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ABSTRACT: A catalytic hydroxyl-directed anti-

dihydroxylation of allylic and homoallylic alcohols has been 

developed. This operationally simple method was successfully 

applied to the direct anti-mono-dihydroxylation of allylic alcohols 

containing at least one distal olefinic unit. Under the catalysis of 

commercially available MoO2(acac)2, an array of hydroxylated 

dienes were successfully converted into various 1,2,3-triols using 

hydrogen peroxide as an environmentally benign oxidant under 

aerobic conditions, notably, in complete regioselectivities and in 

the most cases in diastereospecific pathway.  

Key Words: Dihydroxylation • Molybdenum • Regioselective • 1,2,3-

Triols • Allylic Alcohols 

As a cornerstone reaction in the organic synthesis, dihydroxyla-

tion of alkenes provides a simple and direct access to versatile 

vicinal diols, which are highly useful building blocks for synthesis 

of naturally occurring products and synthetic biologically active 

compounds.1 Therefore, tremendous progress has been achieved 

in the field of syn-dihydroxylation of alkenes based on both tran-

sition-metal catalysis and metal-free procedures.2,3 In contrast, 

anti-dihydroxylation of olefins has received significantly less 

attention and finds constrained applications in organic synthesis, 

mainly due to one or more of the following reasons including low 

step-ecomony, unavailability of the catalysts in the commercial 

market and the lack of regioselectivity in the case of structurally 

complex dienes and polyenes as substrates. Generally, anti-

dihydroxylation can be achieved in indirect or direct pathway.4,5 

In the former case a number of strategies have been developed 

including hydrolysis of isolated epoxides,4b-i saponification of 

esterified 1,2-diols obtained through the ring-opening of epox-

ides4j-m or dioxonium ion intermediates4n-p with carboxylic acids 

as nucleophiles, as well as the reduction of α-hydroperoxyl hy-

droxamic acid esters4q. However, the low step economy and the 

use of large excess of corrosive acid or alkali for the hydrolysis or 

saponification step limit their synthetic applications. Therefore, 

the development of efficient direct anti-dihydroxylation of olefins 

in one single step avoiding isolation of epoxides and the saponifi-

cation step is highly desirable and its challenge lies in finding an 

appropriate catalyst capable of mediating both the epoxidation 

and the following hydrolysis. It has been reported that sulfonic 

acids5a,b, some transition metal oxides5c-f, iodide5g and selenium 

compounds5h,i are able to catalyzed direct anti-dihydroxylation of 

olefins. Furthermore, combination of monooxygenase and epox-

ide hydrolase as catalysts can also convert various alkenes to 

vicinal diols without isolation of the oxiranes intermediates.5j-l 

However, all these methods focus on simple olefins containing 

only one C-C double bond as substrates.  

Dihydroxylation of allylic alcohols furnishes 1,2,3-triols as direct 

products, which are not only key units in natural products but also 

useful synthetic building blocks.6 Consequently, our target is 

development of an operationally simple, catalytic, hydroxyl-

directed, proximal selective anti-dihydroxylation of allylic alco-

hols bearing at least one distal olefinic unit to validate its utility in 

the late stage functionalization of complex molecules (Scheme 1). 

\  

Scheme 1. Mo-catalyzed regioselective anti-dihydroxylation of 

allylic alcohols. 

Unlike the well-developed transition metal-catalyzed epoxidation 

of polyunsaturated allylic alcohols favoring the proximal oxida-

tion,7 investigations of dihydroxylations of these substrates are 

scarce. It is known that Os-catalyzed syn-dihydroxylation of 

geraniol and its analogues usually occurs at the electron richer 

remote olefinic unit, preferentially.1a,2e Donohoe et al. reported the 

only exception that proximal syn-dihydroxylation of allylic alco-

hols could be achieved using stoichiometric OsO4 with TMEDA 

as ligand at −78 ︒C.2g However, the level of regiocontrol is 

significantly dependent on the geometry of the proximal C-C 

double bond. Furthermore, ruthenium salts tend to promote the 

oxidative cyclization instead of dihydroxylation in the cases of 

1,5- and 1,6-dienes.8 Therefore, our initial experiments focused on 

the examination of an assortment of well-established systems with 

readily available catalysts and oxidants for the dihydroxylation of 

(2E,6Z)-nona-2,6-dien-1-ol (1a).9  However, no dihydroxylation 

system tested was able to deliver the 1,2,3-triol with high regio-

control. Thus it is necessary to develop a new catalytic system in 

order to achieve highly proximal-selective dihydroxylation of 

allylic alcohols.  

For optimization of the reaction conditions for the proximal dihy-

droxylation of allylic alcohols, we used geraniol (1b) as standard 

substrate, since it is commercially available (Table 1). Initially, 

we screened a series of metal salts as catalysts for this reaction. In 

the cases of NbCl5 and TaCl5 no reaction occurred (entries 1 and 

2), while in the case of VO(acac)2 only the formation of epoxide 
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was observed (entry 3). When MoO2(acac)2 and WO2Cl2 were 

utilized as the catalysts, the desired product (±)-2b was formed 

mixed with a certain amount of hydroperoxide (±)-2b-1, which 

could be converted into the triol (±)-2b simply through addition of 

diphenyl sulfide to the reaction mixture. After reduction the prod-

uct (±)-2b was obtained in regio- and diastereomerically pure 

form, albeit with low yields (entries 4 and 5). Encouraged by 

these results, several Mo- and W-salts were tested for this reaction. 

However, no better result could be obtained (entries 6-10). Next, a 

brief solvent screening was undertaken employing MoO2(acac)2 

as catalyst (entries 11-15) and the best outcome was achieved 

when the reaction was conducted in MeCN (entry 15).10 Further-

more, both raising and lowering the reaction temperature resulted 

in decrease of the reaction efficiency (entries 16 and 17). 

