STUDIES ON THE ALKYLATION OF QUINOLIN-2(1H)-ONE DERIVATIVES

CHIA-LING CHEN¹, I-LI CHEN², JIH-JUNG CHEN², DAU-CHANG WEI², HAN-JIE HSIEH², KEN-MING CHANG³, CHERNG-CHYI TZENG³ AND TAI-CHI WANG^{2*}

> ¹Department of Pharmacy, KUO General Hospital, Tainan City 700, Taiwan ²Department of Pharmacy, Tajen University, Pingtung 907, Taiwan

³Departament of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan

ABSTRACT

Alkylation of quinolin-2(1*H*)-one (1) and its C(6) and C(7) substituted dervatives (OMe, OBn, and Cl) with 2-bromoacetophenone or chloroacetone under basic condition (K_2CO_3 in DMF) gave a mixture of N_1 - and O_2 - alkylated products with the former one as a major product. However, alkylation of 8-methoxy-, 8-benzyloxy-, and 8-chloro- quinolin-2(1*H*)-ones under the same reaction conditions gave exclusively O₂-alkylated products.

Keywords: N-Alkylation; O-Alkylation; Quinolin-2(1H)-one.

INTRODUCTION

Quinolin-2(1*H*)-one (carbostyril) skeleton is present in a large number of biologically active compounds which exhibit antiplatelet, anti-inflammatory, anti-ulcer, vasodilatory, and phosphodiesterase inhibitory activities¹⁻¹². Carteolol, for example, has been used clinically as a β-adrenergic blocking agent⁸. Over the past few years, we were particularly interested in the synthesis of α-methylene-γ-butyrolactones bearing heterocycles such as coumarins, flavones, xanthones, quinolines, and quinolin-2(1*H*)-ones and the evaluation of their cardiovascular and cytotoxic activities⁹⁻¹⁴. Among these heterocycles, coumarins exhibited the most potent inhibitory activities on the high-K⁺⁻medium, Ca²⁺-induced vasoconstriction, and the norepinephrine-induced phasic and tonic vasoconstrictions, while quinolin-2(1*H*)-ones proved to be the most active against platelet aggregation. A number of quinolin-2(1*H*)-one α-methylene-γ-butyrolactones were found to exhibit potent antiproliferative activities¹⁴.

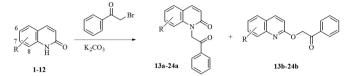
These biologically active quinolin-2(1*H*)-one derivatives were synthesized from their hydroxyl precursors by alkylation and the *Reformatsky*-type condensation. The *Reformatsky*-type condensation is quite straightforward while the alkylation of quinolin-2(1*H*)-one involves a competitive alkylation leading to the mixture of N₁⁻ and O₂- alkylated products. Although it is well known that alkylation of 2-pyridones gave a mixture of both N- and O- alkylated products, ¹⁵⁻¹⁷ relatively few systematic studies of this phenomenon have been published. Hopkins *et al*¹⁸ demonstrated that alkylation of 2-pyridone with benzyl chloride and sodium salt in DMF occurred at N₁-position whereas using the silver salt in benzene afforded exclusively the O₂-alkylated product. The Mitsunobu reaction has also been applied to alkylate 2-pyridones to discover the relationship between the ratio of N- and O- alkylation products.^{19,20}

The alkylation of C-5 substituted 2-phenyl-4-quinolones was also investigated and showed that the ratio of N-alkylation versus O-alkylation is highly dependent on the property of C-5 group. Both N-alkylation and O-alkylation products were detected for C-5 methoxy derivative while the sole product of N-alkylation was obtained for the C-5 hydroxy derivative. The alkylation of these 2-phenyl-4-quinolones was conducted under several conditions (NaH/THF, NaH/DMF, K, CO3/acetone, K, CO3/DMF) at different temperatures. The K₂CO₂/DMF system and temperature elevation led to the highest yields but there was no significant influence on the regioselectivity compared to the other systems used.²¹ Studies on N-alkylation versus O-alkylation in various ambident heterocyclic compounds under phase transfer conditions have also been reported.²²⁻²⁵ We have obtained a mixture of N₁- and O₂- alkylated products from the alkylation of quinolin-2(1H)one (1) with \tilde{N} -alkylation as the major product (Scheme 1)¹⁰. Alkylation of 6-acetoxyquinolin-2(1H)-one (2) gave a mixture of N_1 - and O_2 - alkylated products with N,-alkylation as the major product¹¹. However, a sole O₂alkylated product was obtained from the alkylation of 8-acetoxyquinolin-2(1H)-one (9) with 2-bromoacetophenone and potassium carbonate in DMF¹². Guo et. al. have also reported that the alkylation of 8-hydroxyquinolin-2(1H)one with 3-methoxybenzyl bromide under basic condition to afford a mixture of N₁- and O₂- alkylated products with the former one as a major product²⁶. Alkylation of 8-hydroxyquinolin-2(1H)-one was similar to 2 but was distincted from 9 prompted us to explore the alkylation of various quinolin-2(1*H*)-one derivatives. The steric and electronic effects of different substituents which influence the N_1 - and O_2 - alkylation of quinolin-2(1*H*)-ones are described.

RESULTS AND DISCUSSION

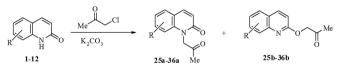
Alkylation of quinolin-2(1H)-one (1) with 2-bromoacetophenone and potassium carbonate in DMF gave a mixture of N1- and O2- alkylated products (13a and 13b respectively) with 13a as a major product (Scheme 1) but not a sole product as our previous report¹⁰. The structure of **13a** was confirmed by the long-range ¹H, ¹³C-HETCOR experiment in which N(1)-CH, (5.81 ppm) was coupled to C-atoms with resonances of 192.37 (²J), 162.11 (³J), 139.55 (³J), and 48.68 (1J) ppm corresponding to C(2'), C(2), C(8a), and C(1') respectively. Structure of 13b was also confirmed by 1H,13C-HETCOR experiment in which O(2)-CH₂ (5.76 ppm) was coupled to C-atoms with resonances of 194.49 (²*J*), 160.68 (³*J*), and 67.48 (¹*J*) ppm corresponding to C(2'), C(2), and C(1') respectively. It is worth to mention that one-dimensional ¹H-NMR spectra along is not enough to assign the site of alkylation since chemical shifts of N(1)-CH, (5.81 ppm) and O(2)-CH, (5.76 ppm) are not distinguishable. However, one-dimensional ¹³C-NMR spectra provide very useful informations in which C(1') showed a upfield shift at 48.68 ppm for N,-alkylated product 13a and a downfield shift at 67.48 ppm for O2-alkylated product 13b. A view of a single molecule of 13a and 13b respectively are given in Figure 1.

Under the same alkylating conditions, quinolin-2(1H)-one substituted with an electron-donating group such as methoxy **3**, benzyloxy **4**, or with an electron-withdrawing group such as chloro **5**, at C(6)-position gave a mixture of N₁- and O₂- alkylated products with the N₁- alkylation as the major product as shown in Scheme 1. Therefore, the electronic environment did not affect the type of alkylation. Accordingly, alkylation of C(7)-substituted quinolin-2(1H)-ones **6**, **7**, and **8** afforded N₁-alkylated products **18a**, **19a**, and **20a** as major products.


