dif}^{\rm q})$ of BCEBP⁰ is 1.4-times as large as that of MV²⁺, and the diffusional dissociation rate constant $(k_{\rm -dif}^{\rm q})$ of BCEBP⁰ is about one-third $k_{\rm -dif}^{\rm q}$ of MV²⁺. Although $k_{\rm q}^{\rm cor}$ of BCEBP⁰ is about one-half $k_{\rm q}^{\rm cor}$ of MV²⁺, the larger $k_{\rm dif}^{\rm q}$ and the smaller $k_{\rm -dif}^{\rm q}$ of BCEBP⁰ lead to a larger $k_{\rm q}^{\rm obs}$ of BCEBP⁰ than that of MV²⁺. Thus, although $k_{\rm q}^{\rm cor}$ little influences the overall quenching reaction rate, the diffusion and diffusional dissociation are responsible for the more rapid quenching of *[Ru(bpy)₃]²⁺ by BCEBP than that by MV²⁺. In conclusion, there is no need to consider the charge effects on the electron transfer in the exciplex. This is because H_{rp} depends not on the charge of viologen, but on the steric factor. Thus, the charge effects must be taken into consideration in diffusion and diffusional dissociation; therefore, charge effects on the quenching reaction might be easily predicted by an intuitive consideration of the coulombic interaction on diffusion and diffusional dissociation. Reverse Electron-Transfer Reaction between [Ru-(bpy)₃]³⁺ and One-Electron-Reduced Viologen. When a solution of $[Ru(bpy)_3]^{2+}$ and viologen is irradiated with pulsed light of 355 nm, a one-electron-reduced viologen radical (\cdot V_{red}) is transiently produced. \cdot V_{red} rapidly reacts with one-electron-oxidized $[Ru(bpy)_3]^{3+}$ to yield $[Ru-(bpy)_3]^{2+}$ and viologen, as shown in Fig. 4. This reverse electron-transfer reaction proceeds through an intermediate $[Ru(bpy)_3^{3+}\cdots V_{red}]$, as shown in Eq. 8. $$\begin{split} \left[Ru(bpy)_3\right]^{3+} + \cdot V_{red} &\rightarrow \left[Ru(bpy)_3^{3+} \cdots \cdot V_{red}\right] \\ &\rightarrow \left[Ru(bpy)_3\right]^{2+} + V_{oxid}. \end{split} \tag{8}$$ This intermediate is considered to be the same as the encounter complex formed through a one-electron-transfer in the exciplex [*Ru(bpy) $_3^{2+}\cdots V_{oxid}$] (see Eq. 1). Thus, an investigation of the reverse electron-transfer reaction provides knowledge about how the coulombic interaction influences the charge separation. Since the reverse of the absorbance at λ_{\max} of $\cdot V_{\text{red}}$ is linearly dependent on the reaction time (Fig. 4), the rate constant $(k_{\text{rev}}^{\text{obs}})$ of this reaction is obtained by multiplying the slope by the molecular extinction coefficient of the reduced Fig. 4. Decay curves of reduced ·MV⁺ and ·BCEBP⁻ generated by laser flash photolysis of $[Ru(bpy)_3]^{2+a}$ a) HOAc/NaOAc buffer (pH 5.0, μ = 0.1) at 30 °C. b) Absorbance at 605 nm for ·MV⁺ and 600 nm for ·BCEBP⁻. viologen, where the subscript "rev" represents the reverse electron-transfer reaction. These $k_{\rm rev}^{\rm obs}$ values are given in Table 4. $k_{\rm rev}^{\rm obs}$ of ·BCEBP is slightly larger than that of ·MV⁺ at pH 5.0, where ·BCEBP without a superscript is a general representation for protonated ·BCEBP⁺ (at pH 2.2) and deprotonated ·BCEBP⁻ (at pH 5.5). The large $k_{\rm rev}^{\rm obs}$ of ·BCEBP⁻ at pH 5.0 would be attributed to charge effects, as follows: one-electron-reduced ·BCEBP⁻ is negatively charged at pH 5.0, since the carboxyl group is deprotonated at this pH. On the other hand, one-electron-reduced ·MV⁺ is still positively charged at pH 5.0. Thus, ·BCEBP⁻ more easily approaches [Ru(bpy)₃]³⁺ at this pH than does ·MV⁺ due to the coulombic attraction. We examine this difference in more detail below. Since $k_{\text{rev}}^{\text{obs}}$ of $3-6\times10^9$ mol⁻¹ dm³ s⁻¹ is similar to the