HETEROCYCLES, Vol. 90, No. 2, 2015, pp. 857 - 865. © 2015 The Japan Institute of Heterocyclic Chemistry Received, 8th July, 2014, Accepted, 26th August, 2014, Published online, 3rd September, 2014 DOI: 10.3987/COM-14-S(K)79

SIMPLE, SELECTIVE, AND PRACTICAL SYNTHESIS OF 2-SUBSTITUTED 4(3*H*)-QUINAZOLINONES BY Yb(OTf)₃-CATALYZED CONDENSATION OF 2-AMINOBENZAMIDE WITH CARBOXAMIDES

Tsutomu Yoshimura,¹ Di Yuanjun,¹ Yu Kimura,^{1,2} Hisatsugu Yamada,^{1,3} Akio Toshimitsu,^{1,4} and Teruyuki Kondo^{1,3}*

¹ Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. ² Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. ³ Advanced Biomedical Engineering Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto 615-8510, Japan. ⁴ Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Gokanosho, Uji, Kyoto 611-0011, Japan

Abstract – A simple, selective, and practical synthetic method of 4(3H)-quinazolinones is realized by Yb(OTf)₃-catalyzed condensation of 2-aminobenzamide with carboxamides. As the reaction proceeds, NH₃ and H₂O were formed as byproducts; however, Yb(OTf)₃ can operate as an efficient Lewis acid catalyst without deactivation.

4(*3H*)-Quinazolinones belong to one of the most important classes of fused heterocyclic compounds with a wide range of biological activities;¹ *e.g.*, protein tyrosine kinase inhibitor,² cholecystokinin inhibitor,³ antimalarial,⁴ antibacterial,⁵ antifungal,⁶ antiviral,⁷ anti-HIV,⁸ anticancer,⁹ antiinflammatory,¹⁰ antiallergy,¹¹ anticonvulsant,¹² antihypertensive,¹³ and antidiabetic.¹⁴ In addition, the 4(*3H*)-quinazolinone nucleus is also the key component of chromophoric,¹⁵ thermochromic,¹⁶ and fluorescent materials.¹⁷ Typically, 4(*3H*)-quinazolinones were prepared on the basis of the Niementowski synthesis¹⁸ by condensation of anthranilic acid with carbonyl compounds and amines, proceeding via an 2-amidobenzamide intermediate.¹⁹ Nevertheless, this method suffers from multi-step and tedious procedures, costly

Dedicated with respect to Professor Isao Kuwajima on the occasion of his 77th birthday

reagents, and often low yields. To overcome these problems, several new methods for synthesis of 4(3H)-quinazolinones have recently been developed, using acids and/or oxidants such as PFPAT,²⁰ NaHSO₃,²¹ DDQ/DMF,²² I₂,²³ TBAB,²⁴ and using metal catalysts such as CuI,²⁵ CuBr,²⁶ PAPAT-CuCl₂,²⁷ FeCl₃·6H₂O,²⁸ and Ga(OTf)₃²⁹ [OTf = trifluoromethanesulfonate] as well as solid catalysts.³⁰ Wang and coworkers have reported a pioneering study on Yb(OTf)₃-catalyzed one-pot synthesis of 4(3*H*)-quinazolinones by condensation of anthranilic acid, anilines, and orthoesters (or formic acid, HCO₂H) without solvents; however, only 3-substituted 4(3*H*)-quinazolinones were obtained by this reaction.³¹ In addition, Liu,^{32a} Bakavoli,^{32b} and Wang^{32c} have independently developed the microwave-assisted Niementowski reaction, and palladium-catalyzed carbonylative synthesis of 4(3*H*)-quinazolinones has also been reported.³³

We have developed a novel method for synthesis of symmetrically substituted ureas by ruthenium-catalyzed condensation reaction of 2 equivalents of aromatic amines with formamide.³⁴ We have attempted to use this ruthenium-catalyzed reaction to construct *N*-heterocyclic compounds,³⁵ and the reaction of 2-aminobenzamide **1a** with formamide **2a** was examined, which has two possibilities to give quinazoline-2,4(1*H*,3*H*)-dione (the upper reaction in Scheme 1) and to give 4(3*H*)-quinazolinone (**3a**, the lower reaction in Scheme 1). After many trials, we have found that this reaction offers a simple, selective, and practical method for catalytic synthesis of 4(3*H*)-quinazolinones.

