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a b s t r a c t

The inorganic–organic hybrid material {[MoO3(bipy)][MoO3(H2O)]}n (bipy = 2,20-bipyridine) can be used
as a water-tolerant catalyst for the oxidation of secondary amines under mild conditions using either
urea hydrogen peroxide (UHP) or tert-butylhydroperoxide (TBHP) as the oxidant. Under optimized reac-
tion conditions (2 mol % catalyst, 3–4 equiv TBHP, CH2Cl2 as the solvent, 40 �C), the corresponding nitro-
nes were obtained with different efficiency depending on the nature of the cyclic or acyclic amine used.

� 2011 Elsevier Ltd. All rights reserved.
The chemistry of MoVI is very prominent in industrial processes,
as proven by the large variety of reactions (oxidation, ammoxida-
tion, metathesis, and hydrocarbon dehydrogenation) which are
carried out over MoVI catalysts.1 Since the chemistry of MoVI is lar-
gely dominated by complexes containing the cis-dioxomolybde-
num(VI) structural unit, a very large number of these complexes
have been investigated as catalysts.2

Recently, some of us have been developing soft chemistry routes
for the synthesis of new molybdenum(VI) oxide inorganic–organic
hybrid materials.3 The exploration of metal oxide-based hybrid
materials is of contemporary interest, not only because of their hier-
archical structures but also because of their potentially fascinating
properties in the fields of catalysis, sorption, electrical conductivity,
magnetism, and optics. Many inorganic–organic hybrids combining
an optimal trade-off of properties are synthesized by nature using
soft synthetic conditions.4 Therefore, the synthesis of inorganic–
organic hybrids by soft chemistry methods is very appealing
because it paves the way to the vast field of biological applications.
ll rights reserved.
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Last, but not least, soft chemistry routes possess added value in the
context of sustainable chemistry.
Figure 1. Schematic representation of the structure of 1 containing two one-
dimensional polymers formulated as [MoO3(bipy)]n and [MoO3(H2O)]n, which are
interconnected by O–H���O hydrogen bonds (not shown).
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Table 1
Optimization of the reaction conditions

Ph N
H

Ph Ph N Ph

O

cat. 1

oxidant

32

Entry Solvent Mol % 1 Oxidanta Temp (�C) Time (h) Convb (%) Yieldc (%)

1 MeOH 2 UHP 25 8 94 65
2 MeOH 3 UHP 20 8 96 67
3 MeOH 2 UHP 40 6 96 50
4 CH3CN 2 UHP 40 3 98 46
5 CH2Cl2 2 UHP 25 15 98 54
6 CH2Cl2 2 TBHP 20 720 >98 61
7 CH2Cl2 2 TBHP 40 5 97 64

a UHP 3 mol equiv; TBHP 4 mol equiv.
b Conversion based on recovered amine after flash chromatography.
c Isolated yield.
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Our work unraveled that hybrid molybdenum oxide-based
materials bearing organonitrogen ligands, like [MoO3(bipy)]n and
{[MoO3(bipy)][MoO3(H2O)]}n (1) (Fig. 1), can be synthesized by soft
chemistry routes and are potentially interesting catalysts for the
epoxidation of nonfunctionalized olefins.3,5,6 Several other related
monometallic molybdenum(VI) oxide based hybrid materials con-
taining organonitrogen ligands directly coordinated to the oxide
substructure have been described,7 but the catalytic potential of
these systems has yet to be fully explored. In the present work
we have focused on further investigating the catalytic potential
of the hybrid material 1 by applying it in the direct oxidation of
secondary amines to nitrones.

Nitrones are highly versatile 1,3-dipoles capable of reacting re-
gio- and stereospecifically with a variety of dipolarophiles generat-
ing up to three stereocentres in a single reaction step.8 This
reaction allows the access to the important class of isoxazolidine
compounds. Nitrones are also of interest because they undergo
nucleophilic additions to afford N,N-disubstituted hydroxylamines.
One of the reasons for the success of the synthetic application of
nitrones is that, contrary to the majority of other 1,3-dipoles, most
nitrones are stable compounds that do not require in situ forma-
tion. Their utility is well demonstrated in the total synthesis of sev-
eral natural products including alkaloids, aza-, and amino sugars,
in which they are key synthons. Last, but not least, nitrones are
used as spin trap agents.9

Catalytic oxidation of secondary amines with active oxygen com-
pounds is considered as one of the most attractive methods for the
generation of nitrones.10,11 Quantitative oxidation of secondary
amines occurs upon treatment with MVI polyperoxo complexes
(PPC) of general formula [C5H5N(CH2)15CH3]3{PO4[MO(O2)2]4}
(M@Mo, W).12 However, to the best of our knowledge only one cat-
alytic system making use of molybdenum was described in the liter-
ature for the oxidation of secondary amines to nitrones. Na2MoO4

was successfully used for the direct oxidation of secondary amines
in the presence of the oxidant UHP (urea hydrogen peroxide).10a

Dibenzylamine (2) was used as the model substrate to study
the best conditions for the oxidation of secondary amines to
nitrones (Table 1). UHP and tert-butylhydroperoxide (TBHP) were
used as stoichiometric cooxidants together with compound 1,
used in 1–3 mol %. Use of 2 mol % of 1 resulted in the best
compromise between reaction time and total yield.