diffusion rate constant, we need to take into consideration the diffusion rate constant in our discussion. As done for $k_{\text{q}}^{\text{obs}}$, the reverse electron-transfer is separated into diffusional steps and an electron transfer step in the encounter complex (see Eq. 9). The diffusional rate constants, $k_{\text{dif}}^{\text{rev}}$ and $k_{-\text{dif}}^{\text{rev}}$, were evaluated using Eq. 3 for the reaction between [Ru(bpy)₃]³⁺ and one-electron-reduced viologen, ·MV⁺ and ·BCEBP. Then, the rate constant ($k_{\text{rev}}^{\text{cor}}$) for electron transfer $$[Ru(bpy)_{3}]^{3+} + \cdot V_{red} \xrightarrow[\stackrel{k_{dif}^{rev}}{\longleftarrow}]{} [Ru(bpy)_{3}^{3+} \cdots \cdot V_{red}]$$ $$\xrightarrow{\stackrel{k_{rev}^{rev}}{\longleftarrow}} [Ru(bpy)_{3}^{2+} \cdots V_{oxid}] \qquad (9)$$ in the encounter complex was estimated using Eq. 10. These rate constants are summarized in Table 4. $$k_{\text{rev}}^{\text{obs}} = \frac{k_{\text{dif}}^{\text{rev}} k_{\text{rev}}^{\text{cor}}}{k_{\text{-dif}}^{\text{-ev}} + k_{\text{rev}}^{\text{cor}}}.$$ (10) At pH 5.0, $k_{\rm rev}^{\rm cor}$ of ·BCEBP⁻ is about one
half $k_{\rm rev}^{\rm cor}$ of ·MV⁺. However, the diffusion rate constant ($k_{\rm dif}^{\rm rev}$) of ·BCEBP⁻ is 1.4-times as large as that of ·MV⁺, and the diffusional dissociation rate constant ($k_{\rm dif}^{\rm rev}$) of ·MV⁺ is about 4-times as large as that of ·BCEBP⁻. As a result, $k_{\rm rev}^{\rm obs}$ of ·BCEBP⁻ is larger than that of ·MV⁺ at pH 5.0. The large $k_{\rm dif}^{\rm rev}$ and the small $k_{\rm dif}^{\rm rev}$ of ·BCEBP⁻ arise from the coulombic attraction between the positively charged [Ru(bpy)₃]³⁺ and the negatively charged ·BCEBP⁻. At pH 2.2, the diffusion rate constant ($k_{\rm dif}^{\rm rev}$) of ·BCEBP+ is similar to that of ·MV+. However, the electron-transfer rate constant ($k_{\rm rev}^{\rm cor}$) in the encounter complex, [Ru-(bpy) $_3^{3+}\cdots$ ·BCEBP+], is slightly smaller than that of [Ru-(bpy) $_3^{3+}\cdots$ ·MV+] and the diffusional dissociation rate constant ($k_{\rm dif}^{\rm rev}$) of [Ru(bpy) $_3^{3+}\cdots$ ·MV+] is slightly larger than that of [Ru(bpy) $_2^{3+}\cdots$ ·BCEBP+]. Thus, the slightly larger $k_{\rm rev}^{\rm obs}$ of ·BCEBP+ at pH 2.2 is attributed to the smaller $k_{\rm -dif}^{\rm rev}$ of ·BCEBP+, while it is mostly compensated by the slightly larger $k_{\rm rev}^{\rm cor}$ value. It should be noted that the differences in diffusional rate constants, $k_{\rm dif}^{\rm rev}$ and $k_{\rm -dif}^{\rm rev}$, between ·BCEBP and ·MV+ are much smaller at pH 2.2 than those at pH 5.0. This is because both one-electron-reduced ·MV+ and ·BCEBP+ are positively charged at pH 2.2. Analysis of Electron-Transfer Reaction in the En- Table 4. Rate Constant for the Reverse Electron-Transfer Reaction $(k_{\text{rev}}^{\text{obs}})$, Diffusion Rate Constant $(k_{\text{dif}}^{\text{rev}})$, Dissociation Rate Constant $(k_{\text{dif}}^{\text{rev}})$ of Encounter Complex, and Reverse Electron-Transfer Rate Constant $(k_{\text{rev}}^{\text{cor}})$ with the Correction of Diffusion Rate^{a)} | | $10^{-9} k_{\rm rev}^{\rm obs}/{\rm mol}^{-1} {\rm dm}^3 {\rm s}^{-1}$ | | $10^{-9} k_{\rm dif}^{\rm rev}/{\rm mol}^{-1} {\rm dm}^3 {\rm s}^{-1}$ | | $10^{-9} k_{-\text{dif}}^{\text{rev}}/\text{s}^{-1}$ | | $10^{-9} k_{\rm rev}^{\rm cor}/{\rm s}^{-1}$ | | |--|--|--------------------------------|--|--------------|--|--------------|--|------------------------| | | 2.2 | 5.0 | 2.2 | 5.0 | 2.2 | 5.0 | 2.2 | 5.0 | | •MV ⁺
•BCEBP ^{+ or –} | 2.80 ± 0.14
3.33 ± 0.22 | 2.74 ± 0.05
5.85 ± 0.28 | 7.45
7.39 | 7.49
