Reactions of Me₃N with GeH₃Br: Evidence for Stabilized Germanium Dihydride Species CHARLES A. HEIL and ARLAN D. NORMAN* Department of Chemistry and Biochemistry, University of Colorado, Boulder, Col. 80309, U.S.A. (Received January 15, 1988) #### **Abstract** Bromogermane (GeH₃Br) and Me₃N (1:1 mole ratio) reaction at −78 °C yields Me₃N·GeH₃Br (1). 1 with H₂O or MeOH yields (GeH₃)₂O or MeOGeH₃, respectively. 1 with a one molar excess of Me₃N forms (Me₃N)₂GeH₃Br (2). Thermal decomposition of 2 produces mainly Ge₃H₈ (25-30%) and Me₃-NHBr. GeH₃Br with excess Me₃N in Et₂O at 0 °C yields Me₃NHBr and a species in solution formulated as Me₃NGeH₂ (3). Decomposition of 3 in the presence of Me₃GeH or Me₂GeH₂ results in small quantities of Me₃Ge₂H₃ or Me₂Ge₂H₄, respectively. Above -63 °C, solid 1 undergoes intramolecular rearrangement to a product characterized as Me₃-NHBr· $1/x(GeH_2)_x$ (4), a material which contains stabilized GeH₂ units. The characterization of 1-4 based on their spectral properties and reactivity towards B₂H₆ and/or HBr, and their potential in further germane syntheses, are discussed. #### Introduction The existence of germylenes (GeX_2 ; X = halogen, aryl, and alkyl) stabilized by coordination to bases [1] or to metals and bases [2] is well established. Germanium dihydride $(GeH_2)_x$, in the condensed phase has been reported as an intermediate or product in Ge₂H₆ [3] or NaGeH₃-PhBr [4] in liquid NH₃, R₃N-GeH₃Cl [5], LiX catalyzed decomposition of Ge₂H₆ [6], KGeH₃BH₃ [7] thermolysis, or GeH₃Cl-NH₃ [8] reactions [7-12]; however, reports of its properties vary. No clear evidence for monomeric GeH₂ other than in the gaseous phase [9-13] has appeared. Since GeH_2 , $(GeH_2)_x$, or its complexes could be important in the synthesis of new germane polymers or germanium subhydrides (e.g. GeH_{<1}) for use as electronic materials, we have undertaken studies of its synthesis in the condensed phase. Now, in the GeH₃Br-Me₃N reaction system, we have found evidence for novel stabilized (GeH₂), species. Our studies are reported below. # Experimental Apparatus and Materials All manipulations were carried out in standard vacuum lines or under a N_2 atmosphere [14]. ¹H NMR spectra were obtained with a Varian A-60A spectrometer. δ values were measured relative to Me₄Si; $+\delta$ values are downfield from the standard. Infrared and mass spectra were obtained using Beckman Model 4250 and Varian MAT CH-5 spectrometers, respectively. Bromogermane [15], Me_2GeH_2 [16, 17], Me_3GeH [16, 18], B_2H_6 [19] and DCl [20] were prepared and purified as described previously. Me_3GeBr (Alfa Inorganics) was purified by fractional condensation. Me_2O and diglyme were distilled from LiAlH₄. Acetonitrile (Baker) and Me_3N (Matheson Gas) were distilled from P_4O_{10} . Deuterium oxide (>99.8% D. Mallinckrodt) and MeOH (Fischer, reagent) were used as obtained. Reaction products from reactions below were identified by comparison of either their IR, NMR or mass spectra with published spectra. Reactions of Me₃N with GeH₃Br $Me_3N \cdot GeH_3Br(1)$ Me₃N (0.117–0.135 mmol) was condensed onto GeH₃Br (0.213 mmol) at -196 °C. The mixture was warmed to -78 °C, mixed, and then warmed to -63 °C. A white solid formed immediately. Materials volatile at -63 °C were removed and measured. Typically, the Me₃N:GeH₃Br reactant ratio ranged from 1.09–0.97:1.00. In