However, this type of alkylation can not be applied to C(8)-substituted quinolin-2(1*H*)-ones. Treatment of 8-methoxyquinolin-2(1*H*)-one (10) with 2-bromoacetophenone and potassium carbonate in DMF gave O₂-alkylated product, 8-methoxy-2-(2-oxo-2-phenylethoxy) quinoline (22b), as a sole product in a 75% yield. Accordingly, O₂-alkylated products 21b¹², 23b, and 24b were obtained from the alkylation of their respective precursors 9, 11, and 12.

To confirm the application of this type of alkylation, further experiments were carried out by using chloroacetone as an alkylating agent as shown in Scheme 2. Treatment of C(6) and C(7) substituted quinolin-2(1*H*)-ones with chloroacetone and potassium carbonate in DMF gave a mixture of N₁- and O₂- alkylated products with the former one as a major product. The typical peak of ¹H-NMR spectra are not distinguishable, for example, N(1)-CH₂ (5.11 ppm) for **25a** and O(2)-CH₂ (5.04 ppm) for **25b**. However, ¹³C-NMR spectra provide very useful informations in which C(1³) showed a downfield shift at 70.07 ppm for O₂-alkylated product **25b** and a upfield shift at 52.03 ppm for N₁-alkylated product **25a**. Alkylation of C(8)-substituted quinolin-2(1*H*)-ones under the same reaction conditions afforded O₂-alkylated product as a sole product. Therefore, the site of alkylation could be controlled mostly by the steric effect

in which less hindered C(6) and C(7) substituted quinolin-2(1*H*)-ones alkylated at N_1 - and O_2 - positions with the former one as a major product while C(8) substituted counterparts alkylated exclusively at less hindered O₂-position.


Alkylating agents may also affect the regioselectivity in which the N/O ratio for higher bulky 2-bromoacetophenone is less than that of less bulky chloroacetone due to higher steric hindrance of N-alkylation than that of O-alkylation. For example, the N/O ratio is 2.7 (62/23) for 6-benzyloxy derivative (entry 4, Scheme 1) using 2-bromoacetophenone as an alkylating agent while the N/O ratio is 7.1 (71/10) using chloroacetone (entry 4, Scheme 2) as an alkylating agent.

Scheme 1. Alkylation of quinolin-2(1H)-one with 2-bromoacetophenone.

Starting material	R	Products	Yield (%)
1	Н	13a/13b	66/7
2	6-OAc	14a/14b	39/16
3	6-OMe	15a/15b	80/7
4	6-OBn	16a/16b	62/23
5	6-C1	17a/17b	64/28
6	7-OMe	18a/18b	65/12
7	7-OBn	19a/19b	79/13
8	7-Cl	20a/20b	87/7
9	8-OAc	21a/21b	0/74
10	8-OMe	22a/22b	0/75
11	8-OBn	23a/23b	0/91
12	8-C1	24a/24b	0/94

Scheme 2. Alkylation of quinolin-2(1H)-one with chloroacetone.

Starting material	R	Products	Yield (%)
1	Н	25a/25b	67/10
2	6-OAc	26a/26b	75/6
3	6-OMe	27a/27b	56/7
4	6-OBn	28a/28b	71/10
5	6-Cl	29a/29b	85/9
6	7-OMe	30a/30b	84/8
7	7-OBn	31a/31b	62/8
8	7-Cl	32a/32b	76/8
9	8-OAc	33a/33b	0/76
10	8-OMe	34a/34b	0/67
11	8-OBn	35a/35b	0/75
12	8-Cl	36a/36b	0/89

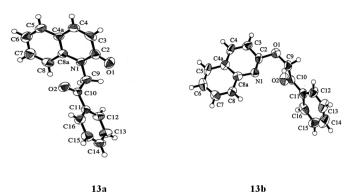


Figure 1. X-Ray crystallographic structures of 13a and 13b

CONCLUSIONS

In conclusion, we report herein the selective alkylation of certain substituted quinolin-2(1*H*)-one derivatives. Our results indicated that alkylation of relatively bulky 8-methoxy-, 8-benzyloxy-, and 8-chloro- quinolin-2(1*H*)-ones under classical conditions (2-bromoacetophenone or chloroacetone, DMF, K₂CO₃) gave exclusively O₂-alkylated products. This selectivity can not be applied to C(6) and C(7) substituted quinolin-2(1*H*)-one counterparts in which alkylation occurred at both N₁- and O₂- positions with the former one as a major product. Therefore, alkylation of substituted quinolin-2(1*H*)-ones was controlled by the steric effect but not the electronic effect.

EXPERIMENTAL

TLC: Precoated (0.2 mm) silica gel 60- F_{254} plates from EM Laboratories, Inc.; detection by UV light (254 nm). M.p.: Electrothermal IA9100 digital melting-point apparatus; uncorrected. ¹H and ¹³C-NMR spectra: Varian-Unity-400 spectrometer at 400 and 100 MHz or Varian-Gemini-200 spectrometer at 200 and 50 MHz, chemical shifts *d* in ppm with SiMe₄ as an internal standard (= 0 ppm), coupling constants *J* in Hz. Elemental analyses were carried out on a Heraeus CHN-O-Rapid elemental analyzer, and results were within ± 0.4% of calculated values.

1-(2-Oxo-2-phenylethyl)quinolin-2(1*H*)-one (13a) and 2-(2-Oxo-2-phenylethoxy)quinoline (13b)

Quinolin-2(1*H*)-one (1.45 g, 10 mmol), K₂CO₃ (1.38 g, 10 mmol), and dry DMF (50 mL) were stirred at rt for 30 min. To this solution was added 2-bromoacetophenone (1.99 g, 10 mmol) in dry DMF (10 mL) in one portion. The resulting mixture was continued to stir at rt for 24 h (TLC monitoring), and then poured into ice-water (100 mL). The mixture was extracted with CH₂Cl₂ (3×75 mL). The organic layer was combined, washed with H₂O, dried (Na₂SO₄), and then evaporated to give a brown solid which was purified by column chromatography on silica gel (AcOEt/Hexane 1:1). The proper fractions were combined and evaporated to furnish a residual solid which was crystallized from CH₂Cl₂/Et₂O 1:10 to afford **13a** (1.74 g, 66 %) and **13b** (0.17 g, 7 %).

13a: Mp 164-165 °C. ¹H NMR (400 MHz, CDCl₁): δ 5.81 (s, 2H, H-C(1')), 6.75 (d, 1H, J = 9.6 Hz, H-C(3)), 6.98 (d, 1H, J = 9.6 Hz, ArH), 7.19-7.22 (m, 1H, ArH), 7.42-7.67 (m, 5H, ArH), 7.75 (d, 1H, J = 9.6 Hz, H-C(4)), 8.08-8.10 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 48.68 (C(1')), 114.02, 120.78, 121.17, 122.26, 128.10, 128.89, 129.02, 130.68, 133.95, 134.87, 139.55, 139.86, 162.11 (C(2)), 192.37 (C(2')). Anal. Calcd for C₁₇H₁₃NO₂: C, 77.55; H, 4.98; N, 5.32. Found: C, 77.52; H, 5.01; N, 5.35.