10.8 | 5.34
3.65 | 5.49
1.38 | 3.23 ± 0.24 2.74 ± 0.36 | 3.17±0.10
1.64±0.17 | a) at 30 °C. **counter Complex by Marcus Theory.** We consider here $k_{\text{rev}}^{\text{cor}}$, based on Marcus theory, in order to clarify how much the charge of viologen influences $k_{\text{rev}}^{\text{cor}}$. A good linear relationship between $\ln(T^{1/2} k_{\text{rev}}^{\text{cor}})$ and 1/T was obtained, as shown in Fig. 5. The reorganization energy (λ) and electronic coupling matrix element ($H_{\text{rp}}^{\text{rev}}$) were evaluated from the slope and the intercept,³⁷⁾ where ΔG° was estimated with redox potentials of $[\text{Ru}(\text{bpy})_3]^{2+}$ and viologens (see Table 4 for ΔG°). At pH 5.0, it is noted that $k_{\text{rev}}^{\text{cor}}$ of $\cdot \text{BCEBP}^-$ is much smaller than that of $\cdot \text{MV}^{2+}$. The $(1/\lambda)^{1/2} \exp{[-(\Delta G^{\circ} + \lambda)^2/(4\lambda k_B T)]}$ term of $\cdot \text{BCEBP}^-$ is larger than that of $\cdot \text{MV}^+$, but H_{rp} of $\cdot \text{BCEBP}^-$ is about one half H_{rp} of $\cdot \text{MV}^+$ (Table 3). Thus, the smaller $k_{\text{rp}}^{\text{rev}}$ of $\cdot \text{BCEBP}^-$ is responsible for the smaller $k_{\text{rev}}^{\text{cor}}$ of $\cdot \text{BCEBP}^-$ than that of ·MV⁺. Although ·BCEBP⁻ is expected to easily approach $[Ru(bpy)_3]^{3+}$ because of coulombic attraction, H_{rp}^{rev} of ·BCEBP⁻ is much smaller than that of ·MV⁺, unexpectedly. Thus, the reason for the very small H_{rp}^{rev} of ·BCEBP⁻ is worthy of discussion. Again, it is easily interpreted in terms of the zwitter ion form of ·BCEBP⁻ at pH 5.0, as follows: Even in the one-electron-reduced ·BCEBP⁻, one pyridinium moiety is still positively charged, and interacts with the anionic carboxylato group to take a zwitter-ion form (see Fig. 3D). This $-CH_2CH_2COO^-$ moiety suppresses the approach of ·BCEBP⁻ to the bpy plane of $[Ru(bpy)_3]^{3+}$, because of the steric repulsion. On the other hand, ·MV⁺ can easily approach $[Ru(bpy)_3]^{3+}$, because of the lack of the Fig. 5. $\ln (T^{1/2} k_{\text{rev}}^{\text{cor}}) \text{ vs. } 1/T$, where $k_{\text{rev}}^{\text{cor}}$ is the reverse electron-transfer rate constant in the encounter complex after the correction of diffusion rate. a) MV^{2+} at pH 2.2, (b) BCEBP²⁺ at pH 2.2, (c) MV^{2+} at pH 5.0, (d) BCEBP⁰ at pH 5.0. $-CH_2CH_2COO^-$ moieties. Thus, H_{rp}^{rev} of $\cdot BCEBP^-$ is much smaller than that of $\cdot MV^+$. At pH 2.2, $k_{\rm rev}^{\rm cor}$ of \cdot BCEBP⁺ is slightly smaller than that of \cdot MV⁺. Though the $(1/\lambda)^{1/2}$ exp $[-(\Delta G^{\circ} + \lambda)^2/(4\lambda k_{\rm B}T)]$ term of \cdot BCEBP⁺ is larger than that of \cdot MV⁺ (Table 3), $H_{\rm rp}$ of \cdot BCEBP⁺ is about 30% smaller than that of \cdot MV⁺. Thus, the small $H_{\rm rp}$ is responsible for the small $k_{\rm rev}^{\rm cor}$ of \cdot BCEBP⁺. However, we must notice that the $H_{\rm rp}^{\rm rev}$ difference between \cdot BCEBP⁺ and \cdot MV⁺ is much smaller at pH 2.2 than that at pH 5.0. This is because \cdot BCEBP⁺ takes a similar geometry to that of \cdot MV⁺ at pH 2.2 (remember that \cdot BCEBP⁺ does not take a zwitter ion form at pH 2.2). From these results, it is reasonably concluded that: (1) the electron-transfer rate constant in encounter complexes, $[Ru(bpy)_3^{3+}\cdots MV^+]$ and $[Ru(bpy)_3^{3+}\cdots BCEBP]$, is mainly determined by H_{rp} , and (2) the H_{rp} value depends little on the charge of viologen, but depends much on the steric repulsion. Understanding the Charge Effects on the Overall Photoreduction of Viologen. Here, we try to clarify the reason