LETTERS TO THE EDITOR

Synthesis of Aminomethylenediphosphonates and Their Derivatives Containing PCNH₂ Fragments

A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, and V. S. Petrosyan

Lomonosov Moscow State University, Moscow, 119991 Russia e-mail: aprishchenko@yandex.ru

Received November 28, 2013

DOI: 10.1134/S1070363214030347

Aminomethylenediphosphonic acids containing free amino group are of interest as promising ligands and biologically active substances with diverse properties [1]. We recently developed several convenient methods for the synthesis of *N*-substituted aminomethylenediphosphonates starting from *N*-substituted formamides and imines [2]. For the synthesis of new trimethylsilyl-containing aminomethylenediphosphonates and their derivatives with

PCNH₂ fragments we studied the interaction of tris-(trimethylsilyl)phosphate with easily accessible hydrochlorides of substituted ethoxymethyleneimines **A** [3] in the presence of trimethylsilyl trifluoromethanesulfonate as a catalyst. Thus, substituted ethoxymethyleneimines hydrochlorides **A** reacted with an excess of tris(trimethylsilyl)phosphite in methylene chloride under mild conditions to form diphosphonates **I–III** with good yields.

$$EtOC(R) = NH \cdot HCI \xrightarrow{2(Me_3SiO)_3P, CF_3SO_3SiMe_3} -Me_3SiCI, -Me_3SiOEt & \begin{bmatrix} (Me_3SiO)_2P \\ 0 \end{bmatrix}_2 C(R)NH_2$$

$$I-III$$

$$R = Me (I), Ph (II), \longrightarrow CH (III).$$

Apparently, mild reaction conditions are caused by activation of the starting imines A with silicon

triflate, generating a highly reactive intermediate **B** (see [4]).

$$EtOC(R)=NH\bullet HCI \xrightarrow{CF_3SO_3SiMe_3} CF_3SO_3C(R)=NH\bullet HCI \xrightarrow{2(Me_3SiO)_3P} I-III$$

$$A B$$

Trimethylsilyl-containing diphosphonates **I–III** reacted with an excess of methanol under mild conditions to form diphosphonic acids **IV–VI**. The latter are white hygroscopic crystalline substances (Scheme 1).

Compounds **I–VI** with unsubstituted amino group are convenient synthons for the preparation of new functionalized aminomethylenediphosphorus-containing substances like diphosphorus-containing peptides. In

Scheme 1.

I-III
$$\xrightarrow{\text{4MeOH}}$$
 [(HO)₂P]₂C(R)NH₂
O
IV-V

R = Me (IV), Ph (V), $\xrightarrow{\text{t-Bu}}$ OH (VI).

Scheme 2.

$$P_2C^1(R)NH_2$$
, $R = Me$, $-\frac{2}{\sqrt{2}}$

the NMR spectra of compounds **I–VI** there were characteristic signals of the fragments X, whose structure is shown in Scheme 2.

The signals of hydroxy and amino groups of **IV–VI** are broadened due to the proton exchange.

O,O,O,O-Tetra(trimethylsilyl)-1-aminoethylidenediphosphonate (I). To a solution of 10 g of tris-(trimethylsilyl)phosphite in 10 mL of methylene chloride was added 1.3 g of 1-ethoxyethylideneimine and then 0.2 mL of trifluoromethanesulfonic acid trimethylsilyl ester. The mixture was refluxed for 1 h, and then the solvent was distilled off. To the residue was added 10 g of bis(trimethylsilyl)amine, and the mixture was refluxed for 1 h. After the solvent removal, the residue was distilled. Yield 3.8 g, 73%, bp 127°C (1 mm Hg). 1 H NMR spectrum, δ , ppm: -0.09 d (2Me₃Si, $^{4}J_{PH}$ 2 Hz), -0.08 d (2Me₃Si, $^{4}J_{PH}$ 1.6 Hz), 0.99 t (CH₃, $^{3}J_{PH}$ 16.8 Hz), 1.13 t (NH₂, $^{3}J_{PH}$ 12.8 Hz). ¹³C NMR spectrum, δ_C , ppm: 51.58 t (C^1 , $^{1}J_{PC}$ 152.5 Hz), 20.03 (Me), 0.73 (2Me₃Si), 0.78 (2Me₃Si). ³¹P NMR spectrum: δ_P 6.65 ppm. Found, %: C 33.78; H 8.23. C₁₄H₄₁NO₆P₂Si₄. Calculated, %: C 34.05; H 8.37.

Diphosphonates **II**, **III** were prepared similarly.

O,O,O,O-Tetra(trimethylsilyl)-1-aminobenzylidenediphosphonate (II). Yield 72%, bp 152°C (1 mm Hg). 1 H NMR spectrum, δ, ppm: -0.24 d (2Me₃Si, $^{4}J_{PH}$ 2.8 Hz), -0.20 d (2Me₃Si, $^{4}J_{PH}$ 2.8 Hz), 1.72 t (NH₂, $^{3}J_{PH}$ 13 Hz), 6.8–7.6 m (C₆H₅). 13 C NMR

spectrum, δ_C , ppm: 59.63 t (C¹, $^1J_{PC}$ 147.7 Hz), 135.77 br.s (C²), 127.18 and 127.25 (C³, C⁴), 126.79 (C⁵), 0.45 (2Me₃Si), 0.52 (2Me₃Si). ^{31}P NMR spectrum: δ_P 2.23 ppm. Found, %: C 40.74; H 7.72. C₁₉H₄₃NO₆P₂Si₄. Calculated, %: C 41.06; H 7.80.