Scheme 1. Reaction of 2-aminobenzamide 1a with formamide 2a in the presence of ruthenium catalysts

First, the reaction of 2-aminobenzamide **1a** with formamide **2a** was carried out in the presence of a catalytic amount of RuCl₂(PPh₃)₃ in mesitylene under reflux (bath temp. 165 °C) for 6 h to give 4(3*H*)-quinazolinone **3a** in 24% yield (Table 1). The catalytic activities of several zero- and divalent ruthenium complexes were examined, and $[(\eta^6-C_6H_6)RuCl_2]_2$ and RuCl₃·3H₂O bearing chloro-ligands showed the high catalytic activity, while the concomitant use of basic phosphine ligands, such as P(*cyclo*-C₆H₁₁)₃ and PⁿBu₃, drastically decreased the catalytic activity of RuCl₃·3H₂O.

Accordingly, we consider that ruthenium chlorides may work as a Lewis acid catalyst in the present reaction, and the catalytic activities of the representative Lewis acids were examined. As can be readily seen from Table 2, anhydrous AlCl₃, FeCl₃, and Yb(OTf)₃ as well as NiBr₂ hydrate showed the excellent catalytic activity to give 4(3H)-quinazolinone **3a** in quantitative yield. However, YbCl₃·6H₂O and Yb(OAc)₃·4H₂O showed the moderate catalytic activity to give **3a** in 66% and 35% yield, respectively. Naturally abundant FeCl₃ and water-stable Yb(OTf)₃³⁶ were the strong candidate of the catalyst for the present reaction; however, the catalytic activity of FeCl₃ decreased, drastically, below 140 °C, while Yb(OTf)₃ showed high catalytic activity above 100 °C.

complexes for the synthesis of 3a from 1a and 2a ^a				
entry	Ru catalyst	ligand	yield of 3a (%) ^b	
1			0	
2		PPh_3	0	
3	$Ru_2(PPh_3)_3$		24	
4	$Ru(\eta^4$ -cod)(η^6 -cot) —	0	
5	RuH ₂ (PPh ₃) ₄		0	
6	[(η ⁶ -C ₆ H ₆)RuCl ₂] ₂		83	
7	[RuCl ₂ (CO) ₃] ₂		43	
8	RuCl ₃ ·3H ₂ O		85	
9	RuCl ₃ ·3H ₂ O P(<i>cyclo</i> -C ₆ H ₁₁)	₃ 38	
10	RuCl ₃ ·3H ₂ O	P ⁿ Bu ₃	38	

Table 1. Catalytic activity of several ruthenium

^a **1a** (4.0 mmol), **2a** (6.0 mmol), Ru catalyst (0.20 mmol as a Ru atom) in mesitylene (5.0 mL) at 165 ^oC (bath temp.) for 6 h under an Ar atmosphere. ^b Dtermined by GLC.

Table 2. Catalytic activity of several Lewis acids for the synthesis of **3a** from **1a** and **2a**^a

entry	Lewis acid	yield of 3a (%) ^b
1	AICI ₃	>99
2	AICI ₃ ·6H ₂ O	72
3	FeCl ₃	>99
4	CoCl ₂	86
5	NiBr ₂ xH ₂ O	>99
6	RhCl ₃	66
7	PdCl ₂	30
8	SnCl ₂	89
9	ⁿ Bu₃SnCI	5
10	CeCl ₃	90
11	EuCl ₃	77
12	YbCl ₃ ·6H ₂ O	66
13	Yb(OAc) ₃ ·4H ₂ O	35
14	Yb(OTf) ₃	>99

^a 1a (4.0 mmol), 2a (6.0 mmol), Lewis acid (0.20 mmol) in mesitylene (5.0 mL) at 165 °C (bath temp.) for 6 h under an Ar atmosphere.
 ^b Dtermined by GLC.

Then, catalytic activities of several metal triflates were examined, and the results were summarized in Table 3. Among metal triflates examined, Yb(OTf)₃ showed the highest catalytic activity, and 0.050 mmol (1.25 mol%) Yb(OTf)₃ was at least required for the success of the present reaction. Mesitylene is the most suitable solvent for the present reaction, while the yield of **3a** decreased, drastically, in diglyme (**3a**, 11%) and *N*-methylpiperidine (**3a**, 11%), due to their strong coordination ability through oxygen and nitrogen atoms to coordinatively unsaturated and catalytically active cationic ytterbium center (*vide infra*).