why the overall photoreduction of viologen is improved by the acceleration of charge separation and/or the suppression of back electron transfer more than the acceleration of quenching. The charge effects clearly appear at pH 5.0, since BCEBP is neutral but MV^{2+} is positively charged. Therefore, we compare here the quenching and back electron-transfer reactions between MV^{2+} and BCEBP⁰ at pH 5.0. Only charge effects on diffusional steps must be examined here, since the electron-transfer reactions in the exciplex and the encounter complex are little influenced by the charge of viologen. In the diffusion step of the quenching reaction, MV^{2+} suffers from a coulombic repulsion with $[Ru(bpy)_3]^{2+}$ and its extent is considered to be proportional to $(2\times2)/r$, as schematically shown in Scheme 1. On the other hand, $BCEBP^0$ does not suffer from a coulombic repulsion. Thus, MV^{2+} is less favorable than $BCEBP^0$, and the difference in charge effects would be approximately represented by $c_1(4/r)$, where c_1 is a proportional coefficient. In the diffusional dissociation step, the difference in the charge effects would be similar to that of the diffusion step, while the proportional coefficient (c_2) would be different from c_1 ; i.e., $c_2(4/r)$. MV^{2+} is also less favorable than $BCEBP^0$ in this term. Thus, the sum of the charge effects is $(c_1+c_2)\times(4/r)$. In the diffusion step of the back electron-transfer reaction, the charge effect would be proportional to $c_1(3\times1)/r$ for \cdot MV⁺ and $c_1\{3\times(-1)\}/r$ for \cdot BCEBP⁻. The diffusional dissociation is also proportional to $c_2(3\times1)/r$ for \cdot MV⁺ and $c_2\{3\times(-1)\}/r$ for \cdot BCEBP⁻. Thus, the difference in the charge effect between \cdot MV⁺ and \cdot BCEBP⁻ is $c_1\times(6/r)+c_2\times(6/r)=(c_1+c_2)\times(6/r)$. From the above qualitative consideration, the charge effects are expected to be larger in the charge separation than in the quenching. We can see that the above expectation agrees well with our experimental results, as follows. In the quenching reaction, the diffusion of BCEBP⁰ occurs more rapidly than that of MV²⁺ by ca. 2.4×10^9 mol⁻¹ dm³ s⁻¹ and the diffusional dissociation of BCEBP⁰ takes place less rapidly than that of MV^{2+} by ca. 4×10^9 s⁻¹, as shown in Table 2. Thus, the sum of these charge effects on the quenching is more favorable in BCEBP⁰ than in MV²⁺ by ca. 6.4×10^9 . In the reverse electron-transfer, the diffusion of ·BCEBP- for the encounter complex formation occurs more rapidly than does that of •MV⁺ by 3.3×10⁹ mol⁻¹ dm³ s⁻¹ and diffusional dissociation of [Ru(bpy)₃³⁺····BCEBP⁻] less rapidly occurs than that of $[Ru(bpy)_3^{3+}\cdots MV^+]$ by 4×10^9 s⁻¹. Thus, •BCEBP⁻ is less favorable than ·MV⁺ in the charge-separation step by 7.3×10^9 . This means that the charge-separation step is more sensitive to charge effects than the quenching step, which is consistent with the above-described qualitative discussion. Thus, the suppression of back electron transfer and the acceleration of charge separation are more effective for viologen photoreduction by [Ru(bpy)₃]²⁺ than the acceleration of oxidative quenching of *[Ru(bpy)₃]²⁺ by viologen. #### **Conclusions** A detailed investigation was carried out on the quenching reaction of ${}^*[Ru(bpy)_3]^{2+}$ with MV^{2+} and BCEBP and the reverse electron-transfer reaction