reactions involving Me₃N:GeH₃Br reactant ratios >1, small quantities (2–8% of total Ge) of GeH₄ [21], Ge₂H₆ [22, 23] and Ge₃H₈ [23, 24] formed also. Under analogous conditions, but in Me₂O solvent, identical reactant combination was observed but with less GeH₄, Ge₂H₆, or Ge₃H₈ evolution. $(Me_3N)_2GeH_3Br(2)$ Me₃N (0.5 mmol) was condensed onto 1 (typically, 0.100-0.145 mmol) and allowed to stand at -78 °C. After 5-14 h, excess Me₃N was removed and ^{*}Author to whom correspondence should be addressed. measured. The 1:Me₃N consumed ranged from 1.0–1.05:1.00, consistent with formation of $(Me_3N)_2$ -GeH₃Br (2). B_2H_6 at -63 °C did not react with 2. A 0.05 mmol sample of 2 reacted with excess HBr at -63 °C to form GeH₃Br (0.023 mmol) and traces of Ge₂H₆ and Ge₃H₈. Thermolysis of 2 at 25 °C to 80 °C produces Me₃NHBr, high yields of Ge₃H₈ (25–30%) along with H₂ and traces of GeH₄ and Ge₂H₆. #### Excess Me_3N : Me_3NGeH_2 (3) Typically, Me_3N (3–20 mmol) was allowed to react at temperatures of -78 to 0 °C with a GeH_3Br (0.10–0.41 mmol)—diglyme (3.0–4.0 ml) solution. The solution turned bright yellow and a white precipitate formed. The solution (3) was filtered at 0 °C. The solid was extracted with H_2O and found to contain typically 92–95% of the expected Me_3NHBr . Solution 3, transferred at 0 °C to an NMR tube, showed only resonances due to Me_3N . Excess HBr (3–5 mmol) was condensed onto filtrate 3 and the solution was warmed to 25 °C. The yellow solution immediately turned colorless. Unreacted HBr, GeH₃Br (typically 12–22% of initial Ge) and MeBr (0.2–0.3 mmol) were separated from the diglyme by fractional condensation. In control experiments, HBr reacted with diglyme to yield comparable amounts of MeBr under analogous reaction time and temperature conditions. No MeBr formed in a 1 h reaction of HBr with Me₃NHBr. Solutions of 3 were prepared as above, with the addition that a 10-30 fold excess of Me_2GeH_2 or Me_3GeH was dissolved in the initial diglyme solution. The stirred solutions were warmed to 0 °C (0.3–2 h) and 25 °C (0.5–17 h). The volatile products included GeH_4 (2–10%), Ge_3H_8 (14–40%), traces of Ge_4H_{10} and $Me_2Ge_2H_4$ (with Me_2GeH_2 coreactant) and $Me_3Ge_2H_3$ (with Me_3GeH coreactant). GeH₃Br-excess Me₃N reactions were carried out as above, except that Me₂O replaced diglyme as solvent. The reaction solution was filtered at -78 °C and the yellow solution was evaporated to dryness in vacuo. The yellow solid obtained was unreactive towards H₂O and yielded only traces of GeH₃Cl and Ge₃H₈ upon treatment with excess HCl at 25 °C. Samples of neat GeH_3Br (0.12 mmol) and Me_3N (ca. 8 mmol) were allowed to warm to -100 °C in the probe of the ¹H NMR spectrometer. Between -80 and -40 °C, weak resonances at $\delta 3.65$ ppm (area 1) and $\delta 1.27$ ppm (area 3) relative to internal Me_3N were observed. Above -40 °C these disappeared and only the Me_3N and Me_3NH^+ resonances remained. #### Gaseous phase reactions Equimolar quantities of GeH₃Br and Me₃N (at 50 to 250 torr) were placed in separate bulbs of a double-bulb gas mixing apparatus at 23 to 90 °C. Opening a stopcock between bulbs allowed the reactants to mix. A volatile white solid formed immediately. Upon standing, the solid became non-volatile, turned yellow, and slowly evolved GeH_4 , Ge_3H_8 , and traces of Ge_2H_6 and