

Tetrahedron Letters 44 (2003) 8535-8537

An efficient palladium catalyzed synthesis of 2-arylbenzothiazoles

Vattoly J. Majo, Jaya Prabhakaran, J. John Mann* and J. S. Dileep Kumar*

Department of Psychiatry/Neuroscience, NYSPI/Columbia University, 1051 Riverside Drive, New York, NY 10032, USA

Received 20 August 2003; revised 17 September 2003; accepted 17 September 2003

Abstract—A novel and convergent palladium catalyzed synthesis of 2-arylbenzothiazoles has been investigated. The key step in the synthesis is a Suzuki biaryl coupling of 2-bromobenzothiazole with aryl boronic acids to provide a variety of 2-arylbenzothiazole derivatives in good yield. The synthetic utility of this methodology is demonstrated by the synthesis of 2-(4-aminophenyl)-6-methoxybenzothiazole, a PET probe precursor for the in vivo imaging of Alzheimer's disease. © 2003 Elsevier Ltd. All rights reserved.

2-Arylbenzothiazoles are an important class of compounds owing to their potent utility as imaging agents for β -amyloid, antitumor agents, antituberculotics, antiparasitics, calcium channel antagonists, chemiluminescent agents and also as photosensitizers.¹⁻⁷ The reported syntheses of 2-arylbenzothiazoles involve the condensation of 2-aminobenzenethiol with 4-substituted phenyl derivatives of nitrile, aldehyde, acid, acid chlorides or esters and by the use of Jacobson's cyclization of thiobenzanilides.⁸⁻¹⁰ Other general methods include microwave mediated reaction of o-aminothiophenol with β -chlorocinnamaldehydes, reaction of dibenzyl disulfides with o-aminothiophenol, reduction of o,o'dinitrodiphenyl disulfide, reaction of S-aryl thiobenzoate with arylhaloamines, from 1,2,3-benzodithiazole-2-oxides, radical cyclization of benzyne intermediates and Grignard reactions of arylisothiocyanates.^{11–16} However, most of the above methods require multistep synthesis and therefore, we have sought to develop a convergent strategy for the synthesis of 2-arylbenzothiazoles. Our method utilizes a Suzuki cross coupling of the common intermediates 2-bromobenzothiazole (1) and 2-bromo-6-methoxybenzothiazole (2) with various aryl boronic acids/ esters as the key step (Table 1). Since a wide variety of aryl boronic acids are commercially available, or can be easily prepared from the corresponding bromides,¹⁷ this methodology would offer a higher degree of flexibility with regard to functional groups that can be placed on the 2-aryl moiety, thereby providing a better understanding of the structure activity relationship (SAR) of the target compounds.

Benzothiazole was brominated using *n*BuLi and CBr_4 to provide corresponding 2-bromo benzothazole (1) in 60% yield.¹⁸ 2-bromo-6-methoxybenzothiazole (2) (65%) was synthesized by Sandmayer reaction of 2amino-6-methoxybenzothiazole by heating with isoamyl nitrite and CuBr₂ in presence of PEG.¹⁹ The biaryl coupling was initially attempted with 1 and phenylboronic acid under the optimized reaction condition using $Pd_2(dba)_3$ in DME-water with aqueous K_2CO_3 to provide 2-phenylbenzothiazole (4a) in 50% yield.²⁰ Under identical conditions, coupling of 1 and 2 with 4-acetylboronic acid, 4-aminophenylboronic ester, Boc protected 4-aminophenylboronic ester. 3-thiopheneboronic acid and 2-napthaleneboronic acid provided the corresponding 2-arylbenzothiazole derivatives in moderate to good yield (Table 1). Benzothiazole derivative 4i and its demethylated analogue are positron emission tomography (PET) probe precursors for the in vivo quantification of β -amyloid.^{1,21} However, our attempts to couple 2,4-dimethoxyphenylboronic acid with 1 did not afford the desired product probably due to steric hindrance, dehydroboronation of the boronic acid and recovery of 1 was the major process observed under the optimized reaction conditions.

In summary, we have utilized a novel chemistry of 2-bromobenzothiazoles for the facile synthesis of 2arylbenzothiazoles using Suzuki biaryl coupling. The synthetic utility of these reactions are demonstrated by the one step synthesis of 2-amino-6-hydroxybenzothazole, a potent PET probe precursor for the in vivo imaging of β -amyloid. Future work will be undertaken to develop a combinatorial version of this synthesis for the SAR of 2-arylbenzothiazoles for various pharmaceutical applications.

Keywords: boronic acid; benzothiazole; Suzuki coupling; palladium. * Corresponding author. Fax: +212-543-6017; e-mail: dk2038@ columbia.edu

^{0040-4039/\$ -} see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.09.138

Table 1. Biaryl coupling of 2-bromobenzothazole (1) and 2-bromo-6-methoxy benzothiazole (2) with various boronic acids
and esters

X	S Br +	ArB(OH) ²	Pd ₂ (dba) ₃ , DME-Water ►	X S Ar
K_2CO_3 , 100 °C, 6h X= H, 1 X = OMe, 2 K_2CO_3 , 100 °C, 6h				4a-n
S. No	Aryl halide	Boronic	acid Prod	luct Yield (%) ^a
1	1	-	> 4a	51
2	1		NHBoc ^b 4b	4 0
3	1	-<	} 4c	72
4	1	MeQ	├─F 4d	48
5	1	\rightarrow	→OMe 4e	
6	1		S 4f	74
7	1		4g	55
8	1		$\rightarrow NH_2^b$ 4h	35
9	2		→NHBoc ^b 4i	
10	2		4j	
11	2	-<	<u>→</u> 4k	63
12	2		∕F 41	54
13	2		∕−CF ₃ 4n	
14	2		5 4 n	62

a. The yield represent the isolated yields of the product after column chromatography based on aryl bromide.

b. Pinacolate ester of the corresponding boronic acid was used for the coupling.

