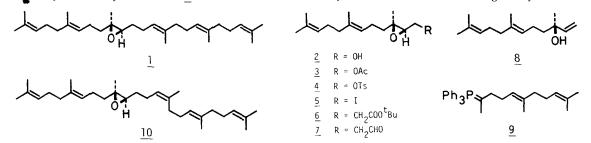
Tetrahedron Letters,Vol.23,No.51,pp 5413-5414,1982 0040-4039/82/515413-02\$03.00/0 Printed in Creat Britain ©1982 Pergamon Press Ltd.


(10<u>R</u>, 11<u>R</u>)-(+)-SQUALENE-10, 11-EPOXIDE: ISOLATION FROM <u>LAURENCIA</u> <u>OKAMURAI</u> AND THE ASYMMETRIC SYNTHESIS

Hideo Kigoshi, Makoto Ojika, Yoshikazu Shizuri, Haruki Niwa, and Kiyoyuki Yamada^{*} Department of Chémistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464 Japan

<u>Abstract</u>. From a red alga <u>Laurencia</u> <u>okamurai</u>, (10<u>R</u>, 11<u>R</u>)-(+)-squalene-10, 11-epoxide <u>1</u> was isolated and its asymmetric synthesis has been achieved starting from trans. trans-farnesol.

As part of our chemical studies on marine algae, we have examined the constituents of a red alga <u>Laurencia okamurai</u> collected off the coast of Goza, Mie Prefecture, Japan in July and isolated an epoxy compound, (10R, 11R)-(+)-squalene-10, 11-epoxide <u>1</u>, whose structural proof and asymmetric synthesis are described in the present paper. Isolation of <u>1</u> would be interesting in view of its possible biogenetic significance in connection with the structurally related squalene-2, 3-epoxide,¹ the important role of which in the biosynthesis of terpenoids is well-known. Natural occurrence of squalene-10, 11epoxide was first reported in 1976 by Katayama and Marumo,² who isolated it as a fungal metabolite from the mycelia of <u>Sclerotinia fructicola</u>; stereochemistry of the metabolite was unsettled. Very recently Fattorusso and coworkers isolated (10S, 11S)-(-)-squalene-10, 11epoxide from a marine green alga <u>Caulerpa prolifera</u>.³ It is worthy of note that the (10S, 11S)-enantiomer of squalene-10, 11-epoxide was isolated from the green alga,³ while the (10R, 11R)-enantiomer 1 was obtained from the red alga.

The ethyl acetate-soluble fraction of acetone extracts of fresh <u>L</u>. <u>okamurai</u> was chromatographed on silica gel with hexane-benzene, benzene, and benzene-ethyl acetate, successively. The fraction eluted with benzene was further separated by preparative TLC on silica gel with hexane-ether (85:15), giving an epoxy compound $\underline{1}$, 4,5 $[\alpha]_D^{25}$ +10.4° (<u>c</u> 0.80, CHCl₃) (0.0003%) as colorless oil. Based on the spectral (¹H-NMR, ¹³C-NMR, and MS) properties, the epoxide <u>1</u> was deduced to be squalene-10, 11-epoxide. This inference was verified by comparison of the spectral data of the epoxide <u>1</u> with those of (±)-squalene-10, 11-epoxide prepared from squalene with <u>m</u>-chloroperbenzoic acid according to the procedure of Katayama and Marumo.² Asymmetric synthesis of 1 was executed as follows, which established unambiguously the