13b: Mp 115-116 °C. 'H NMR (200 MHz, CDCl₃): δ 5.76 (s, 2H, H-C(1')), 7.10 (d, 1H, J = 8.8 Hz, H-C(3)), 7.32-7.73 (m, 7H, ArH), 8.01-8.08 (m, 3H, ArH). ¹³C NMR (50 MHz, CDCl₃): δ 67.48 (C(1')), 112.75, 124.28, 125.42, 127.24, 127.40, 127.94, 128.75, 129.49, 133.49, 135.08, 139.23, 146.02, 160.68 (C(2)), 194.49 (C(2')). Anal. Calcd for C₁₇H₁₃NO₂: C, 77.55; H, 4.98; N, 5.32. Found: C, 77.40; H, 5.00; N, 5.31.

6-Methoxy-1-(2-oxo-2-phenylethyl)quinolin-2(1*H*)-one (15a) and 6-Methoxy-2-(2-oxo-2-phenylethoxy)quinoline (15b)

Prepared from 6-methoxyquinolin-2(1*H*)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. **15a**: 80 % yield. Mp 196-197 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.83 (s, 3H, MeO), 5.79 (s, 2H, H-C(1')), 6.77 (d, 1H, J = 9.6 Hz, H-C(3)), 6.92 (d, 1H, J = 9.2 Hz, H-C(8)), 7.02 (d, 1H, J = 2.8 Hz, H-C(5)), 7.06 (dd, 1H, J = 9.2, 2.8 Hz, H-C(7)), 7.517.54 (m, 2H, ArH), 7.62-7.66 (m, 1H, ArH), 7.69 (d, 1H, J = 9.2 Hz, H-C(4)), 8.06-8.09 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 48.84 (C(1¢)), 55.65 (MeO), 110.77, 115.36, 119.33, 121.50, 121.62, 128.10, 128.89, 133.96, 134.00, 134.84, 139.39, 154.79, 161.72 (C(2)), 192.54 (C(2¢)). Anal. Calcd for C₁₈H₁₅NO₃: C, 73.71; H, 5.15; N, 4.78. Found: C, 73.65; H, 5.15; N, 4.68.

13b: 7 % yield. Mp 94-95 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.88 (s, 3H, MeO), 5.74 (s, 2H, H-C(1¢)), 7.04 (d, 1H, J = 2.4 Hz, H-C(5)), 7.08 (d, 1H, J = 8.8 Hz, H-C(3)), 7.23 (dd, 1H, J = 8.8, 2.4 Hz, H-C(7)), 7.50-7.54 (m, 2H, ArH), 7.60-7.62 (m, 1H, ArH), 7.63 (d, 1H, J = 8.8 Hz, H-C(8)), 7.95 (d, 1H, J = 8.8 Hz, H-C(4)), 8.05-8.07 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 55.75 (MeO), 67.74 (C(1¢)), 106.33, 113.10, 121.46, 126.23, 128.19, 128.70, 129.01, 133.76, 135.32, 138.57, 141.55, 156.52, 159.63 (C(2)), 194.95 (C(2¢)). Anal. Calcd for C₁₈H₁₅NO₃: C, 73.71; H, 5.15; N, 4.78. Found: C, 73.78; H, 5.29; N, 4.60.

6-Benzyloxy-1-(2-oxo-2-phenylethyl)quinolin-2(1*H*)-one (16a) and 6-Benzyloxy-2-(2-oxo-2-phenylethoxy)quinoline (16b)

Prepared from 6-benzyloxyquinolin-2(1*H*)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. **16a**: 62 % yield. Mp 177-178 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.09 (s, 2H, CH₂O), 5.78 (s, 2H, H-C(1¢)), 6.76 (d, 1H, *J* = 9.2 Hz, H-C(3)), 6.91 (d, 1H, *J* = 9.2 Hz, H-C(8)), 7.10 (d, 1H, *J* = 2.8 Hz, H-C(5)), 7.13 (dd, 1H, *J* = 8.8, 2.8 Hz, H-C(7)), 7.31-7.44 (m, 5H, ArH), 7.51-7.55 (m, 2H, ArH), 7.63-7.68 (m, 2H, ArH), 8.07-8.09 (m, 1H, ArH), 8.08 (d, 1H, *J* = 9.2 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 48.87 (C(1¢)), 70.55 (CH₂O), 112.19, 115.37, 119.98, 121.49, 121.77, 127.42, 128.15, 128.66, 128.92, 133.99, 134.23, 134.84, 136.52, 139.39, 153.91, 161.77 (C(2)), 192.55 (C(2¢)). Anal. Calcd for C₂₄H₁₉NO₃: C, 78.03; H, 5.18; N, 3.79. Found: C, 77.68; H, 5.21; N, 3.66.

16b: 23 % yield. Mp 145-146 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.14 (s, 2H, CH₂O), 5.75 (s, 2H, H-C(1¢)), 7.09 (d, 1H, J = 8.8 Hz, H-C(3)), 7.13 (d, 1H, J = 2.8 Hz, H-C(5)), 7.32 (dd, 1H, J = 9.2, 2.8 Hz, H-C(7)), 7.34-7.37 (m, 1H, ArH), 7.38-7.43 (m, 2H, ArH), 7.46-7.49 (m, 2H, ArH), 7.51-7.54 (m, 2H, ArH), 7.61-7.63 (m, 1H, ArH), 7.64 (d, 1H, J = 9.2 Hz, H-C(8)), 7.95 (d, 1H, J = 8.8 Hz, H-C(4)), 8.05-8.08 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 67.83 (C(1¢)), 70.54 (CH₂O), 107.82, 113.16, 121.91, 126.20, 127.78, 128.20, 128.32, 128.74, 128.88, 129.02, 133.77, 135.31, 136.95, 138.66, 141.61, 155.68, 159.71 (C(2)), 194.89 (C(2¢)). Anal. Calcd for C₂₄H₁₉NO₃: C, 78.03; H, 5.18; N, 3.79. Found: C, 78.00; H, 5.20; N, 3.78.