of $[Ru(bpy)_3]^{3+}$ with one-electron-reduced viologen radical. In this work, we focused on the charge effects in these electron-transfer reactions. It is our intention here to first present a detailed discussion on the origin of the charge effects of photoinduced electron-transfer reaction of $[Ru(bpy)_3]^{2+}$. The quenching reaction rate constant (k_q^{obs}) is similar in MV²⁺ and BCEBP²⁺ at pH 2.2, while the quenching by MV²⁺ proceeds much more slowly than that by BCEBP⁰ at pH 5.0. At pH 2.2, the electron-transfer rate constant (k_q^{cor}) in the exciplex [*Ru(bpy)₃²⁺···MV²⁺] is slightly larger than that of [*Ru(bpy)₃²⁺···BCEBP²⁺]. The diffusion rate constant for exciplex formation is similar in MV²⁺ and BCEBP²⁺, while the diffusional dissociation of the exciplex [*Ru(bpy)₃²⁺···MV²⁺] occurs slightly more rapidly than that of [*Ru(bpy)₃²⁺···BCEBP²⁺]. This slightly faster dissociation of [*Ru(bpy)₃²⁺···BCEBP²⁺] mostly compensates for the slightly faster k_q^{cor} of MV²⁺. As a result, the quenching reaction by MV²⁺ occurs with a similar rate constant to the quenching by BCEBP²⁺ at pH 2.2. At pH 5.0, the diffusion of BCEBP⁰ for exciplex formation occurs much more rapidly than that of MV^{2+} , and the diffusional dissociation of [*Ru(bpy)₃²⁺···BCEBP⁰] takes place more slowly than that of [*Ru(bpy)₃²⁺···MV²⁺]. Although the electron transfer in the exciplex [*Ru(bpy)₃²⁺···MV²⁺] occurs more rapidly than in [*Ru(bpy)₃²⁺···BCEBP⁰] (see k_q^{cor} in Table 3), the more rapid diffusion of BCEBP for the exciplex formation and the slower diffusional dissociation of the exciplex lead to the more rapid quenching by BCEBP⁰ than that by MV^{2+} . This means that the diffusion and diffusional dissociation are the determining factors for the quenching reaction at pH 5.0. Why is the diffusion rate similar in MV²⁺ and BCEBP⁰ at pH 2.2, but much different between them at pH 5.0? An important difference is the charge of viologen; BCEBP⁰ is a neutral zwitter ion at pH 5.0, while it has 2+ charges at pH 2.2, like MV²⁺. Since both MV²⁺ and BCEBP²⁺ take 2+ charges at pH 2.2, the diffusion rate constant is similar in MV²⁺ and BCEBP²⁺ at this pH. At pH 5.0, on the other hand, the diffusion of BCEBP⁰ for exciplex formation occurs more rapidly and the diffusional dissociation of [*Ru(bpy)₃²⁺···BCEBP⁰] occurs much more slowly than those of MV²⁺, due to the neutral charge of BCEBP. In conclusion, not the electron transfer in the exciplex, but the diffusion and diffusional dissociation, are determining factors for the quenching of $*[Ru(bpy)_3]^{2+}$, and significantly depend on the charge of viologen. In the reverse electron-transfer reaction between [Ru-(bpy)₃|³⁺ and one-electron-reduced viologen, •BCEBP⁺ reacts with $[Ru(bpy)_3]^{3+}$ slightly more rapidly than does $\cdot MV^+$ at pH 2.2, but much more rapidly than does ·MV+ at pH 5.0. At pH 2.2, the diffusion ($k_{\rm dif}^{\rm rev}$) for the encounter complex formation similarly proceeds in ·MV⁺ and ·BCEBP⁺. Though the electron transfer takes place in the encounter complex $[Ru(bpy)_3^{3+}\cdots MV^+]$ slightly more rapidly than in $[Ru(bpy)_3^{3+}\cdots BCEBP^+]$, $[Ru(bpy)_3^{3+}\cdots MV^+]$ dissociates slightly more easily than does $[Ru(bpy)_3^{3+}\cdots BCEBP^+]$, which results in the slightly smaller $k_{\text{rev}}^{\text{obs}}$ of $\cdot \text{MV}^+$ than that of •BCEBP⁺. At pH 5.0, the electron transfer occurs much more rapidly in the encounter complex [Ru(bpy) $_3^{3+}\cdots MV^+$] than in $[Ru(bpy)_3^{3+}\cdots BCEBP^-]$. However, k_{dif}^{rev} of $\cdot BCEBP^-$ is much larger than that of $\cdot MV^{2+}$, and k_{-dif}^{rev} of $\cdot BCEBP^-$ is much smaller than that of ·MV+, due to the negative charge of ·BCEBP⁻. As a result, $k_{\text{rev}}^{\text{obs}}$ of BCEBP is larger than that From the above