absolute stereochemistry of the epoxy moiety in $\underline{1}$. Sharpless asymmetric epoxidation reaction 6 of <u>trans</u>, <u>trans</u>-farnesol using (-)-diethyl tartrate [<u>t</u>-Bu00H/(-)-DET/Ti(<u>i</u>-PrO)₄, CH₂Cl₂, -50 ~ -45 °C, 1 h] afforded (2R, 3R)-epoxyfarnesol <u>2</u>, ⁴, ⁷ [α]_D²⁶ +6.53° (<u>c</u> 4.21, CHCl₃) (colorless oil, 84% after purification^{8a}). ¹H-NMR spectral analysis of the derived acetate <u>3</u>^{7,9} in the presence of a chiral shift reagent Eu(hfc), gave an enantiomeric excess (ee) of 96%. Based on the observations reported by Sharpless, ⁶ absolute stereochemistry of 2R and 3R was assigned to the product 2 as depicted, which was confirmed by converting the epoxide 2 to R-(-)nerolidol $\underline{8}^{10}$ by the following sequence: the epoxide 2 was transformed (TsCl, Py, 0 °C, 5 h) into the tosylate $\underline{4}, \frac{4,7}{D}$ [α]²⁷_D +21.4° (<u>c</u> 5.67, CHCl₃) (colorless oil, 96% after purification^{8b}) and the tosylate $\frac{4}{D}$ on reaction with sodium iodide (acetone, room temp., 10 h) yielded the iodide $5^{4,7}$ [α]_D²²-27.2° (<u>c</u> 4.45, CHCl₃) (colorless oil, ~100% after purification^{8d}), reduction of which with zinc (AcOH-ether, room temp., 1 h) afforded R-(-)-nerolidol $\frac{8}{20}$ [a] -17.9° (<u>c</u> 1.15, EtOH) [1it.¹⁰ $[\alpha]_{D}^{22}$ +15.1° for S-(+)-nerolidol] (colorless oil, 97% after purification 8c). Bishomologation of the C₁₅-skeleton of the iodide <u>5</u> was carried out by reacting the iodide 5 with t-butyl lithioacetate¹¹ (THF-HMPA, -78 °C, 1 h) giving the ester $\frac{6}{2}^{4,7}$ [a] $\frac{22}{D}$ +8.44 (<u>c</u> 3.78, CHCl₃) (colorless oil, 84% after purification^{8d}). Reduction of the ester <u>6</u> (DIBAL, toluene, $-110 \sim -100$ °C, 2 h) yielded the aldehyde $\underline{7}^{4,7}$ $[\alpha]_{D}^{21}$ +11.3° (<u>c</u> 4.41, CHCl₃) (colorless oil, 81% after purification¹²). The Wittig reaction of the aldehyde $\underline{7}$ with the phosphorane 9^{13} (THF/-78 °C, 40 min. \rightarrow room temp., 5 h) afforded a 4:3 mixture ¹⁴ of 1 and its isomer $\underline{10}$, which was separated by chromatography on silica gel impregnated with silver nitrate with benzene-ethyl acetate (20:1 \rightarrow 10:1) yielding $\underline{1}$, 4,5 $[\alpha]_D^{22}$ +10.7° (<u>c</u> 1.19, CHC1₃) (colorless oil, 24%) and the isomer $\underline{10}^4$ (colorless oil, 16%), respectively. The spectral (IR, 1 H-NMR, 13 C-NMR, MS) properties including the specific rotation as well as chromatographic behaviors of synthetic 1 were in accord with those of natural 1.

Financial support from the Ministry of Education, Science, and Culture Acknowledgment. (Grant-in-Aid for Scientific Research No. 447025) is gratefully acknowledged.

REFERENCES AND NOTES

- 1. (a) E. J. Corey, W. E. Russey, and P. R. O. de Montellano, J. Am. Chem. Soc., 88, 4750 (1966); (b) E. E. van Tamelen, J. D. Willet, R. B. Clayton, and K. E. Lord, J. Am. Chem. Soc., 88, 4752 (1966). 2. M. Katayama and S. Marumo, <u>Tetrahedron Lett</u>., 1293 (1976). 3. L. De Napoli, E. Fattorusso, S. Magno, and L. Mayol, <u>Phytochemistry</u>, 21, 782 (1982).

- 4. Satisfactory exact mass spectral data were obtained.
- 5. <u>1</u>: IR (CC14) 1660 cm⁻¹; ¹H-NMR (CC14, 90 MHz) & 1.18 (3H, s), 1.50 (4H, m), 1.58 5. 1: IR (CC14) 1660 cm⁻¹; ¹H-NMR (CC14, 90 MHz) & 1.18 (3H, s), 1.50 (4H, m), 1.58 (3H x 5, s), 1.65 (3H x 2, s), 1.98 (16H, m), 2.53 (1H, t, J = 6.0 Hz), 5.04 (5H, m); ¹3C-NMR (C6D₆, 22.5 MHz) & 16.1 (q, Me x 3), 16.9 (q), 17.8 (Me x 2, q), 24.2 (t), 25.4 (t), 25.9 (q, Me x 2), 27.0 (t), 27.1 (t), 27.2 (t), 29.5 (t), 39.3 (t), 40.1 (t, CH₂ x 3), 59.9 (s), 62.7 (d), 124.0 (d), 124.4 (d), 124.6 (d), 124.8 (d, CH x 2), 131.2 (s, C x 2), 135.1 (s), 135.2 (s), 135.7 (s); MS (m/z) 426 (M⁺), 411, 408.
 6. T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 102, 5974 (1980).
 7. The IR, ¹H-NMR, and mass spectral data for this compound were in accord with the structure assimated
- assigned.
- 8. By chromatography on silica gel with hexane-EtOAc: (a) 4:1; (b) 6:1; (c) 10:1; (d) 20:1.
- 9. Obtained on acetylation of 2 with Ac20 and pyridine (room temp., 1 h).
- P. Vlad and M. Součěk, <u>Collect. Czech. Chem. Commun.</u>, 27, 1726 (1962).
 (a) M. W. Rathke and A. Lindert, <u>J. Am. Chem. Soc.</u>, 93, 2318 (1971); (b) W. Bos and H. J. J. Pabon, <u>Rec. Trav. Chim. Pays-Bas</u>, 99, 141 (1980).
 By chromatography on silica gel with hexane-ether (3:1).

- R. M. Coates and W. H. Robinson, J. Am. Chem. Soc., 93, 1785 (1971).
 The ratio of two isomers, <u>1</u> and <u>10</u> was determined by HPLC analysis (Develosil ODS, MeCN).

(Received in Japan 14 August 1982)