References

- Mathis, C. A.; Wang, Y.; Holt, D. P.; Huang, G.-F.; Debnath, M. L.; Klunk, W. E. J. Med. Chem. 2003, 46 (13), 2740–2754.
- Hutchinson, I.; Jennings, S. A.; Vishnuvajjala, B. R.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2002, 45 (3), 744–747.
- Stevens, M. F. G.; Wells, G.; Westwell, A. D.; Poole, T. D. PCT Int. Appl. 2003, WO 0304479.
- Caujolle, R.; Loiseau, P.; Payard, M.; Gayral, P.; Kerhir, M. N. Ann. Pharma. Fr. 1989, 47 (2), 68–73.
- 5. Yamamoto, K.; Fujita, M; Tabashi, K.; Kawashima, Y.;

Kato, E.; Oya, M.; Iso, T.; Iwao J. Med. Chem. 1983, 31 (5), 919–930.

- Yoshida, H.; Nakao, R.; Nohta, H.; Yamaguchi, M. Dyes and Pigments 2000, 47 (3), 239–245.
- Petkov, I.; Deligeorgiev, T.; Markov, P.; Evstatiev, M.; Fakirov, S. Polym. Degrad. Stab. 1991, 33 (1), 53–66.
- Shi, D.-F.; Bradshaw, T. D.; Wrigley, S.; McCall, C. J.; Lelieveld, I. F.; Stevens, M. F. G. J. Med. Chem. 1996, 39, 3375–3384.
- Hein, D. W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957, 79, 427–429.
- Ben-Alloum, A.; Bakkas, S.; Soufiaoui, M. *Tetrahedron* Lett. **1997**, *38*, 6395–6396.

- Paul, S.; Gupta, M.; Gupta, R. Synth. Commun. 2002, 32 (23), 3541–3547.
- Shirinian, V. Z.; Melkova, S. Yu.; Belen'kii, L. I.; Krayushkin, M. M.; Zelinsky, N. D. *Russ. Chem. Bull.* 2000, 49 (11), 1859–1862.
- Zhong, W. H.; Zhang, Y. M.; Chen, X. Y. J. Indian Chem. Soc. 2001, 78 (6), 316–318.
- 14. Roe, A.; Tucker, W. P. J. Heterocycl. Chem. 1965, 2, 148–151.
- Stanetty, P.; Krumpak, B. J. Org. Chem. 1996, 61, 5130– 5133.
- 16. Ares, J. J. Synth. Commun. 1991, 21 (5), 625-633.
- 17. Murata, M.; Oyama, T.; Watanabe, Y.; Matsuda, Y. J. Org. Chem. 2000, 65, 164.
- Boga, C.; Vecchio, E. D.; Forlani, L.; Todeso, P. E. J. Organomet. Chem. 2000, 601, 233–236.
- Suzuki, N.; Nomoto, T.; Toya, Y.; Yoda, B.; Saeki, A. Chem. Express 1992, 7 (9), 717–720.
- Typical experimental procedure for the Suzuki coupling: A suspension of 2-bromobenzothiazole (86 mg, 0.4 mmol), thiophene-3-boronic acid (67 mg, 0.52 mmol) and Pd₂(dba)₃ (18 mg, 5 mol%) in 1,2-dimethoxyethane (1

mL) was deaerated and stirred under argon. Deionized water (0.1 mL) and aqueous K_2CO_3 (2 M, 400 µL, 0.8 mmol) were added to the reaction mixture and heated at 100°C for 6 h. The reaction mixture was diluted with EtOAc, dried over MgSO₄, passed through a short pad of celite, concentrated under vacuum and column chromatographed (97:3 hexane: ethyl acetate) to yield 2-thiophene-3-yl-benzothiazole (**4f**) as a colorless solid (65 mg) in 75% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, 1 H, J=8.2 Hz), 8.02 (m, 1 H), 7.88 (1 H, d, J=8.0 Hz), 7.77 (1 H, d, J=5.0 Hz), 7.48 (t, 1 H, J=8.0 Hz), 7.44 (dd, 1 H, J=3, 5 Hz), 7.38 (t, 1 H, J=8.0 Hz); HRMS: calcd. for C₁₁H₈NS₂ (MH⁺): 218.0098 found: 218.0108; mp 110°C (lit.²² 111.5–112.5°C).

- Kumar, J. S. D.; Wang, T. S.; Arango, V.; Underwood, M. D.; Parsey, R. V.; Simpson, N. R.; Kassir, S.; Cooper, A.; Arcement J.; Van Heertum, R. L.; Mann, J. J. 226th National ACS meeting, Sept 7–11, New York, USA, 2003.
- Lindley, J. M.; Meth-Cohn, O.; Suschitzky, H. J. Chem. Soc., Perkin Trans. 1 1978, 1198.