findings, reasonable conclusions emerge, as follows. Although the electron-transfer rate constant in the exciplex and the encounter complex are different between MV²⁺ and BCEBP, they are not a determining factor for both quenching and reverse electron-transfer reactions. The overall rate constants of the quenching and reverse electron-transfer reactions are mainly determined by the diffusion and diffusional dissociation rate constants, which are very much influenced by the charge effects of viologen. Thus, the charge effects should be taken into consideration only concerning the diffusion and diffusional dissociation rate constants when attempting to construct an efficient photoreaction system. Actually, various efficient photoreaction systems were suc- cessfully constructed by simple and intuitive consideration of the charge effects. 7—13) The electron-transfer rate constants in the exciplex and the encounter complex were successfully analyzed with Marcus theory. We found that H_{rp} of MV²⁺ is similar to that of BCEBP²⁺ at pH 2.2. This is probably because the 4,4'bipyridinium moiety of BCEBP²⁺ is similar to MV²⁺. However, $H_{\rm rp}$ of BCEBP⁰ is much smaller than that of MV²⁺ at pH 5.0 in both quenching and reverse electron-transfer reactions, against our expectation that BCEBP⁰ and ·BCEBP⁻ can more closely approach [Ru(bpy)₃]²⁺ than MV²⁺ and •MV⁺ because of either the absence of a columbic repulsion or the presence of a coulombic attraction. This result is clearly interpreted in terms of the steric repulsion caused by the zwitter-ion forms of BCEBP⁰ and BCEBP⁻ at pH 5.0. Thus, it should be concluded that not the charge, but the steric effect, of viologen is a determining factor for H_{rp} . This is the reason that we take into consideration the charge effects only in diffusional steps. This work was financially supported in part by a Grant-in-Aids No. 09305057 from the Ministry of Education, Culture, Sports and Science, and by Sagawa Foundation for Frontier Science and Technology. The authors would like to thank Prof. Y. Kaizu and Dr. T. Ohtsuka for their helpful discussions concerning the diffusion rate constant. ### References - 1) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. V. Zelewsky, *Coord. Chem. Rev.*, **84**, 85 (1988). - 2) a) C. Creutz and N. Sutin, *Proc. Natl. Acad. Sci. U.S.A.*, **72**, 2858 (1975); b) N. Sutin and C. Creutz, *Pure Appl. Chem.*, **52**, 2717 (1980); c) G. M. Brown, B. S. Brunschwig, C. Creutz, J. F. Endicott, and N. Sutin, *J. Am. Chem. Soc.*, **101**, 1298 (1979); d) C. V. Krishnan, B. S. Brunschwig, C. Creutz, and N. Sutin, *J. Am. Chem. Soc.*, **107**, 2005 (1985). - K. Kalyanasundaram, J. Kiwi, and M. Gräzel, Helv. Chim. Acta, 61, 2720 (1978). - 4) M. Kirch, J.-M. Lehn, and J.-P. Sauvage, *Helv. Chim. Acta*, **62**, 1345 (1979). - 5) a) P. J. DeLaive, B. P. Sullivan, T. J. Meyer, and D. G. Whitten, *J. Am. Chem. Soc.*, **101**, 4007 (1979); b) W. J. Dressick, T. S. Meyer, B. Durham, and D. P. Rillena, *Inorg. Chem.*, **21**, 3451 (1982) - 6) For instance: a) K. Mandal and M. Z. Hoffman, J. Phys. Chem., 88, 185 (1984); b) K. Mandal and M. Z. Hoffman, J. Phys. Chem., 88, 5632 (1984); c) M. Z. Hoffman, Inorg. Chem., 28, 978 (1989); d) N. Sabbatini, S. Dellonte, A. Bonazzi, M. Ciano, and V. Balzani, Inorg. Chem., 25, 1738 (1986); e) D. K. Liu, B. S. Brunschwig, C. Creutz, and N. Sutin, J. Am. Chem. Soc., 108, 1749 (1986); f) N. Kitamura, H. B. Kim, S. Okano, and S. Tazuke, J. Phys. Chem., 93, 5750 (1989). - 7) a) D. Meisel and M. S. Matheson, *J. Am. Chem. Soc.*, **99**, 6577 (1977); b) D. Meisel, D. Meyerstein, and M. S. Matheson, *J. Phys. Chem.