ISSN 1070-4280, Russian Journal of Organic Chemistry, 2016, Vol. 52, No. 6, pp. 862–872. © Pleiades Publishing, Ltd., 2016. Original Russian Text © V.A. Vasin, V.V. Razin, E.V. Bezrukova, P.S. Petrov, 2016, published in Zhurnal Organicheskoi Khimii, 2016, Vol. 52, No. 6, pp. 876–886.

Regioselectivity of the Thermal van Alphen–Hüttel Rearrangement of 4- and 5-Mono- and 4,5-Disubstituted 3,3-Diphenyl-3*H*-pyrazoles

V. A. Vasin^a,* V. V. Razin^b, E. V. Bezrukova^a, and P. S. Petrov^a

^a Ogarev Mordovian State University, ul. Bol'shevistskaya 68, Saransk, 430005 Russia *e-mail: vasin@mrsu.ru

^b St. Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504 Russia

Received February 10, 2016

Abstract—Thermal van Alphen–Hüttel rearrangement of methyl 3,3-diphenyl-3*H*-pyrazole-4-carboxylate, 3,3-diphenyl-3*H*-pyrazole-4-carbonitrile, and methyl 5-methyl-3,3-diphenyl-3*H*-pyrazole-4-carboxylate involves completely regioselective migration of one phenyl group from the 3-position to N² with formation of aromatic 1*H*-pyrazole system. Thermal rearrangement of methyl 3,3-diphenyl-3*H*-pyrazole-5-carboxylate leads to the formation of methyl 4,5-diphenyl-1*H*-pyrazole-3-carboxylate as a result of migration of the 3-phenyl group exclusively to the C⁴ atom and subsequent prototropic isomerization. Under analogous conditions, methyl 4-methyl-3,3-diphenyl-3*H*-pyrazole-5-carboxylate, methyl 5-(methanesulfonyl)-3,3-diphenyl-3*H*-pyrazole-4, and dimethyl 3,3-diphenyl-3*H*-pyrazole-4,5-dicarboxylate have been regioselectively converted into the corresponding 4*H*-pyrazoles. Thermolysis of 5-(4-methylbenzenesulfonyl)-3,3-diphenyl-3*H*-pyrazole-4-carbonitrile gives rise to a mixture of 1*H*- and 4*H*-pyrazoles, the former considerably prevailing, whereas the corresponding 1*H*-pyrazoles are formed as the only product from 5-(methanesulfonyl)- and 5-(benzenesulfonyl)-3,3-diphenyl-3*H*-pyrazole-4-carbonitriles.

DOI: 10.1134/S1070428016060178

It is known [1] that 3,3-disubstituted 3*H*-pyrazoles undergo thermal or acid-catalyzed 1,5-signatropic van Alphen–Hüttel rearrangement [2, 3] into 1*H*- and/or 4*H*-pyrazoles. Despite higher stability of the aromatic 1*H*-pyrazole system relative to nonaromatic 4*H*-pyrazoles, the latter sometimes appear to be the major or only isomerization product [4]. Factors responsible for regioselectivity of this rearrangement remain so far the matter of discussion.

While trying to shed light on this problem, we compared the known results of thermal van Alphen–Hüttel rearrangement of three pairs of 4,5-disubstituted 3,3-diphenyl-3*H*-pyrazoles **1a–1c** and **2a–2c** differing by the nature of one electron-withdrawing substituent and its position, as well as of structurally related compound **1d** [5–8]. Pyrazoles **1a–1d** with the electronwithdrawing substituent on C⁴ are mainly converted into *N*-phenyl-1*H*-pyrazole derivatives, whereas regioisomeric 5-W-substituted (W is an electron-withdrawing group) compounds **2a–2c** give rise preferentially to 4*H*-pyrazoles. The isomerization of sulfonyl-substituted 3*H*-pyrazoles **1a**, **1b**, **2a**, and **2b** is completely regioselective; the regioselectivity of the rearrangement of methoxycarbonyl and cyano compounds **1c**, **1d**, and **2c** is somewhat lower due to formation of minor alternative isomerization products.

We have also noticed that the thermolysis of two 3,3-diphenyl-3*H*-pyrazoles 3e [9] and 3f [10] containing an electron-withdrawing substituent in the 5-position and free 4-position is completely regioselective and is directed toward the corresponding 4*H*-pyrazole which undergoes fast prototropic isomerization into

1, **2**, R = Ph; **3**, **4**, R = H; **5**, **6**, R = Me; **7**, R = COOMe; **8**, R = CN; hereinafter, W = Ts (**a**), SO₂Me (**b**), COOMe (**c**), CN (**d**), Ac (**e**), P(O)Ph₂ (**f**), Me (**g**), Ph (**h**), cycloalk-1-en-1-yl (**i**), H (**j**), SO₂Ph (**k**).

1*H*-pyrazole derivative. On the other hand, analogous regioselectivity is observed in the isomerization of 3,3-diphenyl-3*H*-pyrazoles **3g** [11], **3h** [12, 13], and **3i** [14] with a hydrocarbon substituent on C^5 and free 4-position. Finally, it is known [15] that 3,3-diphenyl-3*H*-pyrazole (**3j**) having no substituents in positions 4 and 5 rearranges into 1*H*-pyrazole through intermediate 4*H*-pyrazole. We have found no published data on 4-substituted 3,3-diphenyl-3*H*-pyrazoles with no substituent on C^5 and their thermal transformations.

The present study was aimed at elucidating the effect of the nature of substituents and their position in 3,3-diphenyl-3*H*-pyrazoles on the direction of thermal 1,5-sigmatropic shift of the phenyl group from C³. For this purpose, the substrate series was considerably extended by including three 4- and 5-monosubstituted 3,3-diphenyl-3*H*-pyrazoles: 5-methoxycarbonyl derivative **3c** and 4-methoxycarbonyl and 4-cyano derivatives **4c** and **4d**, as well as eight 4,5-disubstituted 3,3-diphenyl-3*H*-pyrazoles, namely two regioisomeric compounds **5c** and **6c** with one electron-withdrawing substituent and pyrazoles **7b**, **7c**, **7k**, **8a**, **8b**, and **8k** possessing two electron-withdrawing substituents.

Initial 3*H*-pyrazoles **3s**, **4c**, **4d**, **7k**, **8a**, and **8k** were synthesized according to the procedures reported in [16], compounds **5c** and **6c** were prepared as described in [17], and pyrazole **7c** was synthesized according to [18]. 3*H*-Pyrazoles **7b** and **8b** were not reported previously; they were synthesized in this work in two steps starting from methyl 3-(methanesulfonyl)prop-2-enoate (**9**) and 3-(methanesulfonyl)prop-2-enenitrile (**10**), respectively, through 4,5-dihydro-1*H*-pyrazoles **11** and **12** (Scheme 1, see [16]). The structure of **7b**, **8b**, **11**, and **12** was confirmed by IR and ¹H and ¹³C NMR spectra with account taken of spectral parameters of model arenesulfonyl-substituted analogs [16].