6-Chloro-1-(2-oxo-2-phenylethyl)quinolin-2(1*H*)-one (17a) and 6-Chloro-2-(2-oxo-2-phenylethoxy)quinoline (17b)

Prepared from 6-chloroquinolin-2(1*H*)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. **17a**: 64 % yield. Mp 213-214 °C. ¹H NMR (200 MHz, CDCl₃): δ 5.78 (s, 2H, H-C(1¢)), 6.78 (d, 1H, *J* = 9.5 Hz, H-C(3)), 6.91 (d, 1H, *J* = 9.0 Hz, H-C(8)), 7.38 (dd, 1H, *J* = 9.0, 2.4 Hz, H-C(7)), 7.50-7.57 (m, 2H, ArH), 7.56 (d, 1H, *J* = 2.4 Hz, H-C(5)), 7.63-7.67 (m, 1H, ArH), 7.87 (d, 1H, *J* = 9.5 Hz, H-C(4)), 8.05-8.10 (m, 2H, ArH). ¹³C NMR (50 MHz, CDCl₃): δ 48.82 (C(1¢)), 115.57, 121,79, 122.54, 127.78, 128.09, 128.16, 129.00, 130.65, 134.19, 134.69, 138.16, 138.72, 161.86 (C(2)), 192.07 (C(2¢)). Anal. Calcd for C₁₇H₁₂NO₂Cl: C, 68.58; H, 4.06; N, 4.70. Found: C, 68.47; H, 4.07; N, 4.77.

17b: 28 % yield. Mp 123-124 °C. 'H NMR (400 MHz, CDCl₃): δ 5.76 (s, 2H, H-C(1¢)), 7.13 (d, 1H, J = 8.8 Hz, H-C(3)), 7.49 (dd, 1H, J = 8.8, 2.4 Hz, H-C(7)), 7.51-7.55 (m, 2H, ArH), 7.61-7.66 (m, 2H, ArH), 7.69 (d, 1H, J = 2.4 Hz, H-C(5)), 7.96 (d, 1H, J = 8.8 Hz, H-C(8)), 8.05 (d, 1H, J = 8.8 Hz, H-C(4)), 8.04-8.06 (m, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 67.80 (C(1¢)), 114.06, 126.27, 126.54, 128.16, 129.01, 129.07, 129.94, 130.42, 133.89, 135.15, 138.56, 144.69, 160.14 (C(2)), 194.45 (C(2¢)). Anal. Calcd for C₁₇H₁₂NO₂Cl: C, 68.58; H, 4.06; N, 4.70. Found: C, 68.45; H, 4.08; N, 4.73.

7-Methoxy-1-(2-oxo-2-phenylethyl)quinolin-2(1*H*)-one (18a) and 7-Methoxy-2-(2-oxo-2-phenylethoxy)quinoline (18b)

Prepared from 7-methoxyquinolin-2(1*H*)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. **18a**: 65 % yield. Mp 171-172 °C. ¹H NMR (400 MHz, CDCl,): δ 3.78 (s, 3H, MeO), 5.76 (s, 2H, H-C(1¢)), 6.44 (d, 1H, J = 2.4 Hz, H-C(8)), 6.60 (d, 1H, J = 9.2 Hz, H-C(3)), 6.80 (dd, 1H, J = 8.8, 2.4 Hz, H-C(6)), 7.49 (d, 1H, J = 8.8 Hz, H-C(5)), 7.51-7.55 (m, 2H, ArH), 7.63-7.65 (m, 1H, ArH), 7.68 (d, 1H, J = 9.4 Hz, H-C(4)), 8.07-8.10 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 49.14 (C(1¢)), 55.74 (MeO), 99.42, 109.60, 115.34, 118.24, 128.38, 129.18, 130.69, 134.25, 135.14, 139.98, 141.45, 162.08, 162.77 (C(2)), 192.95 (C(2¢)). Anal. Calcd for C₁₈H₁₅NO₄: C, 73.71; H, 5.15; N, 4.78. Found: C, 73.70; H, 5.17; N, 4.78.

18b: 12 % yield. Mp 137-138 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.87 (s, 3H, MeO), 5.77 (s, 2H, H-C(1¢)), 6.96 (d, 1H, J = 8.8 Hz, H-C(3)), 7.01 (dd, 1H, J = 8.8, 2.4 Hz, H-C(6)), 7.07 (d, 1H, J = 2.4 Hz, H-C(8)), 7.50-7.55 (m, 2H, ArH), 7.59 (d, 1H, J = 9.2 Hz, H-C(5)), 7.61-7.65 (m, 1H, ArH), 7.96 (d,

1H, J = 8.8 Hz, H-C(4)), 8.06-8.09 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 55.64 (MeO), 67.78 (C(1¢)), 106.76, 110.24, 116.69, 120.47, 128.22, 128.66, 129.00, 133.77, 135.27, 139.16, 148.05, 161.20, 161.51 (C(2)), 194.75(C(2¢)). Anal. Calcd for C₁₈H₁₅NO₃: C, 73.71; H, 5.15; N, 4.78. Found: C, 73.47; H, 5.24; N, 4.39.

7-Benzyloxy-1-(2-oxo-2-phenylethyl)quinolin-2(1*H*)-one (19a) and 7-Benzyloxy-2-(2-oxo-2-phenylethoxy)quinoline (19b)

Prepared from 7-benzyloxyquinolin-2(1*H*)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. **19a**: 79 % yield. Mp 185-186 °C. ¹H NMR (400 MHz, CDCl₃): δ 4.99 (s, 2H, CH,O), 5.66 (s, 2H, H-C(1¢)), 6.45 (d, 1H, J = 2.4 Hz, H-C(8)), 6.57 (d, 1H, J = 9.6 Hz, H-C(3)), 6.83 (dd, 1H, J = 8.8, 2.4 Hz, H-C(6)), 7.25-7.28 (m, 5H, ArH), 7.45 (d, 1H, J = 8.8 Hz, H-C(5)), 7.48-7.51 (m, 2H, ArH), 7.60-7.65 (m, 2H, ArH), 8.01 (d, 1H, J = 9.6 Hz, H-C(4)), 8.02 -8.03 (m, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 49.19 (C(1¢)), 70.65 (CH₂O), 100.38, 110.55, 115.48, 118.30, 127.68, 128.41, 128.50, 128.94, 129.17, 130.67, 134.29, 135.07, 136.28, 139.98, 141.38, 161.21, 162.77 (C(2)), 192.65 (C(2¢)). Anal. Calcd for C₂₄H₁₉NO₃: C, 78.03; H, 5.18; N, 3.79. Found: C, 78.00; H, 5.21; N, 3.79.

19b: 13 % yield. Mp 146-147 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.12 (s, 2H, CH₂O), 5.77 (s, 2H, H-C(1¢)), 6.97 (d, 1H, *J* = 9.6 Hz, H-C(3)), 7.10 (dd, 1H, *J* = 8.8, 2.4 Hz, H-C(6)), 7.17 (d, 1H, *J* = 2.4 Hz, H-C(8)), 7.32-7.42 (m, 3H, ArH), 7.44-7.47 (m, 2H, ArH), 7.51-7.55 (m, 2H, ArH), 7.61-7.66 (m, 2H, ArH), 7.97 (d, 1H, *J* = 8.8 Hz, H-C(5)), 8.06-8.09 (m, 1H, ArH), 8.07 (d, 1H, *J* = 9.6 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 67.83 (C(1¢)), 70.29 (CH₂O), 107.91, 110.38, 117.04, 120.62, 127.88, 128.23, 128.33, 128.75, 128.86, 128.93, 129.01, 133.78, 135.30, 136.80, 139.19, 160.35, 161.51 (C(2)), 194.75 (C(2¢)). Anal. Calcd for C₂₄H₁₉NO₃: C, 78.03; H, 5.18; N, 3.79. Found: C, 78.40; H, 5.26; N, 3.71.