*, **82**, 985 (1978); c) D. Meyerstein, J. Rabani, M. S. Matheson, and D. Meisel, *J. Phys. Chem.*, **82**, 1879 (1978); d) C. D. Jonah, M. S. Matheson, and D. Meisel, *J. Phys. Chem.*, **83**, 257 (1979). - 8) R. E. Sasson and J. Rabani, *J. Phys. Chem.*, **84**, 1319 (1980); b) S. Kelder and J. Rabani, *J. Phys. Chem.*, **85**, 1637 (1981); c) R. E. Sasson, Z. Aizenshtat, and J. Rabani, *J. Phys. Chem.*, **89**, 1182 (1985). - 9) a) T. Nagamura, K. Takura, Y. Tsutsui, and T. Matsuo, *Chem. Lett.*, **1980**, 503; b) T. Nagamura, T. Kurihara, T. Matsuo, M. Sumitani, and K. Yashihara, *J. Phys. Chem.*, **86**, 4368 (1982); c) T. Osako, T. Sakamoto, and T. Matsuo, *J. Phys. Chem.*, **89**, 222 (1985). - 10) Y. Kaizu, H. Ohta, K. Kobayashi, and H. Kobayashi, *J. Photochem.*, **30**, 93 (1985). - 11) T. Miyashita, T. Murakata, Y. Yamaguchi, and M. Matsuda, *J. Phys. Chem.*, **89**, 497 (1985). - 12) T. Nagamura, N. Takeyama, K. Tanaka, and T. Matsuo, *J. Phys. Chem.*, **90**, 2247 (1986). - 13) A. J. Frank, I. Willner, Z. Goren, and Y. Degani, J. Am. Chem. Soc., 109, 3568 (1987), references are therein. - 14) Y. Kawanishi, N. Kitamura, and S. Tazuke, *J. Phys. Chem.*, **90**, 2469 (1986). - 15) M. C. Richoux and A. Harriman, *J. Chem. Soc.*, *Faraday Trans.* 1, **78**, 1873 (1982). - 16) a) S. L. Larson, C. M. Elliott, and D. F. Kelly, *J. Phys. Chem.*, **99**, 6530 (1995); b) L. A. Kelly and M. A. J. Rodgers, *J. Phys. Chem.*, **99**, 13132 (1995). - 17) C. D. Clark and M. Z. Hoffman, *J. Phys. Chem.*, **100**, 7526 (1996). - 18) pH 2.2 was rather arbitrarily taken here, since a solution whose pH is lower than 2 cannot be easily prepared. Almost all portion of BCEBP is, however, protonated at pH 2.2 and deprotonated at pH 5.0; (only 3% of BCEBP remains as a deprotonated species at pH 2.2 and as a protonated species at pH 5.0). Thus, we can expect to investigate charge effects of viologen at pH 2.2 and 5.0. - 19) The positively charged BCEBP at pH 2.2 and the neutral BCEBP at pH 5.0 are represented here with BCEBP²⁺ and BCEBP⁰, respectively, and BCEBP without a superscript is used as a general name for BCEBP²⁺ (at pH 2.2) and BCEBP⁰ (at pH 5.0). - 20) a) R. A. Marcus, J. Chem. Phys., 24, 966 (1956); b) R. A. Marcus, Discuss. Faraday Soc., 29, 21 (1960); c) R. A. Marcus, J. Chem. Phys., 43, 679 (1965); d) R. A. Marcus, Ann. Rev. Phys. Chem., 15, 155 (1964); e) R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 811, 265 (1985); f) R. A. Marcus
and N. Sutin, Comments Inorg. Chem., 6, 209 (1987), references are therein. - 21) M. D. Newton and N. Sutin, Ann. Rev. Phys. Chem., 35, 437 (1984). - 22) I. Fujita and H. Kobayashi, *Ber Bunsenges. Phys. Chem.*, **76**, 115 (1972); R. A. Palmer and T. S. Piper, *Inorg. Chem.*, **5**, 864 (1966). - 23) I. Willner, N. Lapidot, A. Riklin, R. Kasher, E. Zahavy, and E. Katz, *J. Am. Chem. Soc.*, **116**, 1428 (1994). - 24) The measurement was in general carried out two times on the two samples which were independently prepared. The difference between two measurements was less than 1.5%. The τ values at 30 °C are given here as an example; $\tau/\rm ns=539\pm8,~388\pm9,~306\pm8,~and~247\pm5$ at pH 2.2 and 552±1, 440±1, 361, and 303±1 at pH 5.0 for [MV²+]/mol dm $^{-3}=0.0,~0.5\times10^{-3},~1.0\times10^{-3},~and~1.5\times10^{-3},~respectively,~and~\tau/\rm ns=539\pm8,~379\pm2,~291,~and~239\pm4$ at pH 2.2 and 554±1, 374±5, 281, and 225±1 at pH 5.0 for [BCEBP]/mol dm $^{-3}=0.0,~0.5\times10^{-3},~1.0\times10^{-3},~and~1.5\times10^{-3},~respectively.