Direct Synthesis of Ethers from Aldehydes and Ketones. One-Pot Reductive Etherification of Benzaldehydes, Alkyl Aryl Ketones, and Benzophenones

S. S. Mochalov, A. N. Fedotov, E. V. Trofimova, and N. S. Zefirov

Faculty of Chemistry, Moscow State University, Leninskie gory 1, Moscow, 119991 Russia e-mail: fed@org.chem.msu.ru

Received January 11, 2016

Abstract—Benzyl alcohols formed by the reduction of benzaldehydes, alkyl aryl ketones, and benzophenones with sodium tetrahydridoborate in alcohols undergo *in situ* etherification with the solvent in the presence of a catalytic amount of HCl. Thus the process may be regarded as one-pot transformation of carbonyl compounds into the corresponding benzyl ethers. The yields of ethers depend on the substituent nature in the aromatic fragment of the initial carbonyl compound and on the alcohol used as reduction medium.

DOI: 10.1134/S1070428016040047

Benzyl ethers are widely used in various transformations in organic synthesis [1]. They are generally prepared from benzyl alcohols [2–5] which are obtained in turn by reduction of the corresponding carbonyl compounds. However, development of modern low-cost technologies for the synthesis of ethers requires new protocols ensuring direct transformation of carbonyl compounds into ethers.

Attempts have already been made to obtain benzyl ethers directly from carbonyl compounds. Benzyl ethers can be synthesized from benzaldehydes via successive reactions first with benzyloxy(trimethyl)-silane and then with triethylsilane in the presence of a catalytic amount of FeCl₃ [6]. Another way is catalytic hydrogenation of acetyl-substituted arenes with gaseous hydrogen, followed by copper-catalyzed etherification with alcohol as coreactant [7]. It is seen that these procedures require specific reagents [6] or explosive gaseous reducing agent [7].

Herein we describe a simple and efficient method of direct transformation of benzaldehydes, alkyl aryl ketones, and benzophenones into the corresponding

benzyl ethers. The procedure includes NaBH₄ reduction of carbonyl compound to the corresponding benzyl alcohol and subsequent acid-catalyzed etherification with the alcohol solvent in a one-pot process (Scheme 1).

We initially studied reductive etherification of 4-methoxyacetophenone (1a) in various alcohols in order to estimate the range of alcohols as possible coreactants and compare the results with those obtained in the transformation of the same ketone according to the procedure described in [7]. The reductive etherification of 1a with a large series of primary and secondary aliphatic alcohols under the proposed conditions was as efficient as that reported in [7] (Table 1, Scheme 2) with the difference that the use of NaBH₄ as reducing agent considerably simplifies the experimental procedure.

As follows from the data in Table 1, the yields of the corresponding benzyl ethers with secondary alcohols were lower than with primary alcohols provided that the reaction time was fixed at 5 h. The lower yields were due to incomplete etherification of 1-(4-methoxyphenyl)ethanol formed as a result of reduction of 1a; prolonged heating increased the yield of 2c and 2g to quantitative.

According to [7], the opposite relation was observed: benzyl ethers with branched alkoxy groups were formed in a shorter time than those with un-

Scheme 2.

 $R = Et(a), Pr(b), i-Pr(c), Bu(d), i-Bu(e), C_8H_{17}(f), Cy(g), Me(h), PhCH_2(i).$

branched alkyl radicals. The authors [7] presumed that secondary (more nucleophilic) aliphatic alcohols reacted with benzyl alcohols at a higher rate. The difference between the dependences of the etherification rate on the alcohol coreactant structure reported in [7] and observed by us may be indicative of different etherification mechanisms. It was also quite surprising that the reductive etherification of 1a in methanol at 60°C was much slower (24 h) than, e.g., the reaction in ethanol (5 h) [7]. In our case, the reactions in both methanol and ethanol, as well as in propan-1-ol, at 60°C were equally efficient, and the yields of the corresponding ethers were equally high (Table 1). It should be noted that in our case the reduction of 1a in methanol, as well as in benzyl alcohol, was carried out by adding NaBH₄ to a solution of **1a** in methanol (or benzyl alcohol); otherwise, i.e., when a solution of NaBH₄ in these alcohols was prepared preliminarily, a large part of the reducing agent decomposed, and the vield of 1-(4-methoxyphenyl)ethanol was reduced. In the reactions with other aliphatic alcohols, the order of addition of the reactants was the same as reported in the literature.

We then proceeded to study the behavior of various substituted acetophenones with the goal of elucidating the effect of substituent in the aromatic ring on the

 Table 1. Reductive etherification of 4-methoxyacetophenone (1a) in different alcohols

Alcohol solvent	Benzyl ether	Yield, %
EtOH	2a	100
PrOH	2b	100
<i>i</i> -PrOH	2c	68
BuOH	2d	100
<i>i</i> -BuOH	2e	100
Octan-1-ol	2f	98
Cyclohexanol	2g	90
MeOH	2h	89
Benzyl alcohol	2i	91 ^a

^a Calculated on the reduced ketone **1a**.

vield of target benzyl ethers (Table 2, Scheme 3). It is seen that the presence of such a weak electron-withdrawing substituent as bromine atom in acetophenone **1i** prevents formation of the corresponding benzvl ether, though the reduction of 1i to 1-(3-bromophenyl)ethanol (3i) in both ethanol and propan-2-ol was quantitative (run nos. 21, 22). Unlike 1i, unsubstituted acetophenone (1b) and 4-tert-butylacetophenone (1c) were converted into the corresponding benzyl ethers; however, the latter were obtained in modest yields even at elevated temperature and prolonged reaction time (Table 2, run nos. 1-6). High yields of benzyl ethers were achieved in the reductive etherification of acetophenones 1e-1h containing strong electrondonating groups in the *para* position of the benzene ring. Alkoxy-substituted acetophenones 1f-1h gave benzyl ethers with higher yields in shorter time (run nos. 12–20).

1, **3**, Ar = Ph (**b**), 4-*t*-BuC₆H₄ (**c**), 4-cyclopropylphenyl (**d**), 4-(1-methylcyclopropyl)phenyl (**e**), 4-EtOC₆H₄ (**f**), 2,3-dihydro-1,4-benzodioxin-6-yl (**g**), 3,4-(MeO)₂C₆H₃ (**h**), 3-BrC₆H₄ (**i**), 5-methylfuran-2-yl (**j**), 5-ethylthiophen-2-yl (**k**); **4**, Ar = Ph, R = *i*-Pr (**a**); Ar = 4-*t*-BuC₆H₄, R = *i*-Pr (**b**), Pr (**c**), *i*-Bu (**d**); Ar = 4-cyclopropylphenyl, R = Me (**e**), Et (**f**), *i*-Pr (**g**); Ar = 4-(1-methylcyclopropyl)phenyl, R = Et (**h**), *i*-Pr (**i**); Ar = 4-EtOC₆H₄, R = Pr (*j*), *i*-Pr (**k**); Ar = 2,3-dihydro-1,4-benzodioxin-6-yl, R = Me (**l**), Pr (**m**), C₈H₁₇ (**n**), Cy (**o**); Ar = 3,4-(MeO)₂C₆H₃, R = Et (**p**), Pr (**q**), *i*-Pr (**r**); Ar = 5-methylfuran-2-yl, R = Et (**s**), *i*-Pr (**t**); Ar = 5-ethylthiophen-2-yl, R = Me (**u**), *i*-Pr (**w**).