Ge_4H_{10} . # Reactions of Me₃N·GeH₃Br (1) #### With HBr and/or B2H6 Samples of Me₃N·GeH₃Br (1) (0.18-0.35 mmol), prepared at -78 °C, were allowed to react with excess HBr or B₂H₆ as shown in Table I (experiments 1 and 2). After reaction, products were removed and analyzed. Reactions with HBr and B₂H₆ yielded Me₃NHBr and Me₃NBH₃ [25], respectively, GeH₃Br and traces of germanes. TABLE I. Reaction of 1:1 Me₃N-GeH₃Br Complex with HBr and/or B₂H₆ | Experiment | Complex historya | | Acid | GeH ₃ Br product yield; | |------------|---------------------|-------------|--------------------------------------|--| | | temperature
(°C) | time
(h) | | % of Ge in initial
Me ₃ NGeH ₃ Br | | 1 | -78 | 1.0 | HBr | 97.8 | | 2 | -78 | 1.0 | B_2H_6 | 92.5 | | 3 | -63 | 1.0 | HBr | 98.6 | | 4 | -63 | 1.0 | B_2H_6 | 79.5 | | 5 | 23 | 0.5 | B_2H_6 | 58 | | | | | HBr | 23 | | 6 | 23 | 4.0 | B ₂ H ₆
HBr | 0
<1 | ^aMe₃N·GeH₃Br prepared at -78 °C, then warmed to the temperature for the time shown. #### Thermolysis Samples of 1 were allowed to warm to -63, -23 or 23 °C for times as shown in Table I (exps. 3–6). Samples were then treated at -78 °C with HBr or B_2H_6 followed by HBr. As above, Me_3NBH_3 along with GeH_3Br and traces of germanes formed. The percent GeH_3Br produced in each case is given in the Table. Intractable nonvolatile residues left after reaction in experiments 3–6 were not analyzed further. 1 (0.11 mmol, prepared at -78 °C) was warmed to -23 °C during 4 h in the presence of Me₃GeH (3.5 mmol). Traces of GeH₄, Ge₂H₆, and Ge₃H₈ and unreacted Me₃GeH were obtained. #### With H₂O or MeOH Water (0.051 mmol) was condensed onto 1 (0.135 mmol, prepared at -78 °C) and the mixture was allowed to warm to -63 °C. After 3 h, H₂O was consumed and (GeH₃)₂O [26] (0.051 mmol) and Me₃-NHBr were formed exclusively. From a 1-D₂O reaction, (GeH₃)₂O and Me₃NDBr were obtained quantitatively. The (GeH₃)₂O showed no Ge-D IR spectral absorption. MeOH (0.07 mmol) and 1 (0.108 mmol) were allowed to react at -63 °C. After 6 h, MeOGeH₃ [27] (0.064 mmol) was recovered. # Synthesis of $Me_3NHBr \cdot 1/x(GeH_2)_x$ (4) Solid 1, prepared in Me_2O at -78 °C, was warmed to 25 °C in vacuo during 15 min in the dark. Traces of GeH_4 , Ge_2H_6 , Ge_3H_8 and GeH_3Br (<5% of total germanium) evolved. The resulting solid 4 was pure white and non-volatile. ¹H NMR spectra of 4 could not be obtained owing to the insolubility of 4 in solvents in which it did not decompose, e.g. CCl₄, C₆H₆, ethers and hexane. Freshly prepared samples of 4 were powdered and pressed into KBr disks in a darkened room under N_2 for IR spectral analysis. Preparation time varied from 15-30 min. Initial IR spectra were obtained in <0.5 h, and subsequent spectra were obtained at 48 h intervals over a 10 day period. Samples were kept in the dark between analyses. Typical spectra are shown in Fig. 1. 4 showed only slight discoloration after 7 days in vacuo in the dark at 25 °C; however, after 1 h in sunlight it turned deep yellow. After 6 days exposure to ambient laboratory fluorescent light, intense yellow discoloration along with evolution of traces of germanes occurred. At 250–300 °C rapid conversion of the white solid to yellow, red, brown and finally metallic grey (metallic Ge) occurred along with evolution of H₂, GeH₄ and higher germanes. Me₃NHBr (93–95%) sublimed from the pyrolysis zone. 4 did not react with B_2H_6 at 25 °C in 2 h or with HBr at 25 °C in 0.3 h. During 17 h at 25 °C, DCl Fig. 1. Infrared spectrum of: (A), freshly prepared 4; (B), 4 after 10 days at 25 °C; (C), pure Me₃NHBr. (three-fold excess) reacted with 4 to produce GeH₃Cl, along with lesser amounts of GeH₂DCl (22-24% yield, overall). 