Initially, we studied thermal transformations of 3Hpyrazoles **3c**, **4c**, and **4d**. When pyrazoles **4c** and **4d** with an acceptor substituent on C⁴ were heated in boiling toluene for 1 h, completely regioselective 1,5-sigmatropic shift of one phenyl group from C³ to N² was observed with formation of known *N*-phenyl-*1H*-pyrazoles **13c** [19] and **13d** [20, 21] (Scheme 2). Thermolysis of 5-(methoxycarbonyl) derivative **3c** under analogous conditions was reported to produce *1H*-pyrazole **15** [18]. We have reproduced this experiment and reliably characterized compound **15** by spectral data.¹ Obviously, this result should be treated as tandem 1,5-phenyl shift to C⁴ and proton transfer to

¹ Pyrazole **15** in solution exists in equilibrium with tautomer **15**' (Scheme 2), which is reflected in the ¹³C NMR spectrum by broadening of signals from carbon atoms of the five-membered heterocycle and averaging of signals from carbon atoms of the two nonequivalent benzene rings.

the nitrogen atom. The second step of this process is very fast, and intermediate 4*H*-pyrazole **16c** could not be detected.

Undoubtedly, it was interesting to compare the directions of isomerization of regioisomeric 3H-pyrazoles 5c and 6c (homologs of the 3c/4c pair and analogs of the 1c/2c pair). The transformation of 6c into 4*H*-pyrazole **18c** as a result of 1,5-phenyl shift toward C^4 was described in [17]. We also obtained compound **18c** under the conditions reported in [17], and its spectral parameters coincided with those given in [7]. The thermal rearrangement of 5c (benzene, microwave reactor, 140°C, 40 min) afforded known *N*-phenyl-3*H*-pyrazole **20c** [22] as the only product.² Our results indicated similarity in the behavior of regioisomeric couples 5c/6c and 3c/4c in the van Alphen-Hüttel rearrangement, but the transformations of 1c and 2c were less selective, indicating somewhat different effects of methyl and phenyl groups on the isomerization direction.

We then turned to the thermal isomerization of 3H-pyrazole 7c having two similar electron-withdrawing substituents (methoxycarbonyl groups) on C⁴ and C^5 . The transformation of 7c into 22 was described by Baumes et al. [24], and the structure of 22 was determined by chemical methods. Simultaneously, the authors [24] corrected the results of [18, 25], where the thermolysis product of 7c was assigned the structure of *N*-(methoxycarbonyl)-1*H*-pyrazole **23**. In these studies [18, 24, 25], the isomerization was carried out by heating in acetic acid, which did not ruled out acid catalysis. Therefore, we tried to accomplish purely thermal isomerization of 3*H*-pyrazole 7c. By heating compound 7c in boiling ethanol for 40 min we also obtained 4*H*-pyrazole 22 with a small impurity (5-8%)of known indene 24 [26, 27] (Scheme 3). The same 4H-pyrazole 22 was formed in a mixture with 24 at a ratio of 1:1.3 (according to the ¹H NMR data) when compound 7c was refluxed in toluene for 1 h. No

diester **25** that could result from migration of phenyl group to N² was detected. While reproducing the results of [18, 24, 25] on acid-catalyzed isomerization of **7c** we also isolated 4*H*-pyrazole **22** as the only product which remained unchanged after prolonged (8 h) heating in glacial acetic acid. The UV spectrum of **22** provided an additional support of its structure (cf. the data for its analog **18c** [17]). Almost identical UV spectrum (λ_{max} 314 nm, log ϵ 4.13) was erroneously considered in [25] as an evidence for the structure of **23**.

Compounds 22 and 24 were isolated as crystalline substances by silica gel column chromatography. The structure of 22 follows from its ¹H and ¹³C NMR spectra. In particular, signals of C³ and C⁵ deshielded by the effect of nitrogen atoms appeared in the ¹³C NMR spectrum at $\delta_{\rm C}$ 168.0 and 175.4 ppm, which is typical of such compounds [1, 5, 7, 17]. We believe that indene 24 is formed from 3*H*-pyrazole 7c via denitrogenation through intermediate cyclopropene (cf. [5]), which is concurrent to the van Alphen–Hüttel rearrangement.

In the next step of our study we examined thermal van Alphen–Hüttel rearrangement of 4,5-disubstituted 3*H*-pyrazoles **7b**, **8a**, **8b**, and **8k** containing different electron-withdrawing groups on C⁴ and C⁵. Compound **7k** was completely converted into 4*H*-pyrazole **26k** on heating in boiling benzene for 10 min [16]. Analogous isomerization of **7b** into **26b** in boiling benzene was complete in 40–80 min. 3*H*-Pyrazole **8a** gave rise to a mixture of 4*H*- and 1*H*-pyrazoles **27a** and **28a** at a ratio of 1:3 on heating in CCl₄ for 1 h. The rearrangement of 3*H*-pyrazoles **28b** and **8k** was more selective, and 1*H*-pyrazoles **28b** and **28k** were the only products (Scheme 4).

² Analogous result (i.e., exclusive formation of *N*-phenyl-1*H*-pyrazole derivative) was obtained in [23] in the thermolysis of ethyl 3,3-diphenyl-3*H*-pyrazole-5-carboxylate (analog of **5**c).

4*H*-Pyrazoles **26b** and **26k** and 1*H*-pyrazoles **28a**, **28b**, and **28k** were isolated in the crystalline state and characterized by spectral data. Compounds **28a**, **28b**, and **28k** showed in the ¹³C NMR spectra C³ and C⁵ signals typical of 1*H*-pyrazoles at $\delta_{\rm C} \sim 146$ and 152 ppm, which is consistent with published data for structurally related compounds [5, 7]. We failed to isolate 4*H*-pyrazole **27a** which was detected in the reaction mixture by ¹³C NMR ($\delta_{\rm C4} \sim 80$ ppm and downfield signals of C³ and C⁵, see above).

Thus, the major pathway of the thermolysis of 3H-pyrazoles 2a-2c, 3c, 3e-3j, 6c, 7b, 7c, and 7k is 1,5-phenyl shift to C^4 , whereas 3-phenyl group in 3H-pyrazoles 1a-1d, 4c, 4d, 5c, 8a, 8b, and 8k preferentially migrates to N^2 . We previously [5, 7] proposed a qualitative interpretation of the regioselectivity in the isomerization of 3,3-diphenyl-3H-pyrazoles 1a-1d and 2a-2c, according to which transition states for each of the two possible isomerization pathways is postulated to be equivalent to the π -system of the corresponding nonalternant diazabicyclo[3.1.0]hexatriene.³ Let us consider to which extent this approach is applicable for the prediction of the isomerization direction of 3H-pyrazoles listed above. The transition states for both isomerization pathways are denoted as TS1-TS4 (Scheme 5). All these transition states are dipolar ions, and charge distribution therein is estimated by the Hückel molecular orbital (HMO) method for the bicyclo[3.1.0]hexatriene π -system [29]: the negative charge is delocalized over the allylic fragment where the terminal atoms possess the main charge, and the middle atom bears a minor negative charge; the positive charge is delocalized over the three-membered ring. Obviously, such dipolar ion should be sensitive to electronic effects of substituents

in positions 4 and 5, as well as to the position of nitrogen atoms.

Let us consider first those 3*H*-pyrazoles whose isomerization leads to 4*H*-pyrazoles, in particular 4,5-unsubstituted compound 3j and 5-monosubstituted derivatives 3c, and 3e-3i. Transition state TS2 for pyrazoles 3j and 3g is more stable than TS2 due to the presence of two electronegative nitrogen atoms in the negatively charged moiety. Transition state TS1 contains only one nitrogen atom in the negatively charged moiety, whereas the second nitrogen atom resides in the positively charged moiety, so that TS1 is destabilized. 4,5-Disubstituted 3H-pyrazoles 2a, 2b, and 6c with one electron-withdrawing substituent on C^5 show analogous complete regioselectivity, which is not surprising since TS2 is additionally stabilized by increased electronegativity of the terminal allylic carbon atom bearing an electron-withdrawing substituent. Somewhat unexpectedly, pyrazole 2c displayed lower regioselectivity.