Acetylhetarenes 1j and 1k were converted into the corresponding ethers even at 20°C, though in a longer time (Table 2, run nos. 23–27). In this case, time expenditure is justified since attempts to accelerate etherification of alcohols 3j and 3k formed in the reduction step by raising the temperature to 60°C led to formation of complex product mixtures. Unlike thio-

Run no.	Acetophenone	Alcohol solvent	Temperature, °C	Time, h	Benzyl ether	Yield, %	Reduction product	Yield, %
1	1b	<i>i</i> -PrOH	75	15	4 a	22	3b	78
2	1b	<i>i</i> -PrOH	75	50	4a	40	3b	60
3	1c	<i>i</i> -PrOH	75	7	4b	35	3c	64
4	1c	<i>i</i> -PrOH	75	20	4b	50	3c	50
5	1c	PrOH	60	15	4c	41	3c	58
6	1c	<i>i</i> -BuOH	60	15	4d	25	3c	75
7	1d	МеОН	60	8	4e	95	_ ^a	—
8	1d	EtOH	60	10	4f	92	3d	5
9	1d	<i>i</i> -PrOH	60	15	4g	75	3d	25
10	1e	EtOH	60	10	4h	85	3e	14
11	1e	<i>i</i> -PrOH	60	10	4i	40	3e	58
12	1f	PrOH	60	5	4j	98	3 f	3
13	1f	<i>i</i> -PrOH	60	5	4k	95	3f	4
14	1g	МеОН	60	4	41	100	-	_
15	1g	PrOH	60	5	4m	100	-	_
16	1g	Octan-1-ol	60	5	4n	88	3g	7
17	1g	Cyclohexanol	60	5	40	85	3g	12
18	1h	EtOH	60	3	4p	100	_	_
19	1h	PrOH	60	3	4q	100	_	_
20	1h	<i>i</i> -PrOH	60	5	4r	92	3h	5
21	1i	EtOH	60	10	-	_	3i	100
22	1i	<i>i</i> -PrOH	78	10	-	_	3i	100
23	1j	EtOH	20	6	4s	95	3j	3
24	1j	<i>i</i> -PrOH	20	18	4t	86	3j	12
25	1k	МеОН	20	12	4u	100	-	_
26	1k	EtOH	20	12	4v	95	3k	2
27	1k	<i>i</i> -PrOH	20	20	4 w	92	3k	7

Table 2. Reductive etherification of acetophenones 1b-1k

^a The reaction mixture before etherification contained alcohol **3d** and initial acetophenone **1d**.

phene analogs, ethers derived from 2-acetyl-5-methylfuran (1j) were unstable on storage, and they gave rise to multicomponent mixtures in 48–60 h at 20°C. One of the transformation products of ethers 4s and 4t was identified as 2,2'-(ethane-1,1-diyl)bis(5-methylfuran).

The second step of the one-pot process under consideration is in fact acid-catalyzed intermolecular etherification of benzyl alcohols with alcohols coreactants [3, 4]. Therefore, the formation of ethers from benzyl alcohols quantitatively* generated by reduction of acetophenones 1a-1k with NaBH₄, as well as etherification of preliminarily isolated alcohols [3, 4], should be considered to follow a common mechanism mediated by benzyl type carbenium ions.

We also found that structural analogs of acetophenones, alkoxy-substituted alkyl aryl ketones 5a-5c, are very readily converted into benzyl ethers 7a-7junder the proposed reductive etherification conditions (Table 3, Scheme 4). Quantitative etherification of alcohols derived from aryl cyclopropyl ketones 5a and 5c was observed even at 20°C (Table 3; run nos. 1, 2, 5-7). The complete reduction of 5a and 5c with NaBH₄ requires a longer time than the reduction of 5b, 5d, and 5e. On the other hand, etherification of benzyl cyclopropyl alcohols is considerably faster than the etherification of alcohols derived from 5b, 5d, and 5e,

^{*} According to the ¹H NMR spectra of the reaction mixtures before etherification step.

Scheme 4.

5, 6, Ar = 4-MeOC₆H₄, R = cyclopropyl (a); Ar = 2,3-dihydro-1,4-benzodioxin-6-yl, R = Et (b), cyclopropyl (c), PhCH₂ (d); Ar = 3,4-dihydro-2*H*-1,5-benzodiazepin-7-yl, R = PhCH₂ (e); 7, Ar = 4-MeOC₆H₄, R = cyclopropyl, R' = Et (a), *i*-Pr (b); Ar = 2,3-dihydro-1,4-benzodioxin-6-yl, R = Et, R' = Pr (c), *i*-Bu (d); 2,3-dihydro-1,4-benzodioxin-6-yl, R = cyclopropyl, R' = Et (e), Pr (f), *i*-Pr (g); Ar = 2,3-dihydro-1,4-benzodioxin-6-yl, R = PhCH₂, R' = Pr (h), *i*-Bu (i); Ar = 3,4-dihydro-2*H*-1,5-benzodiazepin-7-yl, R = PhCH₂, R' = Pr (j).

Scheme 5.

though in all cases the corresponding benzyl ethers are formed in quantitative yield (Table 3). These findings indicate that benzyl type carbocations generated from cyclopropyl carbinols 6a and 6c are more stable than those generated from ethyl- and benzyl-substituted analogs 6b, 6d, and 6e. Etherification of 6a and 6c should not be conducted at elevated temperature. When the second step in the reductive etherification of 5a was carried out at 50-60°C, after 0.5 h in the reaction mixture we detected by ¹H NMR unsaturated ether 8 resulting from opening of the cyclopropane ring (Scheme 5). Facile acid-catalyzed modification of cyclopropane ring in compounds analogous to 6a has been reported previously [8]; in our case (20°C) no such process was observed, at least during the given reaction time (Table 3; run nos. 1, 2, 5-7).

Diaryl ketones **9a–9d** containing alkoxy substituents in one benzene ring were also readily converted

into benzhydrol ethers **11a–11i** under the proposed conditions (Table 4, Scheme 6). Weak electron-withdrawing substituents such as halogen atoms present in one benzene ring of **9c** and **9d** almost did not affect acid-catalyzed etherification. Like aryl cyclopropyl ketones **5a** and **5c**, the reduction of **9a–9d** to benzhydrols **10a–10d** with NaBH₄ required a longer time or elevated temperature (compared to **1a–1k** or **5b**, **5d**, and **5e**). On the other hand, the etherification of **10a– 10d** was as fast as with alcohols derived from alkoxyaryl alkyl ketones (Tables 3, 4).

It is known [3, 4] that benzyl alcohols containing no electron-donating groups in the benzene ring are very difficult to involve in acid-catalyzed intermolecular condensations. It is believed that such substrates are incapable of generating the corresponding benzyl type cations at a sufficient rate. Therefore, the nature of substituent in the benzene ring of benzaldehydes

Run no.	Initial ketone	Alcohol solvent	Temperature, °C	Reaction time, h	Benzyl ether	Yield, %
1	5a	EtOH	20	2	7a	100
2	5a	<i>i</i> -PrOH	20	3	7b	100
3	5b	PrOH	60	4	7c	100
4	5b	<i>i</i> -BuOH	60	4	7d	100
5	5c	EtOH	20	6	7e	100
6	5c	PrOH	20	6	7f	100
7	5c	<i>i</i> -PrOH	20	6	7g	100
8	5d	PrOH	60	5	7h	100
9	5d	<i>i</i> -BuOH	60	5	7i	100
10	5e	PrOH	60	5	7j	98