The reactions usually reached a conversion of 96–98% based on
the recovery of amine (2–4%) that is observed in a protonated form
(deshielded signals of protons adjacent to the nitrogen atom:
Dd = 0.12–0.70 ppm) in the 1H NMR spectrum of the final crude
reaction mixture. Likely, the protonated amine is protected from
oxidation by catalyst 1. Attempts to run the reaction in the pres-
ence of a base (Na2CO3, K2CO3, NaOAc) led to incomplete oxidation
and formation of sizable amounts of N-benzylbenzaldimine be-
sides nitrone 3. The cooxidants, used in moderate excess (3–4 mo-
l equiv), gave similar results. UHP requires polar solvents, such as
MeOH or CH3CN, for its higher content of water. In less polar
CH2Cl2 longer reaction times are necessary that result in a higher
decomposition of the nitrone. TBHP can be used with similar effi-
ciency in CH2Cl2 or CHCl3. Under the same conditions, temperature
affects the reaction rate (Table 1, entries 1 and 6 vs 3 and 7, respec-
tively). Small amounts of benzaldehyde, the product of hydrolysis
of the nitrone, can be observed in the crude reaction mixture, par-
ticularly when UHP is used as the cooxidant. Reactions with TBHP
in CH2Cl2 are preferred, because these can provide more anhydrous
conditions. To test the scope of catalyst 1 in this reaction the oxi-
dation was extended to other acyclic and cyclic secondary amines,
using both cooxidants (procedure A and B)13 whose results are re-
ported in Table 2.

Oxidation of less activated dibutylamine 4 occurred with similar
efficiency as dibenzylamine 2 only with TBHP as the cooxidant (Ta-
ble 2, entries 1 and 2). The same is valid for non-symmetrical ethylb-
enzylamine 6 (Table 2, entries 3 and 4). With TBHP it gave a mixture
of regioisomeric nitrones 7a and 7b in 4:1 ratio with the major one
deriving from the more favorable oxidation of benzylic methylene
(entry 3, Table 2). The catalyst appears to be slightly more selective
than other oxidizing systems with the same amine 6.14

In the oxidation of acyclic amines only the Z nitrones were iso-
lated, and the structures assigned on the basis of their NMR signals
and comparison with the literature data. In the case of dibutyl-
amine 4 the formation of E-5 isomer (CD3OD, d CH@N–O
7.19 ppm, t, J = 5.9 Hz) was observed in reactions carried out in
the NMR tube. Complete isomerization to the Z-5 isomer (CD3OD,
d CH@N–O 6.66 ppm, t, J = 5.5 Hz) occurred during the work-up.
In the case of the other acyclic nitrones 3 and 7, the possible forma-
tion of the corresponding kinetic E-isomers15 could not be con-
firmed by the analysis of NMR spectra of the reaction mixture,
because of overlapping aromatic proton signals.

Oxidation of tetrahydroisoquinoline (8) affords the expected nit-
rone 9 besides the aromatized isoquinoline N-oxide 10 with both
cooxidants (entries 5 and 6, Table 2). Running the reaction in MeOH
with UHP (Procedure B) as the cooxidant at rt gives a higher ratio of 9
versus 10, likely for the milder reaction conditions. Oxidations of
other cyclic amines gave erratic results. 2,6-Dimethylpiperidine 11
(entry 7, Table 2) gave the best results in the oxidation, even on a



Table 2
Oxidation of acyclic and cyclic amines to nitrones by TBHP (procedure A) or UHP (procedure B) catalyzed by 1a

Entry Amine Procedure Time (h) Convb (%) Products Yieldsc (%)

1
2

N
H

4 

A (TBHP)d

B (UHP)
5
6

90
87

N
O
5

54
20

3
4

N
H

6

A (TBHP)d

B (UHP)
7
5

79
—

N
O

7a

7a 7b
43 10
23 0

N
O

7b 

5
6 NH

8 

A (TBHP)e

B (UHP)
8
7

>98
91 N

O
9

9 10
57 28
63 13

N
O

10

7 N
H
11

A (TBHP)d 5 >98 N
O
12

83

8
9

N
H
13

A (TBHP)f

B (UHP)
48
8

>98
—

N
O
14

45

NH
RO

RO
N

RO

RO
O

60

10 15 R = TBDMS A (TBHP)d 17 93 16 R = TBDMS 29
11 17 R = t-Bu A (TBHP)d 4 74 18 R = t-Bu 27

a Reaction conditions: Procedure A; Procedure B (see Note 13).
b Conversion based on recovered amine after flash chromatography.
c Yields of nitrones after purification by flash chromatography.
d 3.2 mol equiv TBHP (in two portions).
e 4 mol equiv TBHP.
f 3 mol equiv TBHP.
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larger scale (4.7 mmol). In contrast, 2-methylpiperidine 13 (entries
8 and 9, Table 2) gave nitrone 14 in moderate yield (45%) with TBHP
as the cooxidant, and only slightly better with UHP in MeOH. No
trace of the regioisomeric nitrone is observed. The silyloxy or tert-
butoxy substituted pyrrolidines 15 and 17 afforded the correspond-
ing nitrones 16 and 18, respectively, in poor yield (29-27%), probably
due to O-deprotection under the oxidation.

In summary, this work has successfully extended the catalytic
application of the hybrid material 1 to the oxidation of secondary
amines to nitrones under mild reaction conditions. As noted above,
the catalytic potential of molybdenum oxide/organonitrogen hy-
brid materials has hardly been addressed, and in the case of 1
was limited to the epoxidation of olefins. The present findings
should stimulate further studies of these materials as catalysts in
organic synthesis.
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