Consider next transition states for the rearrangement of pyrazoles 7b, 7c, 7k, 8a, 8b, and 8k possessing two electron-withdrawing substituents on C⁴ and C^5 . It was difficult to determine whether **TS1** or **TS2** is preferred for pyrazole 7c. In this case, two structural factors act in the opposite directions: favorable arrangement of the nitrogen atoms stabilizes TS2, whereas two identical electron-withdrawing methoxycarbonyl groups stabilize TS1 to a greater extent. The different regioselectivities of the isomerization of 7b, 7k, 8a, 8b, and 8k are determined by the different strengths of the electron-withdrawing substituent W on C^4 . The rearrangement of 7b and 7k through TS2 is preferred due to stabilizing effect of the strong electron-withdrawing sulfonyl group (W), which compensates for destabilizing effect of relatively weak electron-withdrawing methoxycarbonyl group (R). In the case of pyrazoles 8a, 8b, and 8k, TS1 becomes

Analogous approach based on the Dewar molecular orbital perturbation theory of pericyclic reactions [28] was proposed in [29] to interpret 1,5-hydride shift in cyclopentadiene.

preferable since strong electron-withdrawing cyano group (R) simultaneously destabilizes **TS2** {cf. Hammett constants σ^- and σ_1 : 1.13 and 0.59 (CO₂Me), 1.00 and 0.57 (CN), 0.74 and 0.32 (COOMe) [30]}. Analogous result (i.e., the formation of the corresponding *N*-phenyl-1*H*-pyrazole) was obtained previously [10] in the thermolysis of 4,5-bis(diphenylphosphoryl)-3,3-diphenyl-3*H*-pyrazole containing a stronger (than methoxycarbonyl) electron-withdrawing substituent on C⁴, which is structurally related to **7c**.

3*H*-Pyrazoles **1a–1d**, **4c**, **4d**, and **5c** possessing one electron-withdrawing substituent in the 4-position are converted mainly into *N*-phenyl-1*H*-pyrazoles. The relative stability of the corresponding transition states **TS3** and **TS4** cannot be estimated because of opposite effects of two structural factors: position of nitrogen atoms and electron-withdrawing effect of the 4-substituent. Nevertheless, it is possible to correlate the stability of transition states with the experimental data assuming better stabilization of **TS3** by the substituent. W and destabilization of **TS4** by the same substituent.

The lower regioselectivity of the rearrangement of **1c** and **1d** may be attributed to the relatively weak electron-withdrawing effect of the substituent W in combination with stabilization of **TS4** by the phenyl substituent capable of acting as a weak acceptor ($\sigma^- = 0.02$, $\sigma_I = 0.12$ [30]).

Calculated (DFT/PBE) activation barriers to the transformation of 3H-pyrazoles into 1H- and 4H-pyrazoles and relative energies of the transformation products^a

3 <i>H</i> -Pyra- zole no.	Activation barrier, kcal/mol		Relative energy, ^b kcal/mol	
	to 4 <i>H</i> -pyr- azole	to 1 <i>H</i> -pyr- azole	4 <i>H</i> -pyr- azole	1 <i>H</i> -pyr- azole
1c	25.6	22.4	-10.3	-32.4
2c	23.8	24.1	-4.4	-33.3
3c	19.5	23.6	-13.0	-34.8
3d	19.3	23.2	-13.6	-34.6
3ј	22.0	22.9	-13.8	-33.5
4c	26.0	21.2	-8.3	-35.0
4d	25.3	22.9	-5.4	-35.0
5c	25.9	21.3	-8.8	-33.5
6c	23.8	25.0	-6.5	-31.9
7c	21.7	22.3	-11.4	-35.4

^a The total energies of all compounds and transition states were calculated with correction for zero-point vibration energy (*ZPE*).

^b In all cases, the relative energies were calculated with respect to the corresponding 3*H*-pyrazole.

The proposed qualitative HMO interpretation of the experimentally observed differences in the regioselectivity of thermal van Alphen-Hüttel rearrangement of 3H-pyrazoles in relation to the position and nature of substituents therein is guite consistent with the results of DFT/PBE calculations (PRIRODA 06) of the activation barriers for the two isomerization pathways of 3H-pyrazoles 1c-7c, 3d, 3j, and 4d, leading to 4H-pyrazoles and N-phenyl-1H-pyrazoles, and of the relative energies of the transformation products (see table). In all cases, the 1,5-phenyl shift products were more stable than the initial 3H-pyrazoles, but to considerably different extents. 4H-Pyrazoles were more stable by 5-13 kcal/mol, and N-phenyl-1H-pyrazoles, by 32-35 kcal/mol. This difference seems to be quite reasonable taking into account aromaticity of the 1*H*-pyrazole system. It may be concluded that the isomerization of 3H-pyrazoles into less stable 4H-pyrazole should be kinetically controlled, i.e., the activation barrier to this transformation showed be lower than the barrier to the isomerization into 1*H*-pyrazole.

In fact, the calculated activation barrier to the rearrangement of 3,3-diphenyl-3*H*-pyrazole **3j** into 4*H*-pyrazole is lower by only 0.6 kcal/mol than that to the transformation into *N*-phenyl-1*H*-pyrazole. This result indicates quite small contribution of the effect of the position of nitrogen atoms (see above). The barrier to the transformation of 3*H*-pyrazole **4c** into aromatic *N*-phenyl-1*H*-pyrazole **13c** is lower by 4.8 kcal/mol than that to the transformation into 4*H*-pyrazole **14c**. On the other hand, the barrier to the isomerization of **3c** into thermodynamically less stable 4*H*-pyrazole **16c** is lower by 4.1 kcal/mol than the barrier to the transformation into *N*-phenyl-1*H*-pyrazole **17c** (Fig. 1).

Largely similar situation is observed in the rearrangements of 3*H*-pyrazoles **3d**,⁴ and **4d**. Here, the energy differences between the transition states are 2.6 kcal/mol in favor of *N*-phenyl-1*H*-pyrazole **13d** for **4d** and 3.9 kcal/mol in favor of 4*H*-pyrazole **16d** for **3d**. The activation barrier to the transformation of 4,5-disubstituted 3*H*-pyrazole **5c** into *N*-phenyl-1*H*pyrazole **20c** is lower by 4.6 kcal/mol than that found for the alternative pathway, i.e., the situation is approximately similar to that observed for **4c**. The barrier to the transformation of **6c** into **19c** is lower by only 1.2 kcal/mol than into *N*-phenyl-1*H*-pyrazole **18c**. This difference is considerably smaller than that in the rearrangement of monosubstituted analog **3c**, though (in

⁴ There are no published data on the synthesis and thermal isomerization of 3*H*-pyrazole **3d**.

terms of the qualitative model) the 4-methyl group in **6c** should provide additional stabilization of the transition state leading to 4*H*-pyrazole, as compared to **3c**. As concerns pyrazole **7c**, its isomerization into **22** (Fig. 2) is more favorable by only 0.6 kcal/mol.