Formamide **2a** is the most effective C1 source in the construction of 4(3H)-quinazolinone **3a**, while methyl formate **2b** or paraformaldehyde, $(CH_2O)_n$ **2c**, instead of formamide **2a**, gave **3a** in 39% and 12% yield, respectively, even under reflux in mesitylene (bath temp. 165 °C). Besides formamide **2a**, carboxamides, such as acetamide **2d**, 2-methylpropanamide **2e**, pivalamide **2f**, and benzamide **2g**, can be used in the present reaction to give 2-methyl-, 2-isopropyl-, 2-(*tert*-butyl)-, and 2-phenyl-4(3*H*)-quinozolinone (**3b** -**e**) in good to high yields (Scheme 2).³⁷

entry	metal triflate	y iel d of 3a (%) ^b
1	LiOTf	7
2	CuOTf [.] benzene	27
3	Cu(OTf) ₂	31
4	Zn(OTf) ₂	76
5	Fe(OTf) ₂	58
6	Ni(OTf) ₂	59
7	Sc(OTf) ₃	80
8	Sm(OTf) ₃	62
9	Yb(OTf) ₃	>99

^a **1a** (4.0 mmol), **2a** (6.0 mmol), metal triflate (0.20 mmol) in mesitylene (5.0 mL) at 120 °C for 6 h under an Ar atmosphere. ^b Dtermined by GLC.

Scheme 2. Yb(OTf)₃-Catalyzed synthesis of 4(3*H*)-quinazolinones 3 from 2-aminobenzamide 1a and carboxamides 2

Condensation of several 2-aminobenzamides (**1b-e**) with formamide (**2a**) proceeded, smoothly, by $Yb(OTf)_3$ catalyst to give the corresponding 4(3H)-quinazolinones (**3f-i**) in moderate to high isolated yields (Table 4).⁴⁰ In addition, the related 2-aminonicotinamide (**1f**) also reacted with **2a** under the present catalytic reaction conditions to give pyrido[2,3-*d*]pyrimidin-4(3*H*)-one (**3j**) in an isolated yield of 55%.

Table 3. Catalytic activity of several metal triflates for the synthesis of **3a** from **1a** and **2a**^a

To investigate the mechanism, quinazoline-2,4(1*H*,3*H*)-dione was treated with a catalytic amount of Yb(OTf)₃ in mesitylene at 120 °C for 6 h under an argon atmosphere in the presence or absence of formamide **2a**. In both reactions, no **3a** was obtained at all (Scheme 3). Thus, the mechanism through the reduction of a carbonyl group in quinazolin-2,4(1*H*,3*H*)dione was ruled out, completely.

Considering the results obtained above, the most plausible mechanism is illustrated in Scheme 4. We believe that the dissociation of a triflate anion (OTf) from Yb(OTf)₃ first occurred to generate catalytically active $Yb(OTf)_2^+$, which immediately coordinates to a carbonyl oxygen in carboxamide. Subsequent nucleophilic of attack an amino group in 2-aminobenzamide to the activated carbonyl carbon in carboxamide proceeded to give an amidine intermediate and Yb(OTf)₂(OH), followed by dissociation of

Table 4. Synthesis of 4(3H)-quinazolinones **3f-j** by Yb(OTf)₃-catalyzed condensation of 2-aminobenzamides **1b-e** and the related **1f** with formamide **2a**^a

^a **1** (4.0 mmol), HCONH₂ **2a** (6.0 mmol), Yb(OTf)₃ (0.20 mmol) in mesitylene (5.0 mL) at 165 $^{\circ}$ C (bath temp.) for 6 h under an Ar atmosphere.

OH⁻ to regenerate $Yb(OTf)_2^+$. $Yb(OTf)_2^+$ again coordinates to a carbonyl oxygen in benzamide to promote the intramolecular nucleophilic attack of an amino group to the activated carbonyl carbon. Isomerization of the intermediate, followed by elimination of NH₃ give 4(3*H*)-quinazolinone and $Yb(OTf)_2^+$.