4 prepared under N_2 was subjected to X-ray powder pattern analysis. After 3 h in Cu K α irradiation, 4 turned deep yellow. The powder pattern was superimposable with that of known Me₃NHBr. # Dissolution of $Me_3NHBr \cdot 1/x(GeH_2)_x$ (4) in Acetonitrile Freshly prepared 4 (0.10–0.15 mmol) was extracted with acetonitrile (5 ml) in the dark at 25 °C during 3 h. Partial dissolution of the solid occurs. The ¹H NMR spectrum of the acetonitrile solution showed resonances due to the Me₃NH⁺ ion and acetonitrile. A grey waxy solid (5) remained undissolved. Evaporation of the acetonitrile solution to dryness *in vacuo* yielded Me₃NHBr (92.5–94.0% of theoretical). 5 decomposes slowly at 25 °C, although it yellows slowly upon exposure to light. Thermolysis above 150 °C causes rapid evolution of H₂, GeH₄, Ge₂H₆ and Ge₃H₈. Elemental composition of 5 was determined by pyrolysis of 5 at 400 °C, followed by Toepler analysis [14] of H₂ and determination of Ge by peroxide titration of the resulting Ge metal [5,6]. *Anal.* Calc. for GeH₂: Ge, 97.30; H, 2.70. Found: Ge, 95.8–96.4; H, 2.45–2.85%. # Reaction of Me₃GeBr with Me₃N Typically, Me₃N (0.120 mmol) and Me₃GeBr (0.090 mmol) were allowed to mix at 25 °C and cooled to -78 °C. Excess Me₃N (0.031 mmol) was removed. Adduct Me₃N·Me₃GeBr (7) remained. During a 2 h period at -63 °C, around 20% of the adduct in an equimolar mixture of Me₃N and Me₃-GeBr (determined by IR spectra) was removed in vacuo. Reaction of 7 with excess B₂H₆ at -78 °C resulted in consumption of a half molar equivalent of B₂H₆, and quantitative recovery, within experimental limits, of the Me₃GeBr and Me₃NBH₃. # Results and Discussion Bromogermane (GeH₃Br) reacts with Me₃N to form the products summarized in Scheme 1. At -78 °C, Me₃N with excess GeH₃Br reacts neat or in Me₂O solvent to form a 1:1 Me₃N·GeH₃Br complex (1) in a process analogous to that which occurs between GeH₃Cl and Me₃N reported in brief form earlier [5, 26]. Even in the absence of solvent, GeH₃Br-Me₃N reactions are remarkably clean and are accompanied by formation of only traces of GeH₄, Ge₂H₆ and Ge₃H₈. Adduct 1 is a colorless solid, which appears unchanged after several hours at -78 °C; however, upon warming it undergoes conversion to material(s) with different physical and chemical properties. $$Me_3N + GeH_3Br \longrightarrow Me_3N \cdot GeH_3Br$$ (1) Three formulations for the Me₃N·GeH₃Br adduct can be considered: I, a five-coordinate structure in which Me₃N is coordinatively bonded to the Ge atom of GeH₃Br; II, a salt in which a GeH₃⁺ moiety has been transferred to the Me₃N to form a quaternary salt; and III, a bromogermanide salt in which Me₃N has abstracted a H⁺ from GeH₃Br to form the GeH₂Br⁻ ion. $$H$$ H $Me_3N-Ge-Br$ H I I I I $IMe_3NH]^+[GeH_2Br]^-$ Precedents for species analogous to I—III exist. Five-coordinated silicon and germanium halides, where coordination involves amine, phosphine or ether bases are well known [9, 11, 28]. Type II complexes, e.g. [Me₃NSiH₃⁺]Br⁻ and [Me₃N(Me₃Ge)⁺]Br⁻, analogs of tetraalkylammonium