Table 3. Reductive etherification of alkoxyaryl alkyl ketones 5a–5e

506

9, **10**, Ar = 3,4-(MeO)₂C₆H₃, Ar' = Ph (**a**); Ar = 2,3-dihydro-1,4-benzodioxin-6-yl, Ar' = 4-MeC₆H₄ (**b**), 4-FC₆H₄ (**c**); Ar = 7-bromo-2,3-dihydro-1,4-benzodioxin-6-yl, Ar' = 2-Th (**d**); **11**, Ar = 3,4-(MeO)₂C₆H₃, Ar' = Ph, R = Et (**a**), *i*-Pr (**b**); Ar = 2,3-dihydro-1,4-benzodioxin-6-yl, Ar' = 4-MeC₆H₄, R = Me (**c**), Et (**d**), *i*-Pr (**e**), C₅H₁₁ (**f**); Ar' = 4-FC₆H₄, R = Et (**g**), Pr (**h**); Ar = 7-bromo-2,3-dihydro-1,4-benzodioxin-6-yl, Ar' = thiophen-2-yl, R = *i*-Pr (**i**).

was expected to affect their reductive etherification to a stronger extent than in the case of acetophenones. In fact, neither benzaldehyde (12a) nor 3-methoxybenzaldehyde (12b) nor furan-2-carbaldehyde (12c) was converted into the corresponding ethers under standard conditions, though respective alcohols 13a–13c were formed in high yields (Table 5, Scheme 7). Unlike 12a–12c, 4-alkoxybenzaldehydes 12d–12f afforded high yields of benzyl ethers 14a–14f. The observed difference in the behaviors of benzaldehydes **12b** and **12d** differing only by the position of methoxy group (Table 5, run nos. 2, 3, 7–9) convincingly shows efficient stabilization of benzyl type carbenium ion derived from **12d** by the *p*-methoxy group and the lack of such stabilization in *m*-methoxy analog.

Thus, the proposed procedure for the synthesis of unsymmetrical ethers via reductive etherification of carbonyl compounds can be successfully applied to

Run no.	Benzophenone	Alcohol solvent	Temperature, °C	Reaction time, h	Benzyl ether	Yield, %
1	9a	EtOH	60	5	11a	100
2	9a	<i>i</i> -PrOH	60	5	11b	81 ^a
3	9b	MeOH	60	3.5	11c	96
4	9b	EtOH	60	3.5	11d	100
5	9b	<i>i</i> -PrOH	60	6	11e	100
6	9b	C ₅ H ₁₁ OH	60	5	11f	95
7	9c	EtOH	60	4	11g	100
8	9c	PrOH	60	4	11h	100
9	9d	<i>i</i> -PrOH	60	3.5	11i	100

Table 4. Reductive etherification of benzophenones 9a-9d

^a The mixture contained $\sim 15\%$ of **10a** (¹H NMR).

 Table 5. Reductive etherification of benzaldehydes 12a–12f

Run no.	Benzaldehyde	Alcohol solvent	Temperature, °C	Reaction time, h	Product	Yield, %
1	12a	EtOH	60	25	13a	96
2	12b	MeOH	60	20	13b	92 ^a
3	12b	PrOH	60	30	13b	88 ^a
4	12c	EtOH	20	12	13c	91
5	12c	<i>i</i> -PrOH	20	12	13c	95
6	12d	MeOH	60	5	14a	95
7	12d	EtOH	60	5	14b	96
8	12d	<i>i</i> -PrOH	60	15	14c	75
9	12e	MeOH	60	5	14d	85
10	12e	<i>i</i> -PrOH	60	15	14e	81
11	12f	EtOH	60	8	14f	88

^a The reaction mixture before etherification contained initial aldehyde **12b** (¹H NMR).

	Scheme	/ .		
ArCHO	(1) NaBH₄, ROH, 20°C (2) 10% aq. HCI	ArCH ₂ OH	+	ArCH ₂ OR
12a–12f		13a–13f		14a–14f

12, **13**, Ar = Ph (**a**), 3-MeOC₆H₄ (**b**), furan-2-yl (**c**), 4-MeO-C₆H₄ (**d**), 4-EtOC₆H₄ (**e**), 4-PhCH₂OC₆H₄ (**f**); **14**, Ar = 4-MeOC₆H₄, R = Me (**a**), Et (**b**), *i*-Pr (**c**); Ar = 4-EtOC₆H₄, R = Me (**d**), *i*-Pr (**e**); Ar = 4-PhCH₂OC₆H₄, R = Et (**f**).

benzaldehydes, alkyl aryl ketones, and benzophenones containing electron-donating substituents in the *para* positions of the benzene rings.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Varian VXR-400 spectrometer (400 MHz) from solutions in CDCl₃; the chemical shifts were measured relative to the residual proton signal of the solvent. The elemental analyses were obtained on a Varian-11 CHN analyzer. The products were isolated by chromatography on alumina (Brockmann activity grade II) using diethyl ether–hexane (1:3 or 1:4) as eluent.

General procedure for the reductive etherification of carbonyl compounds 1a-1k, 5a-5e, 9a-9d, and 12a–12f. Carbonvl substrate, 0.02 mol. was added in portions to a suspension of 0.01 mol NaBH₄ in 0.3 mol of the corresponding alcohol solvent, and the mixture was stirred for 2–2.5 h at 20°C. The resulting boron derivatives of benzyl alcohols were decomposed with 10% aqueous HCl (3.7 mL), and the mixture was stirred for a required time at a required temperature (see Tables 1-5), cooled, and poured into 200 mL of cold water. The products were extracted with diethyl ether $(2 \times 40 \text{ mL})$, the combined extracts were washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off on a rotary evaporator, and the residue was analyzed by ¹H NMR. If necessary, benzyl ethers were isolated by chromatography. Alcohol coreactants poorly soluble in water were removed from the diethyl ether extracts by vacuum distillation, and the target ethers ware isolated from the still residue. Ethers 2a [9], 2c [3], 2h, 4a [10], 4b [11], 4i, 4l, 7e, 10c, 10d, 10e [4], and 13a [12] were described previously. Ethers 2b, 2d-2g, 2i, 4c-4h, 4j, 4k, 4m-4w, 7a-7d, 7f, 7g, and 13b-13f are mobile liquids, and 7h-7j, 10a, 10b, and 10f-10i are viscous liquids.

1-Methoxy-4-(1-propoxyethyl)benzene (2b). ¹H NMR spectrum, δ , ppm: 0.94 t (3H, CH₂CH₃, J = 7.0 Hz), 1.42 d (3H, CHCH₃, J = 6.3 Hz), 1.58 sext (2H, CH₂CH₃, J = 7.0 Hz), 3.22 t (2H, OCH₂, J = 6.9 Hz), 3.80 s (3H, OCH₃), 4.31 q (1H, CHCH₃, J = 6.3 Hz), 6.84 d (2H, H_{arom}, J = 9.4 Hz), 7.19 d (2H, H_{arom}, J = 9.4 Hz). Found, %: C 73.88, 73.98; H 9.14, 9.21. C₁₂H₁₈O₂. Calculated, %: C 74.19; H 9.34.

1-(1-Butoxyethyl)-4-methoxybenzene (2d). ¹H NMR spectrum, δ , ppm: 0.93 t (3H, CH₂CH₃, J = 7.5 Hz), 1.39 m (2H, CH₂CH₃), 1.41 d (3H, CHCH₃, J = 6.4 Hz), 1.54 m (2H, OCH₂CH₂), 3.26 t (2H, OCH₂, J = 6.8 Hz), 3.80 s (3H, OCH₃), 4.29 q (1H, CHCH₃, J = 6.4 Hz), 6.83 d (2H, H_{arom}, J = 9.4 Hz), 7.19 d (2H, H_{arom}, J = 9.4 Hz). Found, %: C 74.68, 74.74; H 9.35, 9.46. C₁₃H₂₀O₂. Calculated, %: C 74.96; H 9.68.