7-Chloro-1-(2-oxo-2-phenylethyl)quinolin-2(1*H*)-one (20a) and 7-Chloro-2-(2-oxo-2-phenylethoxy)quinoline (20b)

Prepared from 7-chloroquinolin-2(1*H*)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. **20a**: 87 % yield. Mp 180-181 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.76 (s, 2H, H-C(1¢)), 6.75 (d, 1H, *J* = 9.2 Hz, H-C(3)), 6.97 (d, 1H, *J* = 2.0 Hz, H-C(8)), 7.19 (dd, 1H, *J* = 8.4, 2.0 Hz, H-C(6)), 7.52 (d, 1H, *J* = 8.4 Hz, H-C(5)), 7.55-7.59 (m, 2H, ArH), 7.66-7.71 (m, 1H, ArH), 7.72 (d, 1H, *J* = 9.2 Hz, H-C(4)), 8.09-8.12 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 49.05 (C(1¢)), 114.37, 119.51, 121.49, 123.10, 128.46, 129.27, 130.34, 134.48, 134.87, 137.21, 139.57, 140.71, 162.15 (C(2)), 192.04 (C(2¢)). Anal. Calcd for C₁₇H₁₂NO₂Cl·0.2H₂O: C, 67.76; H, 4.14; N, 4.65. Found: C, 67.92; H, 4.02; N, 4.66.

20b: 7 % yield. Mp 106-107 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.76 (s, 2H, H-C(1¢)), 7.10 (d, 1H, J = 8.8 Hz, H-C(3)), 7.32 (dd, 1H, J = 8.4, 2.0 Hz, H-C(6)), 7.51-7.55 (m, 2H, ArH), 7.62-7.66 (m, 1H, ArH), 7.64 (d, 1H, J = 8.4 Hz, H-C(5)), 7.70 (d, 1H, J = 2.4 Hz, H-C(8)), 8.01 (d, 1H, J = 8.8 Hz, H-C(4)), 8.03-8.06 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 67.94 (C(1¢)), 113.26, 123.99, 125.46, 126.65, 128.16, 128.79, 129.10, 133.94, 135.07, 135.65, 139.29, 146.75, 161.66 (C(2)), 194.31 (C(2¢)). Anal. Calcd for C₁₇H₁₂NO₂Cl: C, 68.58; H, 4.06; N, 4.70. Found: C, 68.22; H, 4.05; N, 4.64.

8-Methoxy-2-(2-oxo-2-phenylethoxy)quinoline (22b)

Prepared from 8-methoxyquinolin-2(1*H*)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. 75 % yield. Mp 161-162 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.88 (s, 3H, MeO), 5.80 (s, 2H, H-C(1¢)), 6.99-7.01 (m, 1H, ArH), 7.14 (d, 1H, *J* = 8.8 Hz, H-C(3)), 7.27-7.34 (m, 2H, ArH), 7.49-7.54 (m, 2H, ArH), 7.59-7.63 (m, 1H, ArH), 8.03 (d, 1H, *J* = 8.8 Hz, H-C(4)), 8.07-8.10 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 56.17 (MeO), 67.53 (C(1¢)), 109.54, 113.16, 119.66, 124.34, 126.55, 128.13, 128.65, 133.37, 135.46, 137.48, 139.42, 154.14, 160.16 (C(2)), 194.94 (C(2¢)). Anal. Calcd for C₁₈H₁₅NO₃: C, 73.71; H, 5.15; N, 4.78. Found: C, 73.64; H, 5.19; N, 4.80.

8-Benzyloxy-2-(2-oxo-2-phenylethoxy)quinoline (23b)

Prepared from 8-benzyloxyquinolin-2(1*H*)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. 91 % yield. Mp 132-133 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.16 (s, 2H, CH₂O), 5.86 (s, 2H, H-C(1¢)), 7.07 (d, 1H, J = 8.8 Hz, H-C(3)), 7.15-7.28 (m, 5H, ArH), 7.33-7.37 (m, 3H, ArH), 7.44-7.48 (m, 2H, ArH), 7.59-7.62 (m, 1H, ArH), 8.02-8.06 (m, 2H, ArH), 8.05 (d, 1H, J = 8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 67.81 (C(1¢)), 71.38 (CH₂O), 112.83, 113.26, 120.62, 124.48, 126.94, 127.16, 127.72, 128.15, 128.53, 128.71, 129.02, 133.71, 135.27, 137.61, 139.65, 153.42, 160.31 (C(2)), 194.62 (C(2¢)). Anal. Calcd for C₂₄H₁₉NO₃: C, 78.03; H, 5.18; N, 3.79. Found: C, 78.01; H, 5.17; N, 3.61.

8-Chloro-2-(2-oxo-2-phenylethoxy)quinoline (24b)

Prepared from 8-chloroquinolin-2(1H)-one and 2-bromoacetophenone by the same procedure as described for **13a** and **13b**. 94 % yield. Mp 183-184 °C.

¹H NMR (400 MHz, CDCl₃): δ 5.80 (s, 2H, H-C(1¢)), 7.16 (d, 1H, *J* = 8.8 Hz, H-C(3)), 7.24-7.28 (m, 1H, ArH), 7.49-7.53 (m, 2H, ArH), 7.59-7.67 (m, 3H, ArH), 8.04-8.07 (m, 2H, ArH), 8.05 (d, 1H, *J* = 8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 67.73 (C(1¢)), 113.54, 124.25, 126.33, 126.58, 127.99, 128.74, 129.74, 131.44, 133.50, 135.28, 139.69, 142.38, 161.01 (C(2)), 194.45 (C(2¢)). Anal. Calcd for C₁₇H₁₂NO₂Cl: C, 68.58; H, 4.06; N, 4.70. Found: C, 68.42; H, 4.11; N, 4.81.

1-(2-Oxopropyl)quinolin-2(1*H*)-one (25a) and 2-(2-Oxopropoxy) quinoline (25b)

Prepared from quinolin-2(1*H*)-one and chloroacetone by the same procedure as described for **13a** and **13b**. **25a**: 67 % yield. Mp 108-109 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.24 (s, 3H, Me), 5.11 (s, 2H, H-C(1¢)), 6.73 (d, 1H, J = 9.6 Hz, H-C(3)), 7.00-7.24 (m, 2H, ArH), 7.51-7.58 (m, 2H, ArH), 7.74 (d, 1H, J = 9.6 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 27.06 (Me), 52.03 (C(1¢)), 113.69, 120.69, 121.20, 122.51, 129.12, 130.90, 139.30, 139.95, 161.89 (C(2)), 202.49 (C(2¢)). Anal. Calcd for C₁₂H₁₁NO₂: C, 71.63; H, 5.51; N, 6.94.