The results of calculations for 3*H*-pyrazoles 1c and 2c are noticeable. These compounds showed the opposite but incomplete regioselectivity of the van Alphen-Hüttel rearrangement. The calculated barriers for the transformation of 2c were in a good agreement with the experimental data. The rearrangement of 2c into 4H-pyrazole is more favorable than the isomerization into 1H-pyrazole by only 0.3 kcal/mol. However, the calculations performed for 3*H*-pyrazole 1c predict preferential formation of 1H-pyrazole (the corresponding activation barrier is lower by 3.2 kcal/mol). This is less consistent with the experimental data [6, 7, 31], according to which the fraction of 4H-pyrazole derivative is appreciable. Presumably, the formation of 4*H*-pyrazole from **1c** is determined by the contribution of the acid-catalyzed isomerization leading exclusively to 4*H*-pyrazole⁵ rather than by lower regioselectivity of the thermal isomerization of 1c. We performed thermolysis of 1c under the conditions described in [7] but with addition of triethylamine in order to eliminate possible traces of mineral acid from the reaction mixture or reactor surface. However, the product ratio did not change and was $\sim 4:1$ in favor of 1*H*-pyrazole. Therefore, the reason for the observed inconsistency between the calculated and experimental data remains unclear.

Thus, though quantum chemical calculations were performed only for some selected 3,3-diphenyl-3*H*-pyrazoles, their results in combination with qualitative HMO analysis of the transition states generally make it possible to predict regioselectivity of the thermal van Alphen–Hüttel 1,5-sigmatropic rearrangement of these compounds with a high probability. The regioselectivity of this rearrangement is largely determined by the ability of substituents in positions 4 and 5 of 3,3-diphenyl-3*H*-pyrazoles to stabilize the corresponding transition states.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded from solutions in CDCl₃ on a JEOL ECX-400 spectrometer at 400 and 100 MHz, respectively. The IR spectra were

⁵ When 3*H*-pyrazole **1c** was kept in glacial acetic acid in the presence of a catalytic amount of H₂SO₄ at 20°C, the corresponding 4*H*-pyrazole was formed with complete regioselectivity [7].

Fig. 1. Calculated (DFT/PBE) energy profiles for the transformations of 3*H*-pyrazoles **3c** and **4c** into 1*H*- and 4*H*-pyrazoles **13c**, **14c**, **16c**, and **17c**.

Fig. 2. Calculated (DFT/PBE) energy profiles for the transformations of 3*H*-pyrazoles **5c**-**7c** into compounds **18c**-**21c**, **22**, and **24**.

recorded in KBr on an InfraLYuM FT-02 spectrometer with Fourier transform. The UV spectra were measured on a Shimadzu UV-2600 spectrophotometer and were processed using UV Probe 2.4. The elemental analyses were obtained on a VarioMICRO CHNS analyzer. Analytical TLC was performed on Sorbfil plates with light petroleum ether–acetone (4:1) as eluent; the chromatograms were developed in a iodine chamber. The melting points were determined in glass capillaries on a Mettler Toledo MP-50 melting point analyzer. Quantum chemical calculations of pyrazole and transition state structures were carried out in several steps. First, initial sets of 1*H*-, 3*H*-, and 4*H*-pyrazole conformers were simulated by the MMFF94 method [32] using Marvin Beans 15.5.4 [33]. The structures of most favorable conformers were optimized at the RM1 level of theory [34] using MOPAC2012 [35]. The final structures were obtained in terms of the DFT/PBE approximation (PRIRODA 06 software [36], L1 basis set [37]). Transition states were localized by scanning the potential energy surface along the selected reaction coordinate and calculating the corresponding Hessian eigenvalues (one imaginary frequency); the transition states were verified by the intrinsic reaction coordinate (IRC) procedure in two directions.

3*H*-Pyrazoles **3c**, **4c**, **4d**, **8a**, and **8k** were synthesized according to the procedures described in [16]; diphenyldiazomethane was prepared as described in [38]. Commercial dimethyl acetylenedicarboxylate and methanesulfonyl chloride (from Aldrich) were used.

Methyl 5-methyl-3,3-diphenyl-3*H*-pyrazole-4carboxylate (5c) was synthesized as described in [17]. ¹H NMR spectrum, δ, ppm: 2.82 s (3H, Me), 3.73 s (3H, OMe), 7.16–7.20 m (4H, H_{arom}), 7.28–7.34 m (6H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 14.4 (Me), 52.2 (OMe), 108.5 (C³), 128.45 (4C, C_{arom}), 128.53 (2C, C_{arom}), 128.7 (4C, C_{arom}), 135.1 (2C, C_{arom}), 139.7 (C⁴), 160.6 (C⁵), 163.2 (C=O).

Oxidative dehydrogenation of dihydropyrazoles 11 and 12 (general procedure). Activated manganese(IV) oxide [39], 2.6 g (30 mmol), was added to a solution of 1.5 mmol of compound 11 or 12 in 40 mL of a 1:3 mixture of anhydrous benzene and methylene chloride under continuous stirring in an argon atmosphere. The mixture was stirred for 48 h, filtered through a 1-cm layer of silica gel, and evaporated under reduced pressure on a rotary evaporator, and the residue was washed with light petroleum ether.

Methyl 5-(methanesulfonyl)-3,3-diphenyl-3*H*pyrazole-4-carboxylate (7b). Yield 90%, light yellow crystals, mp 103–104°C. IR spectrum, v, cm⁻¹: 1736 s, 1617 w, 1600 w, 1582 w, 1489 m, 1447 m, 1431 m, 1331 v.s, 1289 s, 1157 s, 1130 s, 957 m, 791 s, 760 m, 749 m, 702 m, 529 m, 498 m. ¹H NMR spectrum, δ, ppm: 3.42 s (3H, Me), 3.81 s (3H, OMe), 7.20–7.24 m (4H, H_{arom}), 7.34–7.43 m (6H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 43.1 (Me), 53.8 (OMe), 111.8 (C³), 128.4 (4C, C_{arom}), 129.2 (4C, C_{arom}), 129.7 (2C, C_{arom}), 132.8 (2C, C_{arom}), 152.6 (C⁴), 153.3 (C⁵), 161.9 (C=O). Found, %: C 60.62; H 4.49; N 7.83; S 8.96. $C_{18}H_{16}N_2O_4S$. Calculated, %: C 60.66; H 4.53; N 7.86; S 9.00.

5-(Methanesulfonyl)-3,3-diphenyl-3*H***-pyrazole-4-carbonitrile (8b).** Yield 71%, yellow crystals, mp 96–97°C (from Et₂O). IR spectrum, v, cm⁻¹: 2924 w, 2215 w, 1493 m, 1451 m, 1408 w, 1339 v.s, 1150 v.s, 953 m, 775 s, 752 s, 694 s, 660 m, 640 w, 540 s, 517 m, 494 m. ¹H NMR spectrum, δ , ppm: 3.48 s (3H, Me), 7.29–7.32 m (4H, H_{arom}), 7.40–7.46 m (6H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 42.5 (Me), 110.1 (C³), 112.0 (CN), 127.8 (4C, C_{arom}), 129.8 (4C, C_{arom}), 130.4 (2C, C_{arom}), 132.4 (2C, C_{arom}), 133.2 (C⁴), 157.8 (C⁵). Found, %: C 63.18; H 4.11; N 12.84; S 9.87. C₁₇H₁₃N₃O₂S. Calculated, %: C 63.14; H 4.05; N 12.99; S 9.91.