1-Methoxy-4-[1-(2-methylpropan-1-yloxy)ethyl]benzene (2e). ¹H NMR spectrum, δ , ppm: 0.92 d [6H, CH(CH₃)₂, J = 6.6 Hz], 1.41 d (3H, CHCH₃, J = 6.4 Hz), 1.85 sept [1H, CH(CH₃)₂], 3.03 d (2H, OCH₂, J = 6.6 Hz), 3.82 s (3H, OCH₃), 4.29 q (1H, CHCH₃, J = 6.4 Hz), 6.84 d (2H, H_{arom}, J = 9.4 Hz), 7.19 d (2H, H_{arom}, J = 9.4 Hz). Found, %: C 74.59, 74.72; H 9.42, 9.51. C₁₃H₂₀O₂. Calculated, %: C 74.96; H 9.68.

1-Methoxy-4-[1-(octyloxy)ethyl]benzene (2f). ¹H NMR spectrum, δ , ppm: 0.91 t (3H, CH₂CH₃, J = 6.7 Hz), 1.21–1.33 m (10H, (CH₂)₅CH₃], 1.43 d (3H, CHCH₃, J = 6.4 Hz), 1.56 m (2H, OCH₂CH₂), 3.27 t (2H, OCH₂, J = 7.1 Hz), 3.81 s (3H, OCH₃), 4.32 q (1H, CHCH₃, J = 6.4 Hz), 6.86 d (2H, H_{arom}, J = 9.1 Hz), 7.23 d (2H, H_{arom}, J = 9.1 Hz). Found, %: C 76.88, 77.01; H 10.42, 10.51. C₁₇H₂₈O₂. Calculated, %: C 77.22; H 10.67.

1-[1-(Cyclohexyloxy)ethyl]-4-methoxybenzene (2g). ¹H NMR spectrum, δ , ppm: 1.19 m (3H), 1.29 m (2H), 1.50 m (1H), 1.71 m (3H), 1.93 m (1H), 3.13 m (1H) (C₆H₁₁); 1.38 d (3H, CHCH₃, J = 6.4 Hz), 3.79 s (3H, OCH₃), 4.52 q (1H, CHCH₃, J = 6.4 Hz), 6.83 d (2H, H_{arom}, J = 9.3 Hz), 7.21 d (2H, H_{arom}, J = 9.3 Hz). Found, %: C 76.41, 76.56; H 9.18, 9.27. C₁₅H₂₂O₂. Calculated, %: C 76.88; H 9.46.

1-[1-(Benzyloxy)ethyl]-4-methoxybenzene (2i). ¹H NMR spectrum, δ , ppm: 1.53 d (3H, CHCH₃, J = 6.6 Hz), 3.86 s (3H, OCH₃), 4.32 d and 4.48 d (1H each, CH₂Ph, J = 11.7 Hz), 4.51 q (1H, CHCH₃, J = 6.6 Hz), 6.96 d (2H, H_{arom}, J = 8.5 Hz), 7.32–7.42 m (7H, H_{arom}). Found, %: C 78.92, 79.03; H 7.11, 7.23. C₁₆H₁₈O₂. Calculated, %: C 79.31; H 7.49.

1-tert-Butyl-4-[1-(propoxy)ethyl]benzene (4c). ¹H NMR spectrum, δ , ppm: 0.95 t (3H, CH₂CH₃, J = 7.2 Hz), 1.36 s (9H, *t*-Bu), 1.42 d (3H, CHCH₃, J = 6.2 Hz), 1.59 sext (2H, CH₂CH₃), 3.25 m (2H, OCH₂), 4.33 q (1H, CHCH₃, J = 6.2 Hz), 7.19 d (2H, H_{arom}, J =8.3 Hz), 7.32 d (2H, H_{arom}, J = 8.3 Hz). Found, %: C 81.33, 81.52; H 10.72, 10.79. C₁₅H₂₄O. Calculated, %: C 81.76; H 10.98.

1-tert-Butyl-4-[1-(2-methylpropan-1-yloxy)ethyl]benzene (4d). ¹H NMR spectrum, δ , ppm: 0.89 t [6H, CH(CH₃)₂, J = 6.8 Hz], 1.32 s (9H, *t*-Bu), 1.37 d (3H, CHCH₃, J = 6.3 Hz), 1.82 sept [1H, CH(CH₃)₂], 3.01 m (2H, OCH₂), 4.25 q (1H, CHCH₃, J = 6.3 Hz), 7.12 d (2H, H_{arom}, J = 8.1 Hz), 7.26 d (2H, H_{arom}, J = 8.1 Hz). Found, %: C 81.38, 81.56; H 10.92, 11.01. C₁₆H₂₆O. Calculated, %: C 81.99; H 11.18.

1-Cyclopropyl-4-(1-methoxyethyl)benzene (4e). ¹H NMR spectrum, δ, ppm: 0.72 m (2H), 0.97 m (2H), 1.92 m (1H) (C₃H₅); 1.45 d (3H, CHCH₃, J = 6.6 Hz), 3.23 s (3H, OCH₃), 4.28 q (1H, CHCH₃, J = 6.6 Hz), 7.07 d (2H, H_{arom}, J = 8.0 Hz), 7.21 d (2H, H_{arom}, J =8.0 Hz). Found, %: C 81.22, 81.37; H 8.87, 8.94. C₁₂H₁₆O. Calculated, %: C 81.77; H 9.15.

1-Cyclopropyl-4-(1-ethoxyethyl)benzene (4f). ¹H NMR spectrum, δ , ppm: 0.71 m (2H), 0.96 m (2H), 1.91 m (1H) (C₃H₅); 1.21 t (3H, OCH₂CH₃, J =7.6 Hz), 1.44 d (3H, CHCH₃, J = 6.6 Hz), 3.35 q (2H, OCH₂, J = 7.6 Hz), 4.37 q (1H, CHCH₃, J = 6.6 Hz), 7.06 d (2H, H_{arom}, J = 8.2 Hz), 7.21 d (2H, H_{arom}, J =8.2 Hz). Found, %: C 81.63, 81.77; H 9.21, 9.31. C₁₃H₁₈O. Calculated, %: C 82.06; H 9.53.

1-Cyclopropyl-4-[1-(propan-2-yloxy)ethyl]benzene (4g). ¹H NMR spectrum, δ , ppm: 0.73 m (2H), 0.98 m (2H), 1.93 m (1H) (C₃H₅); 1.14 d and 1.19 d [3H each, CH(CH₃)₂, J = 6.0 Hz], 1.43 d (3H, CHCH₃, J = 6.4 Hz), 3.53 sept [1H, OCH(CH₃)₂], 4.52 q (1H, CHCH₃, J = 6.4 Hz), 7.06 d (2H, H_{arom}, J = 8.2 Hz), 7.24 d (2H, H_{arom}, J = 8.2 Hz). Found, %: C 81.81, 82.03; H 9.41, 9.56. C₁₄H₂₀O. Calculated, %: C 82.30; H 9.87.

1-(1-Ethoxyethyl)-4-(1-methylcyclopropyl)benzene (4h). ¹H NMR spectrum, δ , ppm: 0.75 m (2H), 0.90 m (2H) (C₃H₅); 1.22 t (3H, OCH₂CH₃, J =7.2 Hz), 1.45 s (3H, CH₃), 1.46 d (3H, CHCH₃, J =6.1 Hz), 3.38 q (2H, OCH₂CH₃, J = 7.2 Hz), 4.39 q (1H, CHCH₃, J = 6.1 Hz), 7.24 s (4H, H_{arom}). Found, %: C 81.73, 81.98; H 9.47, 9.63. C₁₄H₂₀O. Calculated, %: C 82.30; H 9.87.