25b: 10 % yield. Oily. ¹H NMR (200 MHz, CDCl₃): δ 2.27 (s, 3H, Me), 5.04 (s, 2H, H-C(1¢)), 7.03 (d, 1H, J = 8.8 Hz, H-C(3)), 7.39-7.61 (m, 2H, ArH), 7.71-7.79 (m, 2H, ArH), 8.04 (d, 1H, J = 9.0 Hz, H-C(4)). ¹³C NMR (50 MHz, CDCl₃): δ 26.45 (Me), 70.07 (C(1¢)), 112.54, 124.44, 125.40, 127.29, 127.42, 129.64, 139.35, 146.00, 160.61 (C(2)), 204.89 (C(2¢)). Anal. Calcd for C₁₂H₁₁NO₂: C, 71.63; H, 5.51; N, 6.96. Found: C, 71.33; H, 5.71; N, 6.83.

6-Methoxy-1-(2-oxopropyl)quinolin-2(1*H*)-one (27a) and 6-Methoxy-2-(2-oxopropoxy)quinoline (27b)

Prepared from 6-methoxyquinolin-2(1*H*)-one and chloroacetone by the same procedure as described for **13a** and **13b**. **27a**: 56 % yield. Mp 171-172 °C. ¹H NMR (400 NHz, CDCl₃): δ 2.22 (3H, s, Me), 3.85 (s, 3H, MeO), 5.09 (s, 2H, H-C(1¢)), 6.74 (d, 1H, *J* = 9.6 Hz, H-C(3)), 6.94 (d, 1H, *J* = 9.2 Hz, H-C(8)), 7.03 (d, 1H, *J* = 2.8 Hz, H-C(5)), 7.13 (dd, 1H, *J* = 9.2, 2.8 Hz, H-C(7)), 7.68 (d, 1H, *J* = 9.6 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 27.11 (Me), 52.24 (C(1¢)), 55.74 (MeO), 111.02, 115.05, 119.48, 121.50, 121.82, 133.82, 139.48, 155.00, 161.53 (C(2)), 202.78 (C(2¢)). Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.64; H, 5.75; N, 6.03.

27b: 7 % yield. Mp 78-79 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.25 (s, 3H, Me), 3.89 (s, 3H, MeO), 5.00 (s, 2H, H-C(1¢)), 7.00 (d, 1H, J = 8.8 Hz, H-C(3)), 7.05 (d, 1H, J = 2.8 Hz, H-C(5)), 7.27 (dd, 1H, J = 9.2, 2.8 Hz, H-C(7)), 7.68 (d, 1H, J = 9.2 Hz, H-C(8)), 7.95 (d, 1H, J = 8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 26.42 (Me), 55.51 (MeO), 70.08 (C(1¢)), 106.15, 112.61, 121.31, 125.97, 128.48, 138.36, 141.29, 156.37, 159.29 (C(2)), 205.07 (C(2¢)). Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.50; H, 5.66; N, 6.06.

6-Benzyloxy-1-(2-oxopropyl)quinolin-2(1*H*)-one (28a) and 6-Benzyloxy-2-(2-oxopropoxy)quinoline (28b)

Prepared from 6-benzyloxyquinolin-2(1*H*)-one and chloroacetone by the same procedure as described for **13a** and **13b**. **28a**: 71 % yield. Mp 184-185 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.22 (s, 3H, Me), 5.09 (s, 2H, CH₂O), 5.10 (s, 2H, H-C(1¢)), 6.73 (d, 1H, J = 9.2 Hz, H-C(3)), 6.94 (d, 1H, J = 9.2 Hz, H-C(8)), 7.10 (d, 1H, J = 2.8 Hz, H-C(5)), 7.20 (dd, 1H, J = 9.2, 2.8 Hz, H-C(7)), 7.33-7.45 (m, 5H, ArH), 7.66 (1H, d, J = 9.6 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 27.39 (Me), 52.44 (C(1¢)), 70.80 (CH₂O), 112.54, 115.30, 120.37, 121.70, 122.02, 127.71, 128.45, 128.95, 134.16, 136.67, 139.75, 154.31, 161.77 (C(2)), 202.98 (C(2¢)). Anal. Calcd for C₁₉H₁₇NO₃: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.16; H, 5.57; N, 4.52.

28b: 10 % yield. Mp 115-116 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.26 (s, 3H, Me), 5.01 (s, 2H, CH₂O), 5.15 (s, 2H, H-C(1¢)), 7.01 (d, 1H, *J* = 8.8 Hz, H-C(3)), 7.14 (d, 1H, *J* = 2.8 Hz, H-C(5)), 7.33-7.43 (m, 3H, ArH), 7.36 (dd, 1H, *J* = 9.2, 2.8 Hz, H-C(7)), 7.47-7.48 (m, 2H, ArH), 7.70 (d, 1H, *J* = 9.2 Hz, H-C(8)), 7.94 (d, 1H, *J* = 8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 26.72 (Me), 70.28 (C(1¢)), 70.56 (CH₂O), 107.83, 112.93, 114.14, 121.99, 126.20, 127.77, 128.34, 128.89, 136.94, 138.64, 141.74, 155.74, 159.63 (C(2)), 205.45 (C(2¢)). Anal. Calcd for C₁₉H₁₇NO₃: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.44; H, 5.60; N, 4.55.

6-Chloro-1-(2-oxopropyl)quinolin-2(1*H*)-one (29a) and 6-Chloro-2-(2-oxopropoxy)quinoline (29b)

Prepared from 6-chloroquinolin-2(1*H*)-one and chloroacetone by the same procedure as described for **13a** and **13b**. **29a**: 85 % yield. Mp 178-179 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.27 (s, 3H, Me), 5.10 (s, 2H, H-C(1¢)), 6.76 (d, 1H, J = 9.6 Hz, H-C(3)), 6.92 (d, 1H, J = 9.2 Hz, H-C(8)), 7.44 (dd, 1H, J = 9.2, 2.0 Hz, H-C(7)), 7.56 (d, 1H, J = 2.0 Hz, H-C(5)), 7.65 (d, 1H, J = 9.6 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 27.22 (Me), 52.07 (C(1¢)), 115.24, 121.71, 122.53, 128.01, 128.21, 130.83, 137.90, 138.80, 161.48 (C2)), 201.79 (C(2¢)). Anal. Calcd for C₁₇H₁₀NO,Cl: C, 61.16; H, 4.28; N, 5.94. Found: C,

61.13; H, 4.32; N, 6.01.

29: 9 % yield. Mp 108-109 °C. ¹H NMR (400 MHz, CDCl,): δ 2.26 (s, 3H, Me), 5.03 (s, 2H, H-C(1¢)), 7.06 (d, 1H, J = 8.8 Hz, H-C(3)), 7.54 (dd, 1H, J = 8.8, 2.0 Hz, H-C(7)), 7.69 (d, 1H, J = 8.8 Hz, H-C(8)), 7.70 (d, 1H, J = 2.8 Hz, H-C(5)), 7.95 (d, 1H, J = 8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 26.42 (Me), 70.14 (C(1¢)), 113.64, 126.04, 126.25, 128.81, 129.91, 130.35, 138.42, 144.46, 160.84 (C(2)), 204.39 (C(2¢)). Anal. Calcd for C₁₂H₁₀NO₂Cl: C, 61.16; H, 4.28; N, 5.94. Found: C, 61.18; H, 4.37; N, 5.93.