Dimethyl 3,3-diphenyl-3H-pyrazole-4,5-dicarboxylate (7c). A solution of 1 g (5.6 mmol) of diphenyldiazomethane in 10 mL of anhydrous diethyl ether was added to a solution of 0.73 g (5.1 mmol) of dimethyl acetylenedicarboxylate in 40 mL of anhydrous diethyl ether. The mixture was left to stand in a partially open flask, and yellow crystals separated as the solvent gradually evaporated. The crystals were filtered off. Yield 1.12 g (65%), mp 93-94°C (from Et₂O) [18]. IR spectrum, v, cm⁻¹: 1748 s, 1725 v.s, 1651 w, 1497 w, 1435 m, 1339 m, 1316 m, 1277 m, 1242 m, 1204 m, 1142 m. ¹H NMR spectrum, δ, ppm: 3.77 s (3H, OMe), 4.02 s (3H, OMe), 7.20–7.24 m (4H, H_{arom}), 7.30–7.40 m (6H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 53.3 (2C, OMe), 110.5 (C³), 128.4 (4C, Carom), 129.0 w (4C, Carom), 129.3 (2C, Carom), 133.7 (2C, C_{arom}), 146.6 (C⁴), 152.9 (C⁵), 160.5 (C=O), 163.4 (C=O).

Iodosulfonation-dehydroiodination of acrylic acid derivatives (general procedure). An aqueous solution of sodium methanesulfinate was obtained by reduction of 17 g (150 mmol) of methanesulfonyl chloride with 20.8 g (165 mmol) of Na₂SO₃ in the presence of 25.2 g (300 mmol) of NaHCO₃ [40]. The solution was treated with 13 g (51 mmol) of iodine in 80 ml of benzene under stirring over a period of 40 min. The benzene layer was separated, dried over MgSO₄, and added to a solution of 40 mmol of methyl acrylate or acrylonitrile in 20 mL of benzene, and the mixture was placed into a Pyrex flask and irradiated for 1 h with a halogen filament lamp (500 W). The solvent was removed under reduced pressure on a rotary evaporator, the residue was treated with 100 mL of anhydrous methylene chloride, and 3 g (30 mmol) of triethylamine was added dropwise under stirring. The mixture was stirred for 2 h, the precipitate of triethylamine hydroiodide was filtered off and washed on a filter with 15 mL of ethanol-petroleum ether (1:2), the filtrate was combined with the washings and evaporated, and the residue was recrystallized.

Methyl (2*E*)-3-(methanesulfonyl)prop-2-enoate (9). Yield 2.3 g (74%), mp 77–78°C. IR spectrum, v, cm⁻¹: 1717 s, 1640 w, 1458 w, 1439 m, 1416 m, 1335 s, 1312 v.s, 1296 v.s, 1242 s, 1173 m, 1138 v.s, 999 m, 980 s, 922 m, 868 w, 799 m, 775 m, 698 w, 521 m, 509 s, 467 m. ¹H NMR spectrum, δ, ppm: 3.01 s (3H, Me), 3.82 s (3H, OMe), 6.84 d (1H, 2-H, J = 15.2 Hz), 7.93 d (1H, 3-H, J = 15.2 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 42.4 (Me), 53.0 (OMe), 132.5 (C²), 142.2 (C³), 163.8 (C=O). Found, %: C 36.51; H 4.90; S 19.46. C₅H₈O₄S. Calculated, %: C 36.58; H 4.91; S 19.53.

(2*E*)-3-(Methanesulfonyl)prop-2-enenitrile (10). Yield 1.8 g (64%), mp 103–104°C [41]. IR spectrum, v, cm⁻¹: 3071 m, 3009 m, 2928 m, 2238 m, 1617 m, 1412 m, 1327 v.s, 1312 v.s, 1269 s, 1211 s, 1138 v.s, 972 s, 941 s, 829 s, 795 m, 752 s, 544 v.s, 521 s, 490 s, 455 m. ¹H NMR spectrum, δ , ppm: 3.05 s (3H, Me), 6.56 d (1H, 2-H, *J* = 15.8 Hz), 7.34 d (1H, 3-H, *J* = 15.8 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 42.4 (Me), 113.1 (C²), 113.3 (CN), 147.8 (C³).

Reaction of compounds 9 and 10 with diphenyldiazomethane (*general procedure***).** A solution of 0.65 g (3.3 mmol) of diphenyldiazomethane in 10 mL of anhydrous diethyl ether was added to a solution of 3 mmol of compound **9** or **10** in 70 mL of the same solvent, and the mixture was kept for 24 h at 20°C in the dark. The crystals were filtered off and washed with diethyl ether.

Methyl 3-(methanesulfonyl)-5,5-diphenyl-4,5-dihydro-1H-pyrazole-4-carboxylate (11). Yield 71%, light yellow crystals, mp 179–180°C. IR spectrum, v, cm⁻¹: 3333 s, 1748 s, 1732 s, 1543 m, 1447 m, 1431 m, 1420 m, 1296 v.s, 1235 m, 1181 m, 1161 m, 1134 s, 1115 m, 1088 w, 1026 m, 972 m, 957 m, 872 m, 772 s, 752 m, 706 m, 695 s, 613 m, 548 m, 525 s, 505 m. ¹H NMR spectrum, δ , ppm: 3.18 s (3H, Me), 3.20 s (3H, OMe), 5.01 s (1H, 4-H), 7.24–7.33 m (7H, H_{arom}), 7.29 s (1H, NH), 7.36–7.41 m (3H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 43.0 (Me), 52.5 (OMe), 58.9 (C⁴), 80.7 (C⁵), 126.2 (2C, C_{arom}), 128.15 (2C, C_{arom}), 128.25 (2C, C_{arom}), 128.5 (C_{arom}), 128.8 (C_{arom}), 129.2 (2C, C_{arom}), 139.1 (C_{arom}), 143.3 (C_{arom}), 146.6 (C³), 167.8 (C=O). Found, %: C 60.28; H 4.99; N 7.72; S 9.06. C₁₈H₁₈N₂O₄S. Calculated, %: C 60.32; H 5.06; N 7.82; S 8.95.

3-(Methanesulfonyl)-5,5-diphenyl-4,5-dihydro-1H-pyrazole-4-carbonitrile (12). Yield 68%, colorless crystals, mp 71–72°C. IR spectrum, v, cm^{-1} : 2978 m, 2928 w, 2836 w, 2242 w, 1536 m, 1497 m, 1451 m, 1431 m, 1389 w, 1370 m, 1319 v.s, 1238 w, 1196 m, 1146 s, 1103 m, 1069 m, 1019 w, 1003 w, 961 m, 772 s, 702 s, 529 s, 502 m. ¹H NMR spectrum, δ, ppm: 3.20 s (3H, Me), 5.07 s (1H, 4-H), 7.29 br.s (1H, NH), 7.22-7.25 m (2H, Harom), 7.30-7.32 m (2H, H_{arom}), 7.39–7.42 m (6H, H_{arom}). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 43.1 (Me), 49.5 (C⁴), 81.6 (C⁵), 113.4 (CN), 125.9 (2C, Carom), 127.5 (2C, Carom), 129.1 (2C, Carom), 129.4 (Carom), 129.5 (2C, Carom), 138.6 w (Carom), 141.1 w (C_{arom}), 141.9 (C³). Found, %: C 62.78; H 4.51; N 12.83; S 9.86. C₁₇H₁₅N₃O₂S. Calculated, %: C 62.75; H 4.65; N 12.91; S 9.85.