ions, from Me₃N—SiH₃Br and Me₃N—Me₃GeBr reactions, respectively, have been tentatively reported by Srivastava and Onyszchuk [29]. A type III species would be analogous to the GeH₃⁻ anion formed upon deprotonation of GeH₄ [30a] or the SiCl₃⁻ ion formed in reaction of Me₃N with HSiCl₃ [30b]. Although GeH₄ requires bases stronger than Me₃N for deprotonation [30, 31] it is possible that GeH₃Br, because of the electron withdrawing effect of the Br atom, might be more acidic. Characterization of 1 by spectral data (IR and ¹H NMR) was unsuccessful because of the low thermal stability and solubility of 1 in solvents with which it did not react. However, from its chemical reactivity properties, definitive structural inferences can be made. 1 reacts quantitatively with H₂O (or D₂O) or HBr and in high (ca. 90%) yield with B₂H₆ or MeOH as shown in eqns. (2)–(5) $$\frac{\text{HBr}}{-\text{Me}_3\text{NHBr}} \text{GeH}_3\text{Br} \qquad (2)$$ $$\frac{\text{B}_2\text{H}_6}{-\text{Me}_3\text{NBH}_3} \text{GeH}_3\text{Br} \qquad (3)$$ $$\frac{\text{H}_2\text{O}}{-\text{Me}_3\text{NHBr}} \text{(GcH}_3\text{)}_2\text{O} \qquad (4)$$ $$\frac{\text{MeOH}}{-\text{Me}_3\text{NHBr}} \text{MeOGeH}_3 \qquad (5)$$ Substitution of D₂O for H₂O yields Me₃NDBr and (GeH₃)₂O; within experimental error no incorporation of deuterium into the germyl ether occurs. Reactions in eqns. (4) and (5) are in fact good preparative syntheses for (GeH₃)₂O and MeOGeH₃ [32], species which otherwise have been difficult to obtain in reasonable yields. Of the structures possible for $Me_3N\cdot GeH_3Br$ (I—III), I seems most likely. Since 1 reacts quantitatively with D_2O to form $(GeH_3)_2O$ and no $(GeD_3)_2O$, the complex must contain an intact GeH_3 unit; hence formulation III is ruled out. Since GeH_3Br is easily displaced from the complex by B_2H_6 , we conclude the GeH₃ unit is not bonded to nitrogen in a quaternary cationic species as in II. Upon warming slightly or standing at -63 °C, the character of 1 changes dramatically and its reactivity toward H₂O and B₂H₆ decreases. After 1 h at -63 °C (exp. 3), the Me₃N·GeH₃Br complex with B₂H₆ produces only 79.5% of the theoretically expected GeH₃Br, although it still is in such a form that GeH₃Br can be displaced quantitatively (exp. 4) by HBr. Later, after 3 h at -23 °C, the GeH₃Br that can be displaced by B₂H₆ has dropped further to 58%. Again, considerable reactivity towards HBr is retained. After reaction with B2H6, HBr displaces another 23% of the GeH₃Br from the product. This behavior suggests involvement of a transient (intermediate) species whose formulation is different from 1 and that of the subsequently formed product 4. Such an intermediate could be [Me₃NGeH₃⁺]Br⁻ (5; Scheme 1), a species which contains a GeH₃ unit bonded to a quaternized nitrogen center as a result of cleavage of the Ge-Br bond in 1. Again, a species such as [Me₃NH⁺] [GeH₂Br] (type III, above) appears ruled out because in reactions with D₂O the digermyl ether obtained shows no significant Ge-D IR absorp- Further warming of the 1:1 Me₂N·GeH₃Br product to ambient room temperature (23 °C) yields a pure white, light sensitive solid (4) which is essentially unreactive towards B₂H₆, HBr (exp. 6, Table I) and H₂O. 4 is stable at ambient temperatures in the absence of light for periods of days, showing only barely decomposition and traces