7-Methoxy-1-(2-oxopropyl)quinolin-2(1*H*)-one (30a) and 7-Methoxy-2-(2-oxopropoxy)quinoline (30b)

Prepared from 7-methoxyquinolin-2(1*H*)-one and chloroacetone by the same procedure as described for **13a** and **13b**. **30a**: 84 % yield. Mp 113-114 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.20 (s, 3H, Me), 3.84 (s, 3H, MeO), 5.05 (s, 2H, H-C(1¢)), 6.44 (d, 1H, J = 2.0 Hz, H-C(8)), 6.56 (d, 1H, J = 9.6 Hz, H-C(3)), 6.81 (dd, 1H, J = 8.8, 2.0 Hz, H-C(6)), 7.48 (d, 1H, J = 8.8 Hz, H-C(5)), 7.66 (d, 1H, J = 9.6 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 27.30 (Me), 52.50 (C(1¢)), 55.83 (MeO), 98.87, 110.02, 115.15, 118.16, 130.79, 140.07, 141.20, 162.29, 162.51 (C(2)), 203.19 (C(2¢)). Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.44; H, 5.68; N, 6.00.

30b: 8 % yield. Mp 96-97 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.26 (s, 3H, Me), 3.92 (s, 3H, MeO), 5.01 (s, 2H, H-C(1¢)), 6.89 (d, 1H, J = 8.8 Hz, H-C(3)), 7.04 (dd, 1H, J = 8.8, 2.4 Hz, H-C(6)), 7.13 (d, 1H, J = 2.4 Hz, H-C(8)), 7.60 (d, 1H, J = 8.8 Hz, H-C(5)), 7.96 (d, 1H, J = 8.4 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 26.68 (Me), 55.71 (MeO), 70.40 (C(1¢)), 106.77, 109.98, 116.90, 120.44, 128.66, 139.25, 148.06, 161.33, 161.44 (C(2)), 205.58 (C(2¢)). Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.20; H, 5.88; N, 5.93.

7-Benzyloxy-1-(2-oxopropyl)quinolin-2(1*H*)-one (31a) and 7-Benzyloxy-2-(2-oxopropoxy)quinoline (31b)

Prepared from 7-benzyloxyquinolin-2(1*H*)-one and chloroacetone by the same procedure as described for **13a** and **13b**. **31a**: 62 % yield. Mp 103-104 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.17 (s, 3H, Me), 5.02 (s, 2H, CH₂O), 5.12 (s, 2H, H-C(1¢)), 6.51 (d, 1H, J = 2.4 Hz, H-C(8)), 6.58 (d, 1H, J = 9.6 Hz, H-C(3)), 6.89 (dd, 1H, J = 8.8, 2.4 Hz, H-C(6)), 7.35-7.44 (m, 5H, ArH), 7.49 (d, 1H, J = 8.8 Hz, H-C(5)), 7.66 (d, 1H, J = 9.6 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 27.31 (Me), 52.49 (C(1¢)), 70.68 (CH₂O), 99.95, 110.81, 115.32, 118.30, 127.78, 128.61, 129.02, 130.79, 136.21, 140.05, 141.14, 161.35, 162.50 (C(2)), 202.99 (C(2¢)). Anal. Calcd for C₁₉H₁₇NO₃: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.27; H, 5.59; N, 4.54.

31b: 8 % yield. Mp 133-134 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.26 (s, 3H, Me), 5.01 (s, 2H, CH₂O), 5.18 (s, 2H, H-C(1¢)), 6.90 (d, 1H, *J* = 8.4 Hz, H-C(3)), 7.13 (dd, 1H, *J* = 8.8, 2.4 Hz, H-C(6)), 7.24 (d, 1H, *J* = 2.4 Hz, H-C(8)), 7.34-7.38 (m, 1H, ArH), 7.40-7.44 (m, 2H, ArH), 7.48-7.51 (m, 2H, ArH), 7.63 (d, 1H, *J* = 8.8 Hz, H-C(5)), 7.97 (d, 1H, *J* = 8.4 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 26.72 (Me), 70.39 (C(1¢)), 70.47 (CH₂O), 107.90, 110.12, 117.25, 120.59, 127.90, 128.38, 128.76, 128.89, 136.75, 139.29, 147.96, 160.48, 161.43 (C(2)), 205.54 (C(2¢)). Anal. Calcd for C₁₉H₁₇NO₃: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.24; H, 5.57; N, 4.53.

7-Chloro-1-(2-oxopropyl)quinolin-2(1*H*)-one (32a) and 7-Chloro-2-(2-oxopropoxy)quinoline (32b)

Prepared from 7-chloroquinolin-2(1*H*)-one and chloroacetone by the same procedure as described for **13a** and **13b**. **32a**: 76 % yield. Mp 158-159 °C. 'H NMR (400 MHz, DMSO-*d*₀): δ 2.31 (s, 3H, Me), 5.23 (s, 2H, H-C(1¢)), 6.65 (d, 1H, J = 9.2 Hz, H-C(3)), 7.31 (dd, 1H, J = 8.4, 1.6 Hz, H-C(6)), 7.51 (d, 1H, J = 1.6 Hz, H-C(8)), 7.77 (d, 1H, J = 8.4 Hz, H-C(5)), 7.98 (d, 1H, J = 9.6 Hz, H-C(4)). ¹³C NMR (100 MHz, DMSO-*d*₀): δ 28.10 (Me), 52.34 (C(1¢)), 115.06, 119.51, 121.46, 122.98, 131.22, 136.41, 140.27, 141.09, 161.56 (C(2)), 202.86 (C(2¢)). Anal. Calcd for C₁₂H₁₀NO₂Cl: C, 61.16; H, 4.28; N, 5.94. Found: C, 61.09; H, 4.25; N, 5.96.

32b: 8 % yield. Mp 93-94 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.27 (s, 3H, Me), 5.04 (s, 2H, H-C(1¢)), 7.03 (d, 1H, J = 8.8 Hz, H-C(3)), 7.35 (dd, 1H, J = 8.4, 2.0 Hz, H-C(6)), 7.65 (d, 1H, J = 8.4 Hz, H-C(5)), 7.79 (d, 1H, J = 1.6 Hz, H-C(8)), 8.12 (d, 1H, J = 8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 26.67 (Me), 70.62 (C(1¢)), 113.02, 123.95, 125.69, 126.51, 128.84, 135.94, 139.55, 146.51, 161.53 (C(2)), 204.19 (C(2¢)). Anal. Calcd for C₁₂H₁₀NO₂Cl: C, 61.16; H, 4.28; N, 5.94.