Thermal isomerization of 3*H*-pyrazoles 3c, 4c, and 4d (general procedure). A solution of 0.45 mmol of pyrazole 3c, 4c, or 4d in 3 mL of anhydrous toluene was refluxed for 1 h under argon. The solvent was removed on a rotary evaporator, and the residue was analyzed by NMR. The products were *N*-phenyl-1*H*pyrazoles 13c and 13d and 1*H*-pyrazole 15c, respectively.

Methyl 1,5-diphenyl-1*H*-pyrazole-4-carboxylate (13c). Yield 65%, colorless crystals, mp 125–126°C [19]. IR spectrum, v, cm⁻¹: 2948 w, 1725 v.s (C=O), 1551 m, 1497 m, 1451 m, 1389 m, 1289 m, 1223 v.s, 1130 s, 1084 m, 1019 m, 772 m, 702 m, 695 m. ¹H NMR spectrum, δ, ppm: 3.74 s (3H, OCH₃), 7.17– 7.23 m (2H, H_{arom}), 7.24–7.38 m (8H, H_{arom}), 8.17 s (1H, 5-H). ¹³C NMR spectrum, δ_{C} , ppm: 51.2 (OCH₃), 113.5 (C⁴), 125.3 (2C, C_{arom}), 127.9 (C_{arom}), 128.0 (2C, C_{arom}), 128.8 (3C, C_{arom}), 129.1 (C_{arom}), 130.5 (2C, C_{arom}), 139.3 w (C_{arom}), 142.4 (C⁵), 145.5 (C³), 163.3 (C=O).

1,5-Diphenyl-1*H***-pyrazole-4-carbonitrile (13d).** Yield 92%, colorless crystals, mp 95–96°C; published data: mp 102–104°C [20], 100°C [21]. IR spectrum, v, cm⁻¹: 3067 w, 2230 s (CN), 1593 m, 1543 m, 1501 v.s, 1447 s, 1401 s, 1069 m, 965 m, 857 m, 772 s, 706 v.s, 695 s, 656 m. ¹H NMR spectrum, δ , ppm: 7.25–7.27 m (2H, H_{arom}), 7.31–7.34 m (2H, H_{arom}), 7.35–7.39 m (5H, H_{arom}), 7.40–7.42 m (1H, H_{arom}), 8.03 s (5-H). ¹³C NMR spectrum, δ_{C} , ppm: 93.8 (C⁴), 113.9 (CN), 125.2 (2C, C_{arom}), 126.6 w (C_{arom}), 128.7 (C_{arom}), 129.0 (2C, C_{arom}), 129.1 (2C, C_{arom}), 129.2 (2C, C_{arom}), 130.1 (C_{arom}), 138.6 w (C_{arom}), 142.8 (C⁵), 147.6 (C³).

Methyl 4,5-diphenyl-1*H*-pyrazole-3-carboxylate (15c). Yield 52%, mp 215–216°C (from MeOH);

published data [18]: mp 218°C (from MeOH). IR spectrum, v, cm⁻¹: 3279 m, 1732 v.s, 1458 m, 1443 m, 1404 m, 1292 w, 1254 m, 1208 s, 1165 m, 1103 m, 1038 m, 1011 m, 768 m, 694 s. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 3.33 s (1H, NH), 3.69 s (3H, OMe), 7.21–7.23 m (2H, H_{arom}), 7.29–7.36 m (8H, H_{arom}). ¹³C NMR spectrum (DMSO-*d*₆), $\delta_{\rm C}$, ppm: 51.4 (OMe), 127.1 br (C⁴), 127.5 (4C, C_{arom}), 127.9 (4C, C_{arom}), 128.4 br and 132.3 br (C³, C⁵).

Methyl 5-methyl-1,5-diphenyl-1H-pyrazole-4carboxylate (20c). A solution of 58 mg (0.2 mmol) of 3H-pyrazole 5c in 3 mL of anhydrous benzene was heated for 40 min at 140°C in a microwave reactor. The solution was concentrated, and the colorless crystals were filtered off. Yield 35 mg (60%), mp 129-130°C [22]. IR spectrum, v, cm⁻¹: 1717 v.s, 1551 m, 1505 m, 1462 m, 1435 m, 1420 m, 1385 m, 1312 m, 1239 s, 1188 m, 1165 m, 1100 s, 1076 m, 768 m, 702 m, 691 m. ¹H NMR spectrum, δ , ppm: 2.59 s (3H, Me), 3.69 s (3H, OMe), 7.15-7.18 m (2H, H_{arom}), 7.23-7.27 m (5H, H_{arom}), 7.29-7.36 m (3H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 14.5 (Me), 51.5 (OMe), 111.7 (C⁴), 125.4 (2C, C_{arom}), 127.8 (C_{arom}), 128.1 (2C, Carom), 128.9 (2C, Carom), 129.1 (Carom), 129.8 (Carom), 130.5 (2C, C_{arom}), 139.2 (C³), 146.6 (C⁵), 151.9 (C_{arom}), 164.4 (C=O).

Thermal transformations of 3*H*-pyrazole 7c. *a*. A solution of 0.25 g (0.75 mmol) of 3*H*-pyrazole 7c in 15 mL of ethanol was refluxed for 40 min. The solvent was removed on a rotary evaporator. According to the NMR data, the product was compound 22 with a small impurity of indene 24 (7%). Crystallization from diethyl ether gave 0.15 g (60%) of 22.

b. A solution of 0.5 g (1.5 mmol) of 7c in 15 mL of anhydrous toluene was refluxed for 1 h, and the solvent was removed on a rotary evaporator. According to the ¹H NMR data, the residue was a mixture of 22 and 24 at a ratio of 1:1.3. The mixture was separated by silica gel flash chromatography using methyl *tert*butyl ether–petroleum ether (1:4) as eluent.

Dimethyl 3,4-diphenyl-4*H***-pyrazole-4,5-dicarboxylate (22).** Yield 0.129 g (25%), colorless crystals, mp 154–155°C; published data [24]: mp 150°C. UV spectrum (MeOH): λ_{max} 313 nm (logε 4.03). IR spectrum, v, cm⁻¹: 3071 w, 2952 w, 1755 v.s, 1717 s, 1516 m, 1497 m, 1443 s, 1350 s, 1227 s, 1196 s, 1157 s, 1007 w, 957 w, 814 w, 756 w, 691 s. ¹H NMR spectrum, δ , ppm: 3.69 s (3H, OMe), 3.87 s (3H, OMe), 7.30–7.38 m (7H, H_{arom}), 7.45–7.50 m (1H, H_{arom}), 7.96–7.98 m (2H, H_{arom}). ¹³C NMR spectrum,

 δ_{C} , ppm: 53.2 (OMe), 53.9 (OMe), 77.4 (C⁴), 127.8 w (C_{arom}), 128.5 (2C, C_{arom}), 129.0 (2C, C_{arom}), 129.2 (2C, C_{arom}), 129.3 (C_{arom}), 129.8 w (C_{arom}), 130.0 (2C, C_{arom}), 132.9 (C_{arom}), 160.1 (C=O), 165.6 (C=O), 168.0 (C³), 175.4 (C⁵).