$ - 25) M. Eigen, W. Kruse, G. Maass, and L. De Maeyer, *Prog. React. Kinet.*, **2**, 287 (1964). - 26) C. Chiorboli, M. T. Indelli, M. R. A. Scandola, and F. - Scandola, J. Phys. Chem., 92, 156 (1988), references are therein. - 27) M. Eigen, Z. Phys. Chem. (Munich), 1, 176 (1954). - 28) J. Keizer, Chem. Rev., 87, 167 (1987). - 29) B. S. Brunschwig, S. Ehrenson, and N. Sutin, *J. Phys. Chem.*, **90**, 3657 (1986). - 30) a) Chem 3D was used for MM calculations with standard parameters. Chem 3D version 3.0 for Apple Macintosh, Cambridge Scientific Computing, Inc., Massachusetts; b) In the MM calculations, the Ru–N distance was taken to be the same as the experimental bond distance (2.056 Å). See: D. P. Rillema and D. S. Jones, *J. Chem. Soc.*, Chem. Commun., 1979, 849. - 31) This value is similar to the previous one estimated from CPK model; 7.1 Å (C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan, and J. K. Nagle, *J. Am. Chem. Soc.*, **101**, 4815 (1979)), 7.0 Å (C. D. Clark and M. Z. Hoffman, *J. Phys. Chem.*, **100**, 7526 (1996); and C. D. Clark and M. Z. Hoffman, *J. Phys. Chem.*, **100**, 14688 (1996)), and 6.8 Å (E. H. Yonemoto, G. B. Saupe, R. H. Schmehl, S. M. Hubig, R. L. Riley, B. L. Iverson, and T. E. Malloul, *J. Am. Chem. Soc.*, **116**, 4786 (1994)). - 32) "Lange's Handbook of Chemistry," 11th ed, ed by J. A. Dean, McGraw-Hill, New York (1973), pp. 10-288, 10-148. - 33) η/mPa s = 1.005, 0.8937, 0.8007, 0.7225, and 0.6560, and D = 80.36, 78.54, 76.76, 75.03, and 73.35, for 20, 25, 30, 35, and 40 °C, respectively. D for 25 °C is referred from Ref. 29, and the others are from Ref. 32. - 34) R. M. Fuoss, J. Am. Chem. Soc., 80, 5059 (1958). - 35) The error of k_q^{cor} comes from the error of k_q^{obs} (see Eq. 2). - 36) The redox potential of BCEBP is -0.50 V at pH 2.2 and -0.54 V at pH 5.0, and that of MV²⁺ is -0.59 V at pH 2.2 and - -0.58 V at pH 5.0 (vs. Ag/AgCl), where a HCl/KCl buffer and a HOAc/NaOAc buffer were used for CV measurements at pH 2.2 and pH 5.0 respectively. - 37) If ΔG° depends on the temperature, this plot is meaningless. However, the redox potentials of MV²⁺, BCEBP, and [Ru(bpy)₃]²⁺ little depend on the temperature, as follows, where the redox potentials at 10 and 40 °C are given for brevity; E^{2+/+} (V vs. Ag/AgCl) of MV²⁺ is -0.58 and -0.59 at pH 5.0 on 10 and 40 °C, respectively, and -0.59 at pH 2.2 on both 10 and 40 °C. $E^{0/-$ or 2+/+ (V vs. Ag/AgCl) of BCEBP is -0.55 and -0.54 at pH 5.0, -0.51 and -0.50 at pH 2.2 on 10 and 40 °C, respectively. $E^{3+/2+}$ (V vs. Ag/AgCl) of [Ru(bpy)₃]²⁺ is 1.15 and 1.14 at pH 5.0 on 10 and 40 °C, respectively, and 1.14 at pH 2.2 on both 10 and 40 °C. $E^{3+/2+*}$ (V vs. Ag/AgCl) of *[Ru(bpy)₃]²⁺ is -0.75 at pH 5.0 and -0.77 at pH 2.2 on both 10 and 40 °C. - 38) C. Creutz and N. Sutin, Inorg. Chem., 15, 496 (1976). - 39) According to this discussion, $H_{\rm rp}$ of MV²⁺ must be similar in both pH 2.2 and 5.0. However, $H_{\rm rp}$ of MV²⁺ is larger in pH 2.2 than in pH 5.0. Although we cannot find a concrete reason of this result, at the present stage, one of the plausible reason is anion effects: At pH 2.2, only the chloride anion exist but the acetate anion also exists in the reaction solution. Hoffman reported that the anion would influence the quenching reaction.¹⁷⁾ Since the most popular buffer at pH 5.0 involves the acetate anion and any buffer solution at pH 2.2 does not involve the acetate anion, we cannot compare $H_{\rm rp}$ between pH 2.2 and 5.0, in the presence of the same anion. We wish here to focus on the difference in $H_{\rm rp}$ between MV²⁺ and BCEBP at pH 2.2 and 5.0.