8-Methoxy-2-(2-oxopropoxy)quinoline (34b)

Prepared from 8-methoxyquinolin-2(1*H*)-one and chloroacetone by the same procedure as described for **13a** and **13b**. 67 % yield. Mp 55-56 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H, Me), 4.01 (s, 3H, MeO), 5.09 (s, 2H, H-C(1¢)), 7.03-7.05 (m, 1H, ArH), 7.07 (d, 1H, J = 8.8 Hz, H-C(3)), 7.31-7.34 (m, 2H, ArH), 8.02 (d, 1H, J = 8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 26.84 (Me), 56.20 (MeO), 69.95 (C(1¢)), 109.38, 112.88, 119.60, 124.44,

126.51, 137.40, 139.50, 154.17, 159.96 (C(2)), 204.66 (C(2¢)). Anal. Calcd for C₁₂H₁₂NO₂: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.51; H, 5.73; N, 5.90. 8-Benzyloxy-2-(2-oxopropoxy)quinoline (35b)

Prepared from 8-benzyloxyquinolin-2(1H)-one and chloroacetone by the same procedure as described for 13a and 13b. 75 % yield. Mp 56-57 °C. 1H NMR (400 MHz, CDCl.): δ 2.15 (s, 3H, Me), 5.00 (s, 2H, CH.O), 5.24 (s, 2H, H-C(1¢)), 7.06 (d, 1H, J = 8.8 Hz, H-C(3)), 7.09-7.11 (m, 1H, ArH), 7.25-7.42 (m, 5H, ArH), 7.52-7.54 (m, 2H, ArH), 8.02 (d, 1H, J = 8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl,): δ 26.52 (Me), 69.84 (C(1¢)), 71.07 (CH,O), 111.76, 112.72, 120.08, 124.31, 126.60, 127.49, 127.86, 128.45, 137.20, 137.83, 139.39, 153.27, 159.81 (C(2)), 204.48 (C(2¢)). Anal. Calcd for C₁₀H₁₇NO₂: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.27; H, 5.71; N, 4.38.

8-Chloro-2-(2-oxopropoxy)quinoline (36b)

Prepared from 8-chloroquinolin-2(1H)-one and chloroacetone by the same procedure as described for 13a and 13b. 89 % yield. Mp 99-100 °C. ¹H NMR (400 MHz, CDCl₁): δ 2.33 (s, 3H, Me), 5.09 (s, 2H, H-C(1¢)), 7.10 (d, 1H, J = 8.8 Hz, H-C(3)), 7.30 (dd, 1H, J = 7.6, 7.6 Hz, H-C(6)), 7.64 (dd, 1H, J = 8.0, 1.2 Hz, H-C(7)), 7.72 (dd, 1H, J=7.6, 1.2 Hz, H-C(5)), 8.05 (d, 1H, J=8.8 Hz, H-C(4)). ¹³C NMR (100 MHz, CDCl₃): δ 26.72 (Me), 70.16 (C(1¢)), 113.35, 124.35, 126.37, 126.58, 129.86, 131.44, 139.75, 142.33, 160.89 (C(2)), 203.87 (C(2¢)). Anal. Calcd for C₁₂H₁₀NO₂Cl: C, 61.16; H, 4.28; N, 5.94. Found: C, 61.17; H, 4.23; N, 5.98.

REFERENCES

- M. Tominaga, H. Tone, K. Nakagawa, K. Takada, Y. Hoshino, K. 1. Watanabe, Chem. Pharm. Bull. 29, 2166, (1981).
- T. Nishi, K. Yamamoto, T. Shimizu, T. Kanbe, Y. Kimura, K. Nakagawa, 2 Chem. Pharm. Bull. 31, 798, (1983).
- P. Cheng, Q. Zhang, Y.B. Ma, Z.Y. Jiang, X.M. Zhang, F.X. Zhang, J.J. 3 Chen, Bioorg. Med. Chem. Lett. 18, 3787, (2008).
- C.D. Beadle, J. Boot, N.P. Camp, N. Dezutter, J. Findlay, L. Havhurst, J.J. 4. Masters, R. Penariol, M.W. Walter, Bioorg. Med. Chem. Lett. 15, 4432, (2005)
- 5. J.T. Kuethe, A. Wong, C. Qu, J. Smitrovich, I.W. Davies, D.L. Hughes, J. Org. Chem. 70, 2555, (2005).

- P. Hewawasam, W. Fan, D.A. Cook, K.S. Newberry, C.G. Boissard, V.K. 6. Gribkoff, J. Starrett, N.J. Lodge, Bioorg. Med. Chem. Lett. 14, 4479, (2004)
- 7 T. Fujioka, S. Teramoto, T. Mori, T. Hosokawa, T. Sumida, M. Tominaga, Y. Yabuuchi, J. Med. Chem. 35, 3607, (1992)
- B.J. Lipworth, A. Grove, Br. J. Clin. Pharm. 43, 9, (1997).
- C.C. Tzeng, T.C. Wang, Y.L. Chen, C.J. Wang, Y.L. Chang, C.M. Teng, 9 Helv. Chim. Acta. 80, 1161, (1007).
- 10. I.L. Chen, Y.L. Chen, T.C. Wang, C.C. Tzeng, Heterocycles 60, 131, (2003).
- 11. T.C. Wang, Y.L. Chen, C.C. Tzeng, S.S. Liou, W.F. Tzeng, Y.L. Chang, C.M. Teng, Helv. Chim. Acta. 81, 1038, (1998).
- 12. S.S. Liou, Y.L. Zhao, Y.L. Chang, C.M. Teng, C.C. Tzeng, Chem. Pharm. Bull. 45, 1777, (1997).
- 13. Y.L. Chen, T.C. Wang, K.C. Fang, N.C. Chang, C.C. Tzeng, Heterocycles 50, 453, (1999)
- 14. C.C. Tzeng, K.H. Lee, T.C. Wang, C.H. Han, Y.L. Chen, Pharmaceut. Res. 17, 715, (2000).
- 15. T. Sato, K. Yoshimatsu, J. Otera, Svnlett 845, (1995).
- 16. H. Liu, S.-B. Ko, H. Josien, D. P. Curran, Tetrahedron Lett. 36, 8917, (1995).
- 17. Y. L. Janin, C. Huel, G. Flad, S. Thirot, Eur. J. Org. Chem. 1763, (2002).
- 18. G. Hopkins, J.P. Jonak, H.J. Minnemeyer, H. Tieckelmann, J. Org. Chem. 32, 4040, (1967).
- 19. D. L. Comins, G. Jianhua, Tetrahedron Lett. 35, 2819, (1994).
- 20. M. C. Torhan, N. P. Peet, J. D. Williams, Tetrahedron Letters 54, 3926, (2013)
- 21. M. Hadjeri, A.-M. Mariotte, A. Boumendjel, Chem. Pharm. Bull. 49 (10) 1352, (2001).
- 22. P. Depreux, G. Bethegnies, Synth. Commun. 23(8), 1189 (1993).
- 23 M. Hedayatullah, J. Heterocycl. Chem. 18, 339 (1981).
 - 24. T. Yamada, M. Ohki, Synthesis 631 (1981).
 - 25. C. G. Dave, K. J. Patel, J. Heterocycl Chem., 51, 943 (2014).
 - 26. Z.X. Guo, A.N. Cammidge, A. McKillop, D.C. Horwell, Tetrahedron Lett. 40, 6999, (1999).