Dimethyl 3-phenyl-1H-indene-1,2-dicarboxylate (24). Yield 0.18 g (36%), colorless crystals, mp 86– 87°C; published data: mp 92–93°C (from MeOH) [26], 93–94°C (from MeOH) [27]. IR spectrum, v, cm^{-1} : 3083 w, 3025 w, 3013 w, 2955 w, 2901 w, 1744 v.s. 1709 v.s, 1431 m, 1347 m, 1331 m, 1308 m, 1242 m, 1204 s, 1161 s, 1146 s, 1123 m, 1096 m, 1034 w, 698 m. ¹H NMR spectrum, δ , ppm: 3.66 s (3H, OMe), 3.72 s (3H, OMe), 4.84 s (1H, 1-H), 7.24–7.26 m (1H, H_{arom}), 7.32–7.48 m (7H, H_{arom}), 7.63–7.65 m (1H, H_{arom}). ¹³C NMR spectrum, δ_C , ppm: 51.7 (OMe), 52.8 (OMe), 55.9 (C¹), 123.5 (C_{arom}), 123.9 (C_{arom}), 128.1 (2C, Carom), 128.4 (Carom), 128.7 (Carom), 128.9 (Carom), 129.0 (2C, C_{arom}), 129.7 (C²), 133.3 (C_{arom}), 141.0 (C_{arom}) , 144.3 (C_{arom}) , 155.5 (C^3) , 164.6 (C=O), 170.5 (C=O).

Thermal isomerization of 3*H*-pyrazoles 7b, 8a, **8b**, and **8k** (general procedure). A solution of 0.5 mmol of 3*H*-pyrazole 7b, 8a, 8b, or 8k in 10 mL of anhydrous carbon tetrachloride was refluxed for 4-5 h under argon. The solvent was removed on a rotary evaporator, and the residue was analyzed by NMR. From compound **7b** we obtained 4*H*-pyrazole **26b** which was purified by recrystallization from ethanol, the reaction with 8a gave a mixture of 27a and 28a at a ratio of 1:3, pyrazole 8b was converted into 28b, and 8k, into 28k. Pyrazoles 28a, 28b, and 28k were isolated as crystalline substances. Compound 27a was characterized by spectral data in a mixture with isomer 28a; attempted isolation of 27a by silica gel column chromatography led to its transformation into pyrazolone 29.

Methyl 5-(methanesulfonyl)-3,4-diphenyl-4*H***-pyrazole-4-carboxylate (26b).** Yield 0.23 g (77%), mp 138–139°C (from petroleum ether). IR spectrum, v, cm⁻¹: 1755 s, 1709 v.s, 1323 w, 1312 w, 1238 m, 1211 m, 737 m, 706 w, 694 m. ¹H NMR spectrum, δ , ppm: 3.01 s (3H, CH₃), 3.77 s (3H, OMe), 7.37–7.42 m (7H, H_{arom}), 7.52 t (1H, H_{arom}, J = 8.7 Hz), 7.96 d (2H, H_{arom}, J = 7.4 Hz). ¹³C NMR spectrum, δ_{C} , ppm: 43.4 (Me), 54.3 (OMe), 77.9 (C⁴), 127.1 w (C_{arom}), 128.5 w (C_{arom}), 128.7 (2C, C_{arom}), 129.5 (2C, C_{arom}), 129.96 (C_{arom}), 130.04 (2C, C_{arom}), 133.4 (C_{arom}), 164.4 (C=O), 175.3 (C³), 175.6 (C⁵). Found, %: C 60.68; H 4.47; N 7.82; S 9.06. C₁₈H₁₆N₂O₄S. Calculated, %: C 60.66; H 4.53; N 7.86; S 9.00. **5-(4-Methylbenzenesulfonyl]-3,4-diphenyl-4***H***-pyrazole-4-carbonitrile (27a).** Yield 37%; the product contained 15% of 28a. ¹H NMR spectrum, δ , ppm: 2.40 s (3H, CH₃), 7.24 t (4H, H_{arom}, *J* = 8.1 Hz), 7.33–7.43 m (5H, H_{arom}), 7.50 t (1H, H_{arom}, *J* = 7.2 Hz), 7.65 d (2H, H_{arom}, *J* = 8.0 Hz), 7.86 d (2H, H_{arom}, *J* = 8.0 Hz), 7.86 d (2H, H_{arom}, *J* = 8.0 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 21.7 (Me), 64.5 (C⁴), 111.0 (CN), 125.4 w (C_{arom}), 125.6 w (C_{arom}), 126.0 (2C, C_{arom}), 129.0 (2C, C_{arom}), 129.1 (C_{arom}), 129.3 (2C, C_{arom}), 129.4 (2C, C_{arom}), 130.0 (2C, C_{arom}), 133.8 (C_{arom}), 134.8 w (C_{arom}), 146.5 w (C_{arom}), 173.6 and 173.8 (C³, C⁵). Found, %: C 69.18; H 4.21; N 10.49; S 8.06. C₂₃H₁₇N₃O₂S. Calculated, %: C 69.16; H 4.29; N 10.52; S 8.03.

3-(4-Methylbenzenesulfonyl)-1,5-diphenyl-1Hpyrazole-4-carbonitrile (28a). Yield 48%, colorless crystals, mp 203–204°C (from EtOH). IR spectrum, v, cm⁻¹: 2242 w (CN), 1501 m, 1339 s (SO₂, asym.), 1157 v.s (SO₂, sym.), 1096 m, 791 m, 779 m, 706 m, 695 m, 660 m, 594 m, 536 m. ¹H NMR spectrum, δ, ppm: 2.46 s (3H, CH₃), 7.22–7.28 m (4H, H_{arom}), 7.34– 7.46 m (8H, H_{arom}), 8.10 d (2H, H_{arom} , J = 8.2 Hz). ¹³C NMR spectrum, δ_{C} , ppm: 21.7 (Me), 93.6 (C⁴), 111.3 (CN), 125.3 (Carom), 125.4 (2C, Carom), 128.6 (2C, Carom), 129.1 (4C, Carom), 129.3 (Carom), 129.6 (C_{arom}), 130.2 (2C, C_{arom}), 130.8 (C_{arom}), 136.5 w (C_{arom}) , 137.6 w (C_{arom}) , 145.7 w (C_{arom}) , 150.3 (C^{5}) , 154.1 (C³). Found, %: C 69.22; H 4.39; N 10.56; S 8.11. C₂₃H₁₇N₃O₂S. Calculated, %: C 69.16; H 4.29; N 10.52; S 8.03.

3-(Methanesulfonyl)-1,5-diphenyl-1*H***-pyrazole-4-carbonitrile (28b).** Yield 90%, colorless crystals, mp 225–226°C. IR spectrum, v, cm⁻¹: 3021 w, 2924 w, 2238 w, 1593 w, 1497 m, 1319 v.s, 1150 m, 775 m, 714 w, 698 m. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.32 s (3H, Me), 7.41–7.56 m (10H, H_{arom}). ¹³C NMR spectrum (DMSO- d_6), δ_C , ppm: 43.1 (Me), 92.1 (C⁴), 111.3 (CN), 125.3 (C_{arom}), 126.0 (2C, C_{arom}), 129.0 (2C, C_{arom}), 129.38 (2C, C_{arom}), 129.44 (2C, C_{arom}), 129.9 (C_{arom}), 130.8 (C_{arom}), 137.4 (C_{arom}), 150.6 (C⁵), 152.2 (C³). Found, %: C 63.17; H 4.11; N 12.87; S 10.05. C₁₇H₁₃N₃O₂S. Calculated, %: C 63.14; H 4.05; N 12.99; S 9.91.