Scheme 3. Reaction of quinazoline-2,4(1H,3H)-dione with formamide 2a in the presence of Yb(OTf)₃ catalyst

Scheme 4. The most plausible mechanism

In conclusion, we developed one-pot and environmentally benign synthesis of 2-substituted 4(3H)-quinazolinones by Yb(OTf)₃-catalyzed condensation of 2-aminobenzamides with carboxamides. Surprisingly, Yb(OTf)₃ can operate as an efficient Lewis acid catalyst without deactivation even in the presence of byproducts, NH₃ and H₂O. Accordingly, application of Yb(OTf)₃ catalyst to construct other valuable nitrogen-heterocycles is highly expected, and the study is in progress in our laboratory.

ACKNOWLEDGEMENTS

T.K. acknowledges financial support from the Asahi Glass Foundation and the Yazaki Memorial Foundation for Science and Technology. This research was conducted in part at Katsura-Int'tech Center, Graduate School of Engineering, Kyoto University.

REFERENCES AND NOTES

- For a review, see: (a) D. W. Fry, A. J. Kraker, A. McMichael, L. A. Ambroso, J. M. Nelson, W. R. Leopold, R. W. Connors, and A. J. Bridges, *Science*, 1994, 265, 1093; (b) I. Hermecz, J. Kökösi, B. Podányi, and G. Szástz, *Heterocycles*, 1994, 37, 903; (c) J. P. Michael, *Nat. Prod. Rep.*, 2005, 22, 627; (d) S. B. Mhaske and P. Argade, *Tetrahedron*, 2006, 62, 9787.
- 2. G. Wagner and I. Wunderlich, *Pharmazie*, 1978, **33**, 15.
- (a) M. J. Yu, J. R. McCowan, N. R. Mason, J. B. Deeter, and L. G. Mendelsohn, *J. Med. Chem.*, 1992, 35, 2534; (b) J. K. Padia, M. Field, J. Hinton, K. Meecham, J. Pablo, R. Pinnock, B. D. Roth, L. Singh, N. Suman-Chauhan, B. K. Trivedi, and L. Webdale, *J. Med. Chem.*, 1998, 41, 1042; (c) S. S. Ibrahim, A. M. Abdel-Halim, Y. Gabr, S. El-Edfawy, and R. M. Abdel-Rahman, *J. Chem. Res. Synop.*, 1997, 154.
- 4. Y. Takaya, H. Tasaka, T. Chiba, K. Uwai, M. A. Tanitsu, H. S. Kim, Y. Wataya, M. Miura, M. Takeshita, and Y. Oshima, *J. Med. Chem.*, 1999, **42**, 3163.
- P. P. Kung, M. D. Casper, K. L. Cook, L. Wilson-Lingard, L. M. Risen, A. Vickers, R. Ranken, L. B. Blyn, R. Wyatt, P. D. Cook, and J. Ecker, *J. Med. Chem.*, 1999, 42, 4705.
- (a) H. Panwar, S. Singh, A. Kumar, S. Singh, N. Singh, and H. Singh, *Der Pharma Chemica*, 2011, 3, 399; (b) X. Wang, P. Li, Z. Li, J. Yin, M. He, W. Xue, Z. Chen, and B. Song, *J. Agric. Food Chem.*, 2013, 61, 9575; (c) W. Pendergast, J. V. Johnson, S. H. Dickerson, I. K. Dey, D. S. Duch, R. Ferone, W. R. Hall, J. Humphery, J. Kelly, and D. C. Wilson, *J. Med. Chem.*, 1993, 36, 2279; (d) M. M. Ghorab, M. A. Abdel-Gawad, and M. S. A. El-Gaby, *Farmaco*, 2000, 55, 249 (CA, 2000, 133, 237956).
- 7. X. Gao, X. Cai, K. Yan, B. Song, L. Gao, and Z. Chen, *Molecules*, 2007, 12, 2621.
- 8. M. A. Khili, R. Soliman, A. M. Furghuli, and A. A. Bekhit, Arch. Pharm., 1994, 327, 27.
- (a) H.-Z. Li, H.-Y. He, Y.-Y. Han, X. Gu, L. He, Q.-R. Qi, Y.-L. Zhao, and L. Yang, *Molecules*, 2010, 15, 9473; (b) A. Boumendjel, H. Baubichon-Cortay, D. Trompier, T. Perrotton, and A. D. Pietro, *Med. Res. Rev.*, 2005, 25, 453.
- (a) V. Alagarsamy, S. V. Raja, and K. Dhanabal, *Bioorg. Med. Chem.*, 2007, 15, 235; (b) V. Alagarsamy, K. Dhanabai, P. Parthiban, G. Anjana, G. Deepa, B. Murugesan, S. Rajkumar, and A. J. Beevi, *J. Pharm. Pharmacol.*, 2007, 59, 669.