1-Ethoxy-4-(1-propoxyethyl)benzene (4j). ¹H NMR spectrum, δ , ppm: 0.93 t (3H, CH₂CH₂CH₃, J = 7.2 Hz), 1.42 d (3H, CHCH₃, J = 6.2 Hz), 1.43 t (3H, OCH₂CH₃, J = 6.6 Hz), 1.58 m (2H, OCH₂CH₂CH₃), 3.24 t (2H, OCH₂CH₂CH₃, J = 6.4 Hz), 4.02 q (2H, OCH₂CH₃, J = 6.6 Hz), 4.32 q (1H, CHCH₃, J = 6.2 Hz), 6.83 d (2H, H_{arom}, J = 8.0 Hz), 7.19 d (2H, H_{arom}, J = 8.0 Hz). Found, %: C 74.51, 74.64; H 9.32, 9.46. C₁₃H₂₀O₂. Calculated, %: C 74.96; H 9.68.

1-Ethoxy-4-[1-(propan-2-yloxy)ethyl]benzene (4k). ¹H NMR spectrum, δ , ppm: 1.09 d and 1.15 d [3H each, CH(CH₃)₂, J = 6.0 Hz], 1.38 d (3H, CHCH₃, J = 6.3 Hz), 1.44 t (3H, OCH₂CH₃, J = 6.8 Hz), 3.48 sept [1H, CH(CH₃)₂], 4.01 q (2H, OCH₂CH₃, J =6.8 Hz), 4.45 q (1H, CHCH₃, J = 6.3 Hz), 6.81 d (2H, H_{arom}, J = 9.2 Hz), 7.19 d (2H, H_{arom}, J = 9.2 Hz). Found, %: C 74.62, 74.81; H 9.33, 9.52. C₁₃H₂₀O₂. Calculated, %: C 74.96; H 9.68.

6-(1-Propoxyethyl)-2,3-dihydro-1,4-benzodioxine (**4m**). ¹H NMR spectrum, δ , ppm: 0.92 t (3H, CH₂CH₃, J = 7.5 Hz), 1.36 d (3H, CHCH₃, J = 6.4 Hz), 1.55 sext (2H, CH₂CH₃, J = 7.5 Hz), 3.20 m (2H, CH₂CH₂CH₃), 4.21 m (5H, OCH₂CH₂O, CHCH₃), 6.69–6.76 m (3H, H_{arom}). Found, %: C 69.78, 69.92; H 7.91, 8.02. C₁₃H₁₈O₃. Calculated, %: C 70.24; H 8.16.

6-[(1-Octyloxy)ethyl]-2,3-dihydro-1,4-benzodioxine (4n). ¹H NMR spectrum, δ , ppm: 0.88 t (3H, CH₂CH₃, J = 6.8 Hz), 1.21–1.33 m [10H, (CH₂)₅CH₃], 1.39 d (3H, CHCH₃, J = 6.4 Hz), 1.55 m (2H, OCH₂CH₂CH₂), 3.27 m (2H, CHOCH₂), 4.25 s (4H, OCH₂CH₂O), 4.27 q (1H, CHCH₃, J = 6.4 Hz), 6.78 d.d (1H, H_{arom}, J = 1.9, 8.4 Hz), 6.83 d (1H, H_{arom}, J = 8.4 Hz), 6.84 d (1H, H_{arom}, J = 1.9 Hz). Found, %: C 73.33, 73.56; H 9.32, 9.44. C₁₈H₂₈O₃. Calculated, %: C 73.93; H 9.65.

6-[1-(Cyclohexyloxy)ethyl]-2,3-dihydro-1,4benzodioxine (40). ¹H NMR spectrum, δ , ppm: 1.15– 1.33 m (6H), 1.42 m (1H), 1.69 m (2H), 1.87 m (1H), 3.14 m (1H) (C₆H₁₁); 1.33 d (3H, CHCH₃, J = 6.4 Hz), 4.20 s (4H, OCH₂CH₂O), 4.42 q (1H, CHCH₃, J = 6.4 Hz), 6.4 Hz), 6.71–6.77 m (3H, H_{arom}). Found, %: C 72.81, 72.94; H 8.14, 8.26. C₁₆H₂₂O₃. Calculated, %: C 73.25; H 8.45.

4-(1-Ethoxyethyl)-1,2-dimethoxybenzene (4p). ¹H NMR spectrum, δ , ppm: 1.09 t (3H, OCH₂CH₃, J = 7.0 Hz), 1.31 d (3H, CHCH₃, J = 6.4 Hz), 3.23 m (2H, OCH₂CH₃), 3.76 s (3H, OCH₃), 3.79 s (3H, OCH₃), 4.21 q (1H, CHCH₃, J = 6.4 Hz), 6.68 s (2H, H_{arom}), 6.75 s (1H, H_{arom}). Found, %: C 68.11, 68.23; H 8.31, 8.42. C₁₂H₁₈O₃. Calculated, %: C 68.55; H 8.63.

1,2-Dimethoxy-4-(1-propoxyethyl)benzene (4q). ¹H NMR spectrum, δ , ppm: 0.81 t (3H, CH₂CH₃, J = 7.0 Hz), 1.27 d (3H, CHCH₃, J = 6.2 Hz), 1.43 sext (2H, CH₂CH₃, J = 7.0 Hz), 3.09 t (2H, OCH₂, J = 6.9 Hz), 3.72 s (3H, OCH₃), 3.75 s (3H, OCH₃), 4.16 q (1H, CHCH₃, J = 6.2 Hz), 6.64 s (2H, H_{arom}), 6.72 s (1H, H_{arom}). Found, %: C 69.16, 69.31; H 8.76, 8.81. C₁₃H₂₀O₃. Calculated, %: C 69.61; H 8.99.

1,2-Dimethoxy-4-[1-(propan-2-yloxy)ethyl]benzene (4r). ¹H NMR spectrum, δ , ppm: 0.97 d and 1.03 d [3H each, CH(CH₃)₂, J = 7.4 Hz), 1.26 d (3H, CHCH₃, J = 6.2 Hz), 3.36 sept [1H, OCH(CH₃)₂], 3.73 s (3H, OCH₃), 3.77 s (3H, OCH₃), 4.31 q (1H, CHCH₃, J = 6.2 Hz), 6.66 s (2H, H_{arom}), 6.75 s (1H, H_{arom}). Found, %: C 69.07, 69.33; H 8.69, 8.79. C₁₃H₂₀O₃. Calculated, %: C 69.61; H 8.99.

2-(1-Ethoxyethyl)-5-methylfuran (4s). ¹H NMR spectrum, δ , ppm: 1.17 t (3H, OCH₂CH₃, J = 7.2 Hz), 1.47 d (3H, CHCH₃, J = 6.6 Hz), 2.27 s (3H, CH₃), 3.39 m and 3.45 m (1H each, OCH₂CH₃), 4.35 q (1H, CHCH₃, J = 6.6 Hz), 5.86 m (1H, 4-H), 6.06 d (1H, 3-H, J = 3.9 Hz). Found, %: C 69.83, 69.92; H 8.86, 8.95. C₉H₁₄O₂. Calculated, %: C 70.10; H 9.15.