3-(Benzenesulfonyl)-1,5-diphenyl-1*H***-pyrazole-4-carbonitrile (28k).** Yield 82%, colorless crystals, mp 219–220°C. IR spectrum, v, cm⁻¹: 2253 w, 1501 m, 1447 m, 1343 s, 1204 w, 1157 v.s, 1123 w, 1096 m, 791 m, 783 m, 748 m, 733 m, 706 m, 694 m, 683 m, 629 s, 598 m, 559 m, 540 m. ¹H NMR spectrum, δ , ppm: 7.20–7.29 m (4H, H_{arom}), 7.32–7.41 m (5H, H_{arom}), 7.41–7.47 m (1H, H_{arom}), 7.62 t (2H, H_{arom}, *J* = 7.9 Hz), 7.70 t (1H, H_{arom}, J = 7.4 Hz), 8.22 d (2H, H_{arom}, J = 7.4 Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 94.0 (C⁴), 111.4 (CN), 125.4 (C_{arom}), 125.6 (2C, C_{arom}), 128.8 (2C, C_{arom}), 129.3 (4C, C_{arom}), 129.5 (2C, C_{arom}), 129.7 (2C, C_{arom}), 131.1 (C_{arom}), 134.6 (C_{arom}), 137.8 w (C_{arom}), 139.6 w (C_{arom}), 150.3 (C⁵), 154.0 (C³). Found, %: C 68.47; H 4.00; N 10.82; S 8.30. C₂₂H₁₅N₃O₂S. Calculated, %: C 68.56; H 3.92; N 10.90; S 8.32.

REFERENCES

- 1. Sammes, M.P. and Katritzky, A.R., *Adv. Heterocycl. Chem.*, 1983, vol. 34, p. 1.
- 2. Van Alphen, J., *Recl. Trav. Chim. Pays–Bas*, 1943, vol. 62, p. 491.
- Hüttel, R., Franke, K., Martin, H., and Riedl, J., Chem. Ber., 1960, vol. 93, p. 1433.
- Nagai, T. and Hamaguchi, M., Org. Prep. Proced. Int., 1993, vol. 25, p. 403.
- 5. Vasin, V.A., Masterova, Yu.Yu., Bezrukova, E.V., Razin, V.V., and Somov, N.V., *Russ. J. Org. Chem.*, 2015, vol. 51, p. 874.
- 6. Komendantov, M.I. and Bekmukhametov, R.R., *Chem. Heterocycl. Compd.*, 1975, vol. 11, p. 68.
- Fedorov, A.A., Duisenbaev, Sh.E., Razin, V.V., Kuznetsov, M.A., and Linden, E., *Russ. J. Org. Chem.*, 2007, vol. 43, p. 231.
- Komendantov, M.I., Zavgorodnyaya, A.P., Domnin, I.N., and Bekmukhametov, R.R., *Zh. Org. Khim.*, 1986, vol. 22, p. 1541.
- Bettinetti, G.F., Desimoni, G., and Grünanger, P., *Gazz. Chim. Ital.*, 1963, vol. 93, p. 150.
- 10. Heydt, H. and Regitz, M., *Justus Liebigs Ann. Chem.*, 1977, p. 1766.
- 11. Sharp, J.T., Findlay, R.H., and Thorogood, P.B., *J. Chem. Soc., Perkin Trans. 1*, 1975, p. 102.
- 12. Hao, L., Hong, J.-J., Zhu, J., and Zhan, Z.-P., *Chem. Eur. J.*, 2013, vol. 19, p. 5715.
- Meanwell, N.A., Rosenfeld, M.J., Kim Wright, J.J., Brassard, C.L., Buchanan, J.O., Federici, M.E., Fleming, J.S., and Seiler, S.M., *J. Med. Chem.*, 1992, vol. 35, p. 389.
- 14. Vo Quang, L. and Vo Quang, Y., Bull. Soc. Chim. Fr., 1974, p. 2575.
- Snatzke, G. and Langen, H., Chem. Ber., 1969, vol. 102, p. 1865.
- Vasin, V.A., Razin, V.V., Bezrukova, E.V., Korovin, D.Yu., Petrov, P.S., and Somov, N.V., *Russ. J. Org. Chem.*, 2015, vol. 51, p. 1144.
- 17. Razin, V.V., Zh. Org. Khim., 1975, vol. 11, p. 1457.
- Van Alphen, J., *Recl. Trav. Chim. Pays–Bas*, 1943, vol. 62, p. 485.
- Gotthardt, H. and Reiter, F., *Chem. Ber.*, 1979, vol. 112, p. 1193.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 52 No. 6 2016

- 20. Tupper, D.E. and Bray, M.R., Synthesis, 1997, p. 337.
- 21. Reidlinger, C., Dworczak, R., and Junek, H., *Monatsh. Chem.*, 1998, vol. 129, p. 1207.
- 22. Fliege, W., Huisgen, R., Cloois, J.S., and Knupfer, H., *Chem. Ber.*, 1983, vol. 116, p. 3039.
- 23. Aspart-Pascot, L. and Bastide, J., C.R. Acad. Sci., 1971, vol. 273, p. 1772.
- 24. Baumes, R., Elguero, J., Jacquier, R., and Tarrago, G., *Tetrahedron Lett.*, 1973, vol. 14, p. 3781.
- 25. Bramley, R.K., Grigg, R., Guilford, G., and Milner, P., *Tetrahedron*, 1973, vol. 29, p. 4159.
- 26. Srhrader, L., Chem. Ber., 1971, vol. 104, p. 941.
- Ege, G. and Hahn, B., Justus Liebigs Ann. Chem., 1972, vol. 763, p. 39.
- 28. Dewar, M.J.S. and Dougherty, R.C., *The PMO Theory* of Organic Chemistry, New York: Plenum, 1975.
- Replogle, K.S. and Carpenter, B.K., J. Am. Chem. Soc., 1984, vol. 106, p. 5751.
- Carey, F.A. and Sundberg, R.J., Advanced Organic Chemistry, New York: Springer, 2007, 5th ed., Part A, p. 339.

- Abbott, P.J., Acheson, R.M., Flowerday, R.F., and Brown, G.W., J. Chem. Soc., Perkin Trans. 1, 1974, p. 1177.
- 32. Halgren, T.A., J. Comput. Chem., 1996, vol. 17, p. 490.
- 33. Chemaxon Marvin Beans. www.chemaxon.com
- Rocha, G.B., Freire, R.O., Simas, A.M., and Stewart, J.J.P., *J. Comput. Chem.*, 2006, vol. 27, p. 1101.
- Stewart, J.J.P., MOPAC2012. Stewart Computational Chemistry, Colorado Springs, CO, USA. www.openmopac.net
- 36. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., Int. Ed., 2005, vol. 54, p. 820.
- 37. Laikov, D.N., Chem. Phys. Lett., 2005, vol. 416, p. 116.
- 38. Miller, J.B., J. Org. Chem., 1959, vol. 24, p. 560.
- 39. Franck-Neumann, M. and Miesch, M., *Tetrahedron*, 1983, vol. 39, p. 1247.
- 40. Truce, W.E. and Wolf, G.C., J. Org. Chem., 1971, vol. 36, p. 1727.
- 41. Guan, Z.-H., Zuo, W., Zhao, L.-B., Ren, Z.-H., and Liang, Y.-M., *Synthesis*, 2007, p. 1465.