of germane evolution. Solid 4 dissolves partially and slowly (3 h) in acetonitrile or water at room temperature. A colorless solution, which upon evaporation was found to contain 92–95% of the expected Me_3NHBr , and a grey unstable gum (6) are formed. Compound 6 after drying *in vacuo*, analyzed closely for $(GeH_2)_x$. Upon heating, 6 discolors to yellow, orange and finally brown. During this decomposition GeH_4 , Ge_2H_6 and Ge_3H_8 evolve. Final heating at >300 °C yields a black residue which was presumed to be metallic germanium. It should be noted that dissolution of 4 is markedly different from that of Me_3NHBr . The IR spectra of 4, as a function of time, provide some insight into its composition. Spectral data are shown in Fig. 1. The spectrum of pure Me₃NHBr (Fig. 1C) is shown for comparison purposes. The initial spectrum of a freshly prepared sample (Fig. 1A) which had been exposed minimally to light prior to spectral analysis showed absorptions clearly attributable to the Me₃NH⁺ ion. In addition, strong absorptions at 2045 (a), 755 (c), and 610 (d) cm⁻¹, and a weak absorption at 860 (b) cm⁻¹ is present. Absorption a occurs in the characteristic Ge-H stretching mode region. Figure 1B shows the spectrum after 10 days at 25 °C. During this period, the sample was intentionally exposed to ambient laboratory light. A noticeable decrease in the intensity of absorptions a, b and c is evident along with some absorption line broadening. These are assigned to germanium hydride species. Although our data do not allow unambiguous characterization of 4, or the material to which it decomposes thermally or photochemically, they do show that 4 contains Me₃NH⁺ ions from the outset, and in a concentration which seems invariant with time. It is known that 4 forms from 1, with no change in overall compound composition (excepting loss of traces of germanes due to decomposition), that 4 contains Me₃NH⁺ ions from the outset, and that 4 yields Me₃NHBr upon dissolution in acetonitrile. Thus, a reasonable formulation for 4 is Me₃NH⁺Br· $1/x(GeH_2)_x$, a composition containing Me₃NH⁺ and Br ions and (GeH₂) units. The germylene unit is written as $(GeH_2)_x$, since GeH_2 monomers are likely not the main species present. Mono GeH₂ species can be present only to a minor degree, since only 20-25% reaction with HBr to GeH₃Br occurs. It is assumed that $(GeH_2)_x$ is less reactive than the mono GeH₂ and therefore forms no GeH₃Br upon treatment with HBr. Also, 4 with Me₃GeH gave no Me₃Ge₂H₃, suggesting that the GeH₂ species present is not very reactive towards insertion into Ge-H bonds. The GeH₂ species obtained in 4 seems different from that reported previously [3-5, 12]. The (GeH₂)_x from Ge₂H₆ disproportionation or GeH₃-RBr reactions reportedly decomposes quickly above -63 or 25 °C, respectively, to germanes and (GeH_{<2}) polymer. The (GeH₂)_x in 4 does not discolor or evolve germane in significant quantities for days. This suggests that the (GeH₂)_x moieties are stabilized in the solid either by the Me₃NH⁺ ion or the Br⁻ ion, or both. It is known that bases stabilize GeX₂ species in general [1, 2, 10], and there are cases where GeX2 units are stabilized by coordination both to a base and an acid, e.g. to Fe(CO)4 and THF, in THF- $GeX_2-Fe(CO)_4$ [2]. In 4, weak coordination of (GeH₂)_x species by Br (acting as a base) and/or by