O,O,O,O-Tetra(trimethylsilyl)-1-amino-1-(3,5-di*tert*-butyl-4-hydroxyphenyl)methylenediphosphonate (III). Yield 89%, mp 52°C. 1 H NMR spectrum, δ, ppm: 0.06 s (2Me₃Si), 0.07 s (2Me₃Si), 1.19 br.s (NH₂), 1.34 s (Me₃C), 5.08 br.s (OH), 7.63 s (C₆H₂). 13 C NMR spectrum, δ_C, ppm: 59.65 t (C¹, $^{1}J_{PC}$ 149.3 Hz), 126.42 (C²), 125.03 (C³), 139.46 (C⁴), 152.31 (C⁵), 35.12 (Me₃C), 30.98 (Me₃C), 0.68 (2Me₃Si), 0.77 (2Me₃Si). 31 P NMR spectrum: δ_P 3.27 ppm. Found, %: C 47.26; H 8.61. C₂₇H₅₉NO₇P₂Si₄. Calculated, %: C 47.41; H 8.69.

1-Aminoethylidenediphosphonic acid (**IV**). A solution of 3.8 g of diphosphonate **I** in 5 mL of diethyl ether was added to 20 mL of methanol with stirring under cooling to 10°C. The mixture was heated to boiling, and the solvent was distilled off. White crystals were kept in a vacuum (1 mm Hg) for 1 h. Yield 1.5 g, 96%, mp 252°C. ¹H NMR spectrum, δ, ppm: 1.12 t (Me, $^{3}J_{PH}$ 13.2 Hz). ¹³C NMR spectrum, δ_C, ppm: 51.69 t (C¹, $^{1}J_{PC}$ 122.2 Hz), 15.64 (Me). ³¹P NMR spectrum: δ_{P} 11.15 ppm. Found, %: C 11.58; H 4.47. C₂H₉NO₆P₂. Calculated, %: C 11.71; H 4.42.

Acids V, VI were prepared similarly.

1-Aminobenzylidenediphosphonic acid (V). Yield 97%, mp 223°C. ¹H NMR spectrum, δ, ppm: 6.8–7.6 m (C_6H_5). ¹³C NMR spectrum, δ_C, ppm: 60.26 t (C^1 , $^1J_{PC}$ 120.5 Hz), 131.22 (C^2), 125.52 (C^3), 126.20 (C^4), 124.27 (C^5). ³¹P NMR spectrum: δ_P 8.54 ppm. Found, %: C 31.32; H 4.19. $C_7H_{11}NO_6P_2$. Calculated, %: C 31.48; H 4.15.

1-Amino-1-(3,5-di-*tert***-butyl-4-hydroxyphenyl)**-**methylenediphosphonic acid (VI).** Yield 98%, mp 183–184°C. ¹H NMR spectrum, δ, ppm: 1.30 s (Me₃C), 5.29 br.s (OH), 7.50 s (C₆H₂). ¹³C NMR spectrum, δ_C, ppm: 62.84 t (C¹, ¹ J_{PC} 118.2 Hz), 126.89 (C²), 124.43 (C³), 138.65 (C⁴), 151.09 (C⁵), 34.35 (Me₃C), 30.08 (Me₃C). ³¹P NMR spectrum: δ_P 11.06 ppm. Found, %: C 45.43; H 6.94. C₁₅H₂₇NO₇P₂. Calculated, %: C 45.57; H 6.88.

NMR spectra were recorded on a Bruker Avance-400 spectrometer in CDCl₃ (**I–III**), CD₃OD or C₅D₅N (**IV–VI**), internal reference TMS (¹H, ¹³C) or external reference 85% phosphoric acid solution in D₂O (³¹P).

AKCNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grants no. 12-03-00003 and 14-03-00001).

REFERENCES

Dyatlova, N.M., Medyntsev, V.V., Balashova, T.M., Medved', T.Ya., and Kabachnik, M.I., *Zh. Obshch. Khim.*, 1969, vol. 39, no. 2, p. 329; Serebrennikova, G.A., Kol'tsova, G.N., Chupin, V.V., Chuvilin, A.N., Rosenberg, G.Ya., and Evstigneeva, R.P., *Zh. Obshch. Khim.*, 1985, vol. 55, no. 2, p. 440; Kukhar, V.P. and Hudson, H.R., *Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity*, New York: Wiley, 2000. p

- Prishchenko, A.A., Livantsov, M.V., Novikova, O.P., Livantsova, L.I., Ershov, I.S., and Petrosyan, V.S., Russ. J. Gen. Chem., 2012, vol. 82, no. 9, p. 1593. DOI: 10.1134/s1070363212090265; Prishchenko, A.A., Livantsov, M.V., Novikova, O.P., and Livantsova, L.I., Russ. J. Gen. Chem., 2009, vol. 79, no. 9, p. 1936. DOI: 10.1134/s1070363209090230; Prishchenko, A.A., Livantsov, M.V., Novikova, O.P., and Livantsova, L.I., Russ. J. Gen. Chem., 2010, vol. 80, no. 9, p. 1889. DOI: 10.1134/s1070363210090318.
- 3. Li, J.J., Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications, Berlin: Springer, 2009.
- 4. Dilman, A.D. and Ioffe, S.L., *Chem. Rev.*, 2003, vol. 103, p. 733. DOI: 10.1021/cr020003.