5-Methyl-2-[1-(propan-2-yloxy)ethyl]furan (4t). ¹H NMR spectrum, δ , ppm: 1.08 d and 1.14 d [3H each, CH(CH₃)₂, J = 6.2 Hz], 1.44 d (3H, CHCH₃, J = 6.3 Hz), 2.26 s (3H, 5-CH₃), 3.62 sept [1H, CH(CH₃)₂], 4.45 q (1H, CHCH₃, J = 6.3 Hz), 5.85 m (1H, 4-H), 6.05 d (1H, 3-H, J = 3.9 Hz). Found, %: C 71.09, 71.17; H 9.35, 9.47. C₁₀H₁₆O₂. Calculated, %: C 71.39; H 9.59.

2-Ethyl-5-(1-methoxyethyl)thiophene (4u). ¹H NMR spectrum, δ , ppm: 1.31 t (3H, CH₂CH₃, J = 7.6 Hz), 1.51 d (3H, CHCH₃, J = 6.6 Hz), 2.82 d.q (2H, CH₂CH₃), 3.24 s (3H, OCH₃), 4.45 q (1H, CHCH₃, J = 6.6 Hz), 6.59 d and 6.72 d (1H each, 3-H, 4-H, J = 4.3 Hz). Found, %: C 63.11, 63.31; H 7.98, 8.14. C₉H₁₄OS. Calculated, %: C 63.48; H 8.29.

2-(1-Ethoxyethyl)-5-ethylthiophene (4v). ¹H NMR spectrum, δ , ppm: 1.20 t (3H, OCH₂CH₃, J = 7.0 Hz), 1.32 t (3H, CH₂CH₃, J = 7.6 Hz), 1.53 d (3H, CHCH₃, J = 6.3 Hz), 2.82 q (2H, CH₂CH₃, J = 7.6 Hz), 3.38 m and 3.47 m (1H each, OCH₂CH₃), 4.58 q (1H, CHCH₃, J = 6.3 Hz), 6.61 d and 6.72 d (1H each, 3-H, 4-H, J = 4.3 Hz). Found, % C 64.78, 64.92; H 8.56, 8.61. C₁₀H₁₆OS. Calculated, %: C 65.17; H 8.75.

2-Ethyl-5-[1-(propan-2-yloxy)ethyl]thiophene (4w). ¹H NMR spectrum, δ , ppm: 1.14 d and 1.17 d [3H each, CH(CH₃)₂, J = 6.0 Hz], 1.33 t (3H, CH₂CH₃, J = 7.5 Hz), 1.51 d (3H, CHCH₃, J = 6.4 Hz), 2.82 q (2H, CH₂CH₃, J = 7.5 Hz), 3.65 sept [1H, CH(CH₃)₂], 4.71 q (1H, CHCH₃, J = 6.0 Hz), 6.60 d and 6.72 d (1H each, 3-H, 4-H, J = 4.4 Hz). Found, %: C 66.19, 66.32; H 8.89, 9.01. C₁₁H₁₈OS. Calculated, %: C 66.62; H 9.15.

1-[Cyclopropyl(ethoxy)methyl]-4-methoxybenzene (7a). ¹H NMR spectrum, δ , ppm: 0.24 m (1H), 0.44 m (2H), 0.62 m (1H), 1.15 m (1H) (C₃H₅); 1.21 t (3H, OCH₂CH₃, J = 7.0 Hz), 3.38 m (2H, OCH₂CH₃), 3.62 d (1H, CHOCH₂, J = 7.7 Hz), 3.81 s (3H, OCH₃), 6.87 d (2H, H_{arom}, J = 8.6 Hz), 7.24 d (2H, H_{arom}, J = 8.6 Hz). Found, %: C 75.12, 75.38; H 8.48, 8.61. C₁₃H₁₈O₂. Calculated, %: C 75.69; H 8.79.

1-[Cyclopropyl(propan-2-yloxy)methyl]-4-methoxybenzene (7b). ¹H NMR spectrum, δ , ppm: 0.25 m (1H), 0.42 m (2H), 0.61 m (1H), 1.14 m (1H) (C₃H₅); 1.11 d and 1.13 d [3H each, OCH(CH₃)₂, J = 7.6 Hz], 3.51 sept [1H, CH(CH₃)₂], 3.71 d [1H, CHOCH(CH₃)₂, J = 7.7 Hz], 3.82 s (3H, OCH₃), 6.87 d (2H, H_{arom}, J = 8.8 Hz), 7.25 d (2H, H_{arom}, J = 8.8 Hz). Found, %: C 75.91, 76.02; H 8.88, 8.97. C₁₄H₂₀O₂. Calculated, %: C 76.32; H 9.15.

6-(1-Propoxypropyl)-2,3-dihydro-1,4-benzodioxine (7c). ¹H NMR spectrum, δ , ppm: 0.88 t (3H, CH₂CH₂CH₃, J = 7.2 Hz), 0.92 t (3H, CH₂CH₃, J =7.2 Hz), 1.56 q (2H, CH₂CH₃, J = 7.2 Hz), 1.58 m and 1.73 m (1H each, OCH₂CH₂CH₃), 3.14 m and 3.25 m (1H each, OCH₂CH₂CH₃), 3.93 t (1H, CHOCH₂, J =6.0 Hz), 4.21 s (4H, OCH₂CH₂O), 6.68 d (1H, J =9.1 Hz), 6.73 s (1H, H_{arom}), 6.75 d (1H, H_{arom}, J =9.1 Hz). Found, %: C 70.78, 70.91; H 8.22, 8.36. C₁₄H₂₀O₃. Calculated, %: C 71.16; H 8.53.

6-[1-(2-Methylpropan-1-yloxy)propyl]-2,3-dihydro-1,4-benzodioxine (7d). ¹H NMR spectrum, δ , ppm: 0.89 t (3H, CH₂CH₃, J = 7.1 Hz), 0.90 d and 0.92 d [3H, CH(CH₃)₂, J = 6.3 Hz], 1.61 m [1H, CH(CH₃)₃], 1.74 m and 1.82 m (1H each, CH₂CH₃), 2.95 m and 3.08 m (1H each, OCH₂), 3.93 t (1H, CHCH₂CH₃, J = 6.8 Hz), 4.22 s (4H, OCH₂CH₂O), 6.69 d.d (1H, H_{arom}, J = 1.8, 8.2 Hz), 6.73 d (1H, H_{arom}, J = 1.8 Hz), 6.76 d (1H, H_{arom}, J = 8.2 Hz). Found, %: C 71.56, 71.71; H 8.58, 8.69. C₁₅H₂₂O₃. Calculated, %: C 71.97; H 8.86.

6-[Cyclopropyl(propoxy)methyl]-2,3-dihydro-1,4-benzodioxine (7f). ¹H NMR spectrum, δ , ppm: 0.25 m (1H), 0.42 m (2H), 0.56 m (1H), 1.08 m (1H) (C₃H₅); 0.92 t (3H, CH₂CH₃, J = 7.5 Hz), 1.57 sext (2H, CH₂CH₃, J = 7.5 Hz), 3.22 m and 3.26 m (1H each, CHOCH₂), 3.56 d (1H, CHOCH₂, J = 6.4 Hz), 4.23 s (4H, OCH₂CH₂O), 6.73–6.78 m (3H, H_{arom}). Found, %: C 72.03, 72.21; H 7.89, 7.96. $C_{15}H_{20}O_{3}$. Calculated, %: C 72.55; H 8.12.