- R. A. LeMahieu, M. Carson, W. C. Nason, D. R. Parrish, A. F. Weton, H. W. Baruth, and B. Yaremko, J. Med. Chem., 1983, 26, 420.
- 12. V. Jatav, P. Mishra, S. Kashaw, and J. P. Stables, Eur. J. Med. Chem., 2008, 43, 135.
- (a) V. Alagarsamy, Pathak, and S. Urvishbhai, *Bioorg. Med. Chem.*, 2007, 15, 3457; (b) J.-W. Cherns P.-L. Tao, K.-C. Wang, A, A. Gutcait, S.-W. Liu, M.-H. Yen, S.-L. Chien, and J.-K. Rong, *J. Med. Chem.*, 1998, 41, 3128.
- 14. M. S. Malamas and J. Millen, J. Med. Chem., 1991, 34, 1492.
- 15. H. A. Bhatti and S. Seshadri, Color. Technol., 2004, 120, 101.
- 16. R. G. Patel, M. P. Patel, and R. G. Patel, Dyes and Pigments, 2005, 66, 7.
- 17. S. P. Anthony, Chem. Asian J., 2012, 7, 374.
- 18. S. Niementowski, Ber., 1894, 27, 1394.
- For a review, see: (a) D. J. Connolly, D. Cusack, T. P. O'Sullivan, and P. J. Guiry, *Tetrahedron*, 2005, 61, 10153; (b) L. He, H. Li, J. Chen, and X.-F. Wu, *RSC Adv.*, 2014, 4, 12065.
- J. J. Naleway, C. M. J. Fox, D. Robinhold, E. Terpetsching, N. A. Olsen, and R. P. Haugland, *Tetrahedron Lett.*, 1994, 35, 8569.
- S. E. Lopez, M. E. Rosales, N. Urdaneta, M. V. Godoy, and J. E. Charris, J. Chem. Res. Synop., 2000, 6, 258.
- (a) B. A. Bhat and D. P. Sahu, Synth. Commun., 2004, 34, 2169; (b) M. Dabiri, P. Salehi, M. Bahramnejad, and M. Alizadeh, Monatsh. Chem., 2010, 141, 877.
- (a) M. Bakavoli, A. Shiri, Z. Ebrahimpour, and M. Rahimizadeh, *Chin. Chem. Lett.*, 2008, 19, 1403;
 (b) S.-L. Wang, K. Yang, C.-S. Yao, and X.-S. Wang, *Synth. Commun.*, 2012, 42, 341.
- 24. A. Davoodnia, S. Allameh, A. R. Fakhari, and N. Tavakoli-Hoseini, *Chin. Chem. Lett.*, 2010, **21**, 550.
- 25. (a) J. Zhou, L. Fu, M. Lv, J. Liu, D. Pei, and K. Ding, *Synthesis*, 2008, 3974; (b) X. Huang, H. Yang, H. Fu, R. Qiao, and Y. Zhao, *Synthesis*, 2009, 2679.
- 26. W. Xu and H. Fu, J. Org. Chem., 2011, 76, 3846.
- 27. N. Montazeri, K. Pourshamsian, S. Yosefiyan, and S. S. Momeni, J. Chem. Sci., 2012, 124, 883.
- 28. G.-W. Wang, C.-B. Miao, and H. Kang, Bull. Chem. Soc. Jpn., 2006, 79, 1426.
- 29. J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, and W. Su, Tetrahedron Lett., 2008, 49, 3814.
- (a) M. Dabiri, P. Salehi, A. A. Mohammadi, M. Baghbanzadeh, and G. Kozehgiry, *J. Chem. Res.*, 2004, 570; (b) M. M. Heravi, S. Sadjadi, S. Sadjadi, H. A. Oskooie, and F. F. Bamoharram, *Ultrason. Sonochem.*, 2009, 16, 708; (c) T.-H. Niloofar and D. Abolghasem, *Chin. J. Chem.*, 2011, 29, 1685.
- 31. L. Wang, J. Xia, F. Qin, C. Qian, and J. Sun, Synthesis, 2003, 1241.
- 32. (a) J.-F. Liu, J. Lee, A. M. Dalton, G. Bi, L. Yu, C. M. Baldino, E. McElory, and M. Brown,

Tetrahedron Lett., 2005, **46**, 1241; (b) M. Bakavoli, O. Sabzevari, and M. Rahimizadeh, *Chin. Chem. Lett.*, 2007, **18**, 1466; (c) F. Li, Y. Feng, Q. Meng, W. Li, Z. Li, Q. Wang, and F. Tao, *ARKIVOC*, 2007, **i**, 40.