Me₃NH⁺ (acting as an acid) could occur. In this way 4 represents a unique system in which (GeH₂). becomes stabilized and displays behavior unique from that of other reported species. Compound 6, the product left after acetonitrile extraction of Me₃NHBr from 4, analyzes for GeH₂. It also is more stable than previously reported (GeH₂)_x. It is unreactive towards HBr and shows no photodecomposition or significant thermal decomposition over moderately long periods. Either it contains entrapped Me₃NHBr in concentrations below what we could detect by our analytical techniques, which stabilizes it, or it contains GeH₂ units bonded differently from other known systems. Timms has suggested that solid (GeH₂)_x might 14 C. A. Heil and A. D. Norman contain Ge—Ge bonds [12]. However, another arrangement involving Ge—H—Ge bonding analogous to that in GeX₂ [10] is possible. 6 might be of the former type, and thus is expected to be unreactive towards HBr. Further studies of compound 6 and its properties are warranted. Bromogermane with excess Me₃N yields products which are more complex. Compound 1 with an additional equivalent of Me₃N reacts to form a 2:1 complex as $$Me_3N + Me_3N \cdot GeH_3Br \longrightarrow (Me_3N)_2GeH_3Br$$ (6) The structure of the 2:1 complex is unclear. Since it is relatively unreactive towards B_2H_6 , it likely is not a simple six-coordinate complex of GeH_3Br . A more complex formulation such as $[Me_3NH^+][Me_3NGeH_2-Br^-]$, in which the second Me_3N deprotonates the acidic Me_3NGeH_3Br complex is possible. However, complete characterization awaits further study. In the presence of Me₃N in large excess, Me₃N and GeH₃Br yield Me₃NHBr and a yellow solution. Based on reaction stoichiometry data and the fact that Me₃NHBr is recovered quantitatively, reaction appears to occur as $$2\text{Me}_2\text{N} + \text{GeH}_3\text{Br} \longrightarrow \text{Me}_3\text{NHBr} + \text{Me}_3\text{NGeH}_2$$ (7) a reaction similar to what has been noted previously in the formation of the ylid Me₃NCH₂ from Me₃N and CH₃I [33]. The species in solution, formulated as Me₃NGeH₂ (3), decomposes rapidly but for a time retains reactivity towards Ge—H bonds. Reaction of 3 with Me₂GeH₂ or Me₃GeH results in low yield formation of Me₂Ge₂H₄ and Me₃Ge₂H₃, respectively, in addition to substantial quantities (13–37%) of Ge₃H₈. Similar behavior has been noted previously for the ylid Me₃NCH₂ [33]. Reaction of Me₃N with Me₃GeBr results in formation of a 1:1 complex Me₃N·Me₃GeBr (7) as $$Me_3N + Me_3GeBr \longrightarrow Me_3N \cdot Me_3GeBr$$ (8) analogous to that which occurs between Me₃N and GeH₃Br and reported earlier for Me₃GeBr with amines [5, 28]. Reaction of 7 with B₂H₆ yields Me₃NBH₃ quantitatively; complex 7 is partially dissociated even at -63 °C to the extent that Me₃GeBr and Me₃N can be removed slowly *in vacuo*. However, beyond this, the similarity between 7 and 1 ends. Upon warming, 7 dissociates without formation of other products. In excess Me₃N, it shows no tendency to form products analogous to those in eqn. (7). Clearly, because the GeH₃Br has transferrable H atoms, it is unique in the products it can form. # Acknowledgements Support of this work by National Science Foundation grants GP-8090 and CHE-8312856 and the Colorado Advanced Materials Institute is gratefully acknowledged. #### References - 1 (a) R. B. King, Inorg. Chem., 2, 199 (1963); (b) P. Jutzi, H.