6-[Cyclopropyl(propan-2-yloxy)methyl]-2,3-dihydro-1,4-benzodioxine (7g). ¹H NMR spectrum, δ , ppm: 0.25 m (1H), 0.36 m (2H), 0.49 m (1H), 1.01 m (1H) (C₃H₅); 1.04 d and 1.06 d [3H each, CH(CH₃)₂, J = 6.0 Hz]; 3.43 sept [1H, OCH(CH₃)₂], 3.63 d [1H, CHOCH(CH₃)₂, J = 6.7 Hz], 4.20 s (4H, OCH₂CH₂O), 6.70–6.74 m (3H, H_{arom}). Found, %: C 72.11, 72.33; H 7.85, 8.01. C₁₅H₂₀O₃. Calculated, %: C 72.55; H 8.12.

6-(2-Phenyl-1-propoxyethyl)-2,3-dihydro-1,4benzodioxine (7h). ¹H NMR spectrum, δ , ppm: 0.84 t (3H, CH₂CH₃, J = 7.5 Hz), 1.51 sext (2H, CH₂CH₃, J = 7.5 Hz), 2.79 d.d (1H, J = 13.9, 5.2 Hz) and 2.98 d.d (1H, J = 13.9, 7.0 Hz) (CH₂Ph), 3.06 m and 3.25 m (1H each, CHOCH₂), 4.20 s (4H, OCH₂CH₂O), 4.21 t (1H, CHOCH₂, J = 6.6 Hz), 6.63 d.d (1H, H_{arom}, J = 8.0, 1.8 Hz), 6.77 d (1H, H_{arom}, J = 1.8 Hz), 6.78 d (1H, H_{arom}). Found, %: C 76.01, 76.16; H 7.08, 7.16. C₁₉H₂₂O₃. Calculated, %: C 76.48; H 7.43.

6-[1-(2-Methylpropan-1-yloxy)-2-phenylethyl]-2,3-dihydro-1,4-benzodioxine (7i). ¹H NMR spectrum, δ , ppm: 0.88 d [6H, CH(CH₃)₂, J = 6.4 Hz], 1.82 sept [1H, CH(CH₃)₂], 2.87 d.d (1H, J = 14.0, 5.2 Hz) and 2.92 d.d (1H, J = 14.0, 7.1 Hz) (CH₂Ph), 3.05 m and 3.11 m (1H each, CHOCH₂), 4.26 s (4H, OCH₂CH₂O), 4.27 t (1H, CHOCH₂, J = 7.6 Hz), 6.69 d.d (1H, H_{arom}, J = 8.1, 1.8 Hz), 6.77 d (1H, H_{arom}, J = 1.8 Hz), 6.78 d (1H, H_{arom}, J = 8.1 Hz), 7.17 m (3H, H_{arom}), 7.24 m (2H, H_{arom}). Found, %: C 76.41, 76.62; H 7.52, 7.61. C₂₀H₂₄O₃. Calculated, %: C 76.89; H 7.74.

7-(2-Phenyl-1-propoxyethyl)-3,4-dihydro-2*H***-1,5-benzodioxepine (7j).** ¹H NMR spectrum, δ , ppm: 0.85 t (3H, CH₂CH₃, J = 7.5 Hz), 1.53 sext (2H, CH₂CH₃, J = 7.5 Hz), 2.21 quint (2H, 3-H, J = 5.6 Hz), 2.85 d.d (1H, J = 14.9, 6.0 Hz) and 3.09 d.d (1H, J =14.9, 8.4 Hz) (CH₂Ph), 3.15 m (1H) and 3.31 m (1H each, CHOCH₂), 4.23 t (4H, 2-H, 4-H, J = 6.0 Hz), 4.33 t (1H, CHOCH₂, J = 6.4 Hz), 6.82 d.d (1H, H_{arom}, J = 8.2, 2.2 Hz), 6.90 d (1H, H_{arom}, J = 2.2 Hz), 6.94 d (1H, H_{arom}), 7.26 m (2H, H_{arom}). Found, %: C 76.33, 76.71; H 7.43, 7.57. C₂₀H₂₄O₃. Calculated, %: C 76.89; H 7.74.

4-[Ethoxy(phenyl)methyl]-1,2-dimethoxybenzene (11a). ¹H NMR spectrum, δ, ppm: 1.26 t (3H, OCH₂CH₃, J = 7.1 Hz), 3.48 q (2H, OCH₂CH₃, J = 7.1 Hz), 3.78 s (3H, OCH₃), 3.79 s (3H, OCH₃), 5.24 s (1H, CHOCH₂), 6.73 d (1H, H_{arom}, J = 8.2 Hz), 6.80 d.d (1H, H_{arom}, J = 8.2, 1.6 Hz), 6.83 d (1H, H_{arom}, J = 1.6 Hz), 7.17 m (1H, H_{arom}), 7.23–7.33 m (4H, H_{arom}). Found, %: C 74.58, 74.71; H 7.02, 7.14. C₁₇H₂₀O₃. Calculated, %: C 74.97; H 7.40.

1,2-Dimethoxy-4-[phenyl(propan-2-yloxy)methyl]benzene (11b). ¹H NMR spectrum, δ , ppm: 1.21 d and 1.23 d [3H each, CH(CH₃)₂, J = 6.8 Hz], 3.65 sept [1H, OCH(CH₃)₂], 3.83 s (3H, OCH₃), 3.84 s (3H, OCH₃), 5.37 s [1H, CHOCH(CH₃)₂], 6.75 d (1H, H_{arom}, J = 8.2 Hz), 6.81 d.d (1H, H_{arom}, J = 8.2, 1.6 Hz), 6.83 d (1H, H_{arom}, J = 1.6 Hz), 7.18 m (1H, H_{arom}), 7.24–7.30 m (4H, H_{arom}). Found, %: C 74.96, 75.12; H 7.48, 7.62. C₁₈H₂₂O₃. Calculated, %: C 75.50; H 7.74.

6-[(4-Methylphenyl)(pentyloxy)methyl]-2,3-dihydro-1,4-benzodioxine (11f). ¹H NMR spectrum, δ , ppm: 1.03 t (3H, CH₂CH₃, J = 7.2 Hz), 1.38–1.55 m (4H, CH₂CH₂CH₃), 1.72 m (2H, CH₂CH₂CH₂CH₂), 2.42 s (3H, CH₃), 3.49 m (2H, CHOCH₂), 4.23 s (4H, OCH₂CH₂O), 5.24 s (1H, CHOCH₂), 6.84 s (2H, H_{arom}), 6.90 s (1H, H_{arom}), 7.17 d (2H, H_{arom}, J =8.0 Hz), 7.28 d (2H, H_{arom}, J = 8.0 Hz). Found, %: C 76.87, 77.01; H 7.72, 7.84. C₂₁H₂₆O₃. Calculated, %: C 77.27; H 8.03.

6-[Ethoxy(4-fluorophenyl)methyl]-2,3-dihydro-1,4-benzodioxine (11g). ¹H NMR spectrum, δ , ppm: 1.32 t (3H, OCH₂CH₃, J = 7.2 Hz), 3.54 m (2H, OCH₂CH₃), 4.22 s (4H, OCH₂CH₂O), 5.24 s (1H, CHOCH₂), 6.81 d.d (1H, H_{arom}, J = 8.0, 1.6 Hz), 6.83 d (1H, H_{arom}, J = 8.0 Hz), 6.87 d (1H, H_{arom}, J = 1.6 Hz), 7.02 t (2H, H_{arom}, J = 8.4, $J_{FH} = 8.4$ Hz), 7.34 d.d (2H, H_{arom}, J = 8.4, $J_{FH} = 5.3$ Hz). Found, %: C 70.36, 70.58; H 5.67, 5.78. C₁₇H₁₇FO₃. Calculated, %: C 70.82; H 5.94.