- 33. (a) C. Larksarp and H. Alper, *J. Org. Chem.*, 2000, 65, 2773; (b) L. He, H. Li, H. Neumann, M. Beller, and X.-F. Wu, *Angew. Chem. Int. Ed.*, 2014, 53, 1420; (c) X. Jiang, T. Tang, J.-M. Wang, Z. Chen, Y.-M. Zhu, and S.-J. Ji, *J. Org. Chem.*, 2014, 79, 5082.
- 34. T. Kondo, S. Kotachi, Y. Tsuji, Y. Watanabe, and T. Mitsudo, Organometallics, 1997, 16, 2562.
- 35. (a) M. Akazome, T. Kondo, and Y. Watanabe, *J. Org. Chem.*, 1993, 58, 310; (b) T. Kondo, T. Kanda,
 D. Takagi, K. Wada, Y. Kimura, and A. Toshimitsu, *Heterocycles*, 2012, 86, 1015.
- For a review, see: (a) S. Kobayashi, Synlett, 1994, 689; (b) T. Kitanosonoa and S. Kobayashi, Adv. Synth. Catal., 2013, 355, 3095.
- 37. A mixture of 2-aminobenzamide (1, 4.0 mmol), carboxamide (2, 6.0 mmol), Yb(OTf)₃ (0.20 mmol, 5.0 mol%), and mesitylene (5.0 mL) was placed in a 20-mL Pyrex flask equipped with a magnetic stirring bar and a reflux condenser under a flow of argon. The reaction was carried out at 120-165 °C (bath temp.) for 6 h with stirring. Then, the reaction mixture was cooled to room temperature, and analyzed by GLC, GC-MS (EI), and LC-MS (ESI). After evaporation of mesitylene under vacuum, the products (3) were isolated by recrystallization from MeOH/hexane and/or medium pressure column chromatography on silica gel (eluent: EtOAc/hexane = 50/50 ~ EtOAc 100%. For 3j, eluent: MeOH/CHCl₃ = 50/50). ¹H NMR spectra were recorded at 400 MHz, and ¹³C NMR spectra were recorded at 100 MHz in DMSO-*d*₆. The analytical and spectral data of 3a-e,³⁸ 3f,³⁹ 3g,⁴⁰ 3h,⁴¹ and 3j,⁴² were consistent with those reported previously. The product, 3i, was characterized below.⁴³
- D. J. Connolly, P. M. Lacey, M. McCarthy, C. P. Saunders, A.-M. Carroll, R. Goddard, and P. J. Guiry, *J. Org. Chem.*, 2004, 69, 6572.
- S. K. Kundu, M. P. D. Mahindaratne, M. V. Quintero, A. Bao, and G. R. Negrete, *ARKIVOC*, 2008, ii, 33.
- 40. A. A. Layeva, E. V. Nosova, G. N. Lipunova, T. V. Trashakhova, and V. N. Charushin, *Russ. Chem. Bull., Int. Ed.*, 2007, **56**, 1821.
- 41. L. Örfi, F. Wáczek, J. Pató, I. Varga, B. Hegymegi-Barakonyi, R. A. Houghten, and G. Kéri, *Curr. Med. Chem.*, 2004, **11**, 2549.
- 42. A. Srinivasan, P. E. Fagerness, and A. D. Broom, J. Org. Chem., 1978, 43, 828.
- 43. 3i: a white solid. IR (KBr) cm⁻¹: 3127, 1698; ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 12.16 (1H, br s), 8.00 (1H, s), 7.61 (1H, d, *J* = 8.98 Hz), 7.49 (1H, d, *J* = 2.86 Hz), 7.42 (1H, dd, *J* = 8.98 and 2.86 Hz), 3.86 (3H, s); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 160.4, 157.7, 143.2, 142.8, 128.7, 123.7, 123.4, 105.8, 55.6; MS (ESI): 177.0726 (M+H)⁺.