-J. Hoffman, D. J. Brauer and C. Kruger, Angew. Chem., Int. Ed. Engl., 12, 1002 (1973); (c) W.-W. duMont and H. Schuman, J. Organomet. Chem., 85, C45 (1975); (d) P. Jutzi, H.-J. Hoffman and K.-H. Wyes, J. Organomet. Chem., 83, 341 (1974); (e) W.-W. duMont, B. Neudert, G. Rudolph and H. Schuman, Angew. Chem., Int. Ed. Engl., 15, 308 (1976); (f) C. D. Silverman and M. Zeldin, Inorg. Chem., 19, 272 (1980). - (a) T. J. Marks and A. R. Newman, J. Am. Chem. Soc., 75, 769 (1973); (b) P. Jutzi and W. Steiner, Angew. Chem., Int. Ed. Engl., 15, 684 (1976); (c) J. D. Cotton, P. J. Davidson and M. F. Lappert, J. Chem. Soc., Dalton Trans., 2275 (1976). - 3 R. M. Dreyfuss and W. L. Jolly, *Inorg. Chem.*, 7, 2645 (1968). - 4 S. N. Glarum and C. A. Kraus, J. Am. Chem. Soc., 72, 5398 (1950). - 5 T. N. Srivastava and M. Onyszchuk, 137th Nat. Meeting Amer. Chem. Soc., Cleveland, 1960, Abstracts. - 6 W. R. Bornhorst and M. A. Ring, *Inorg. Chem.*, 7, 1009 (1968). - 7 D. S. Rustad and W. L. Jolly, *Inorg. Chem.*, 7, 213 (1968). - 8 M. L. Dennis and R. W. Work, J. Am. Chem. Soc., 55, 4486 (1933). - 9 F. Glocking, 'The Chemistry of Germanium', Academic Press, New York, 1969. - 10 J. Satgé, M. Massol and P. Riviere, J. Organomet. Chem., 56, 1 (1973). - 11 E. Wiberg and E. Amberger, 'Hydrides of the Elements of Main Groups I - IV', Elsevier, Amsterdam, 1971. - 12 P. L. Timms, Prep. Inorg. Reactions, 4, 59 (1968). - 13 R. L. Jenkins, R. A. Kedrowski, L. E. Elliot, D. C. Toppans, D. J. Schleyer and M. A. Ring, J. Organomet. Chem., 86, 347 (1975). - 14 D. F. Shriver and M. A. Drezdzon, 'The Manipulation of Air-Sensitive Compounds', 2nd. edn., McGraw-Hill, New York, 1986. - 15 J. W. Anderson, G. K. Barker, J. E. Drake and R. T. Hemmings, Can. J. Chem., 50, 1607 (1972). - 16 A. E. Finholt, A. C. Bond, K. E. Wilzbach and H. I. Schlesinger, J. Am. Chem. Soc., 69, 2692 (1947). - 17 D. F. Van deVondel and G. P. Van derKelen, Bull. Soc. Chim. Belg., 74, 467 (1965). - 18 R. J. Mathias, J. Satgé and F. Mathis, Spectrochim. Acta, 18, 1463 (1962). - 19 A. D. Norman and W. L. Jolly, *Inorg. Synth.*, 11, 15 (1968). - H. C. Brown and C. Groot, J. Am. Chem. Soc., 64, 2223 (1942). - 21 (a) J. W. Straley, C. H. Tindal and H. H. Nielson, *Phys. Rev.*, 62, 161 (1942); (b) V. A. Crawford, K. H. Rhea and M. K. Wilson, *J. Chem. Phys.*, 37, 2377 (1962). - 22 D. A. Davis and R. M. Hexter, J. Chem. Phys., 24, 1029 (1962). - 23 W. L. Jolly and J. E. Drake, Inorg. Synth., 7, 34 (1963). - 24 J. Drake and W. L. Jolly, J. Chem. Soc., 2807 (1962). - 25 B. Rice, R. J. Galiano and W. J. Lehmann, J. Phys. Chem., 61, 1222 (1957). - T. D. Goldfarb and S. Sujishi, J. Am. Chem. Soc., 86, 1679 (1964). - 27 G. A. Gibbon, J. T. Wang and C. H. VanDyke, *Inorg. Chem.*, 6, 1990 (1967). - 28 E. A. V. Ebsworth, 'Volatile Silicon Compounds', Macmillan, New York, 1963. 29 T. N. Srivastava and M. Onyszchuk, Angew. Chem., 75, - 578 (1963). - 30 (a) T. Birchall and I. Drommond, J. Chem. Soc. A, 1859 (1970); (b) M. A. Ring, R. L. Jenkins, R. Zangreb and H. C. Brown, J. Am. Chem. Soc., 93, 265 (1971). - 31 D. S. Rustad and W. L. Jolly, Inorg. Chem., 6, 1986 (1967). - 32 C. A. Heil and A. D. Norman, Inorg. Chim. Acta, 64, - 1197 (1982). 33 (a) W. K. Musker, J. Chem. Educ., 45, 200 (1968), (b) W. K. Musker and R. R. Stevens, Inorg. Chem., 8, 255 (1969).