6-[(4-Fluorophenyl)(propoxy)methyl]-2,3-dihydro-1,4-benzodioxine (11h). ¹H NMR spectrum, δ , ppm: 1.04 t (3H, CH₂CH₃, J = 7.3 Hz), 1.71 sext (2H, CH₂CH₃, J = 7.3 Hz), 3.42 m (2H, CHOCH₂), 4.23 s (4H, OCH₂CH₂O), 5.22 s (1H, CHOCH₂), 6.78 d.d (1H, H_{arom}, J = 8.1, 1.6 Hz), 6.81 d (1H, H_{arom}, J =8.1 Hz), 6.85 d (1H, H_{arom}, J = 1.6 Hz), 7.02 t (2H, H_{arom}, J = 8.4, $J_{\text{FH}} = 8.4$ Hz), 7.33 d.d (2H, H_{arom}, J =8.4, $J_{\text{FH}} = 5.4$ Hz). Found, %: C 70.92, 71.18; H 6.04, 6.17. C₁₈H₁₉FO₃. Calculated, %: C 71.51; H 6.33.

6-Bromo-7-[(propan-2-yloxy)(thiophen-2-yl)methyl]-2,3-dihydro-1,4-benzodioxine (11i). ¹H NMR spectrum, δ , ppm: 1.25 d and 1.29 d [3H each, CH(CH₃)₂, J = 6.4 Hz], 3.72 sept [1H, OCH(CH₃)₂], 4.24 s (4H, OCH₂CH₂O), 5.99 s [1H, CHOCH(CH₃)₂], 6.85 d.d (1H, 3'-H, J = 3.8, 1.2 Hz), 6.90 d.d (1H, 4'-H, J = 5.1, J = 3.8 Hz), 7.05 s (1H, H_{arom}), 7.17 s (1H, H_{arom}), 7.22 d.d (5'-H, J = 5.1, 1.2 Hz). Found, %: C 51.55, 51.71; H 4.31, 4.47. C₁₆H₁₇BrO₃S. Calculated, %: C 52.04; H 4.64.

1-(Ethoxymethyl)-4-methoxybenzene (14b). ¹H NMR spectrum, δ , ppm: 1.25 t (3H, OCH₂CH₃, J = 7.0 Hz), 3.50 q (2H, OCH₂CH₃, J = 7.0 Hz), 3.79 s (3H, OCH₃), 4.42 s (2H, CH₂OEt), 6.84 d (2H, H_{arom}, J = 8.4 Hz), 7.24 d (2H, H_{arom}, J = 8.4 Hz). Found, %: C 71.88, 72.02; H 8.21, 8.32. C₁₀H₁₄O₂. Calculated, %: C 72.26; H 8.49.

1-Methoxy-4-[(propan-2-yloxy)methyl]benzene (14c). ¹H NMR spectrum, δ , ppm: 1.24 d [6H, OCH(CH₃)₂, J = 7.4 Hz], 3.70 sept [1H, OCH(CH₃)₂], 3.82 s (3H, OCH₃), 4.48 s (2H, CH₂OCH), 6.91 d (2H, H_{arom}, J = 8.5 Hz), 7.31 d (2H, H_{arom}, J = 8.5 Hz). Found, %: C 72.93, 73.06; H 8.71, 8.79. C₁₁H₁₆O₂. Calculated, %: C 73.30; H 8.95.

1-Ethoxy-4-(methoxymethyl)benzene (14d). ¹H NMR spectrum, δ , ppm: 1.44 t (3H, OCH₂CH₃, J = 6.7 Hz), 3.34 s (3H, OCH₃), 4.01 q (2H, OCH₂CH₃, J = 6.7 Hz), 4.37 s (2H, CH₂OCH₃), 6.82 d (2H, H_{arom}, J = 8.5 Hz), 7.21 d (2H, H_{arom}, J = 8.5 Hz). Found, %: C 71.93, 72.11; H 8.19, 8.33. C₁₀H₁₄O₂. Calculated, %: C 72.26; H 8.49.

1-Ethoxy-4-[(propan-2-yloxy)methyl]benzene (**14e**). ¹H NMR spectrum, δ , ppm: 1.24 d [6H, OCH(CH₃)₂, J = 6.6 Hz], 1.44 t (3H, OCH₂CH₃, J = 7.0 Hz), 3.71 sept [1H, OCH(CH₃)₂], 4.05 q (2H, OCH₂CH₃, J = 7.0 Hz), 4.47 s (2H, CH₂OCH), 6.89 d (2H, H_{arom}, J = 8.5 Hz), 7.28 d (2H, H_{arom}, J = 8.5 Hz). Found, %: C 73.81, 73.96; H 9.03, 9.11. C₁₂H₁₈O₂. Calculated, %: C 74.19; H 9.34.

1-(Benzyloxy)-4-ethoxybenzene (14f). ¹H NMR spectrum, δ , ppm: 1.31 t (3H, OCH₂CH₃, J = 7.4 Hz), 3.58 q (2H, OCH₂CH₃, J = 7.4 Hz), 4.51 s (2H, CH₂OCH₂CH₃), 5.12 s (2H, PhCH₂), 7.02 d (2H, H_{arom}, J = 8.5 Hz), 7.34 d (2H, H_{arom}, J = 8.5 Hz), 7.38 t (1H, H_{arom}, J = 7.6 Hz), 7.44 t (2H, H_{arom}, J = 7.6 Hz), 7.50 d (2H, H_{arom}, J = 7.6 Hz). Found, %: C 78.95, 79.11; H 7.21, 7.32. C₁₆H₁₈O₂. Calculated, %: C 79.31; H 7.49.

This study was performed under financial support by the Council for Grants at the President of the Russian Federation (project no. NSh 5130.2014.3/2015).

REFERENCES

- 1. Greene, T.W. and Wuts, P.G.M., *Protective Groups in Organic Synthesis*, New York: Wiley, 1999, 3rd ed., p. 76.
- 2. Boyer, B., Keramane, E-M., Roque, J-P., and Pavia, A.A., *Tetrahedron Lett.*, 2000, vol. 41, p. 2891.
- Yu, J.-L., Wang, H., Zou, K.-F., Zhang, J.-R., Gao, X., Zang, D.-W., and Li, Z.-T., *Tetrahedron*, 2013, vol. 69, p. 310.
- Mochalov, S.S., Fedotov, A.N., Trofimova, E.V., and Zefirov, N.S., *Russ. J. Org. Chem.*, 2015, vol. 51, p. 1217.
- Vinson, A.R.S., Davis, V.K., Arunasalarn, A., Jesse, K.A., Hamilton, R.E., Shattuck, M.A., Hu, A.C., Lafe, R.G., and Wenzel, A.G., *Synlett*, 2015, vol. 26, p. 765.
- 6. Iwanami, K., Seo, H., Tobita, Y., and Oriyama, T., *Synthesis*, 2005, no. 2, p. 183.
- 7. Zaccheria, F., Psaro, R., and Ravasio, N., *Tetrahedron Lett.*, 2009, vol. 50, p. 5221.
- Carey, F.A. and Tremper, H.S., J. Am. Chem. Soc., 1969, vol. 91, p. 2967.
- Black, E.A., Delves, S.G., Lee, J.A., Roberts, P.M., and Thomson, J.E., Org. Lett., 2012, vol. 14, p. 4278.
- 10. Ke, F., Li, Zh., Xiang, H., and Zhon, X., *Tetrahedron Lett.*, 2011, vol. 52, p. 318.
- Kuliev, A.M., Farzaliev, V.M., Levshina, A.M., and Mamedov, F.N., *Prisadki Smaz. Maslam*, 1969, no. 2, p. 108.
- 12. Bettoni, M., J. Phys. Org. Chem., 2005, vol. 19, p. 18.