After establishing the best reaction conditions we started to evalu-

ate the substrate spectrum of this Mo-catalyzed regioselective 

dihydroxylation. As demonstrated in Table 2, this method is 

amendable to various allylic alcohols bearing at least one distal 

olefinic unit. To our delight, in all cases the regioselectivities 

were completely proximal independent of the distance between 

two olefins and their substitution patterns, furnishing the corre-

sponding 1,2,3-triols 2a-q as the sole regioisomers in moderate to 

good yields. Remarkably, all the reactions employing achiral 

dienes 1a-i and 1l-o afforded the corresponding products (±)-2a-i 

and (±)-2l-o in complete anti-selectivities. In the case of D-

perillyl alcohol (1p) as precursor the product 2p was also obtained 

with an excellent level of diastereocontrol. Remarkably, the estab-

lished method was also applicable to a structurally complex ster-

oid derivative 1q bearing two olefinic units furnishing the proxi-

mally dihydroxylated product 2q in complete regio- and high 

diastereoselectivity. 

Table 1. Metal salts, solvents and temperature screening for the 

regioselective anti-dihydroxylation of geraniol
 a 

 

Entry Metal Solvent T (︒C) Yield [%][b]  

1 NbCl5 DCM 20 0 

2 TaCl5 DCM 20 0 

3 VO(acac)2 DCM 20 0 
4 WO2Cl2

 DCM 20 17 

5 MoO2(acac)2
 DCM 20 28 

6 WO3 DCM 20 0 
7 W(OEt)6 DCM 20 9 

8 MoCl5 DCM 20 traces 

9 MoO2Cl2 DCM 20 traces 
10 Mo2(OAc)4 DCM 20 12 

11 MoO2(acac)2 THF 20 0 

12 MoO2(acac)2 EtOAc 20 15 
13 MoO2(acac)2 NO2Me 20 8 

14 MoO2(acac)2 H2O 20 traces 

15 MoO2(acac)2 MeCN 20 83 (78)[c] 
16 MoO2(acac)2 MeCN 30 70 

17 MoO2(acac)2 MeCN 0 traces 

a Unless otherwise specified, reactions were performed on a 0.5 mmol 
scale of geraniol (1b) using 2.5 equiv 35 % H2O2, and 10 mol% metal salts 

at 20 ︒C in 2.0 mL solvent. b Yields of (±)-2b based on the 1H NMR-

spectroscopy using mesitylene as internal standard. c Yield of the isolated 

product (±)-2b after flash chromatography.  

Furthermore, simple allylic alcohols 1r-dd were also employed as 

substrates for this Mo-catalyzed anti-dihydroxylation reaction 

(Table 3). In general, the products 2r-dd were provided in moder-

ate to excellent yields and complete anti-selectivities in most 

cases. All the reactions using achiral aliphatic allylic alcohols as 

precursors yielded the products (±)-2r-t in complete diastereose-

lectivities, while a diastereomeric mixture was obtained in the 

case of cinnamic alcohol 1x as the starting material. In the cases 

of secondary allylic alcohols 1y-aa the level of diastereocontrol 

depends on the substrate structure. Notably, in the case of enynes 

1w and 1z as substrates the products were also furnished in mod-

erately good yields indicating that alkyne-moiety is also tolerable 

under this condition. Moreover, this method is not only limited to 

allylic alcohols, since homoallylic alcohols 1bb-dd are also suita-

ble substrates furnishing the products (±)-2bb-dd in good to 

excellent yields.  

Concerning the reactions mechanism we believe that this Mo-

catalyzed anti-dihydroxylation reaction contains two stages, 

which are the initial epoxidation and the followed in situ hydroly-

sis and perhydrolysis, because formation of a slight amount of 

epoxides could be observed under the standard conditions and the 

direct use of epoxy allylic alcohols as substrates under these 

conditions can also afford the ring-opened products smoothly.12 

Control experiments revealed that both steps are catalyzed by 

MoO2(acac)2, since no reactions occurred in the absence of the 

catalyst. Furthermore, the enantioenriched epoxide (2R,3R)-2b-2 

prepared from geraniol via Sharpless epoxidation7a was subjected 

to the Mo-catalysis providing the triol (2R,3S)-2b after reduction 

with the identical enantiomeric excess as its precursor indicating 

that a C-3 selective stereospecific ring opening of the epoxide 

intermediate occurs in the second stage of this Mo-catalyzed anti-

dihydroxylation reaction (Scheme 2). 

Me

Me Me

OH

OH

OH

Me

Me Me

OH
O

1. MoO2(acac)2 (10 mol%)

35 % H2O2 (2.5 equiv),

MeCN, 20 °C, 4 h

2. Ph2S (3 equiv)

84 % ee

(2R,3S)-2b

91 %

84 % ee
>99 % es

(2R,3R)-2b-2

2

3

 

Scheme 2. Mo-catalyzed ring opening of (2R,3R)-epoxy geraniol  

Presumably, the proximal selectivity of this Mo-catalyzed reac-

tion is attributed to the directing effect of the hydroxyl-moiety of 

the alkene substrates through interaction with the metal center. To 

confirm it, control experiments employing O-acetylated geraniol, 

2-methyl 2-butene and (E)-hex-4-en-1-ol were carried out under 

the same reaction conditions for geraniol (Scheme 3). In all these 

cases only traces of dihydroxylated products were formed. Fur-

thermore, the relative configurations of the triol 2q, 2z and (±)-

2aa also reveal that the initial epoxidation occurs on the same face 

of the alkene as the hydroxyl group based on the premise that the 

following ring opening proceeds on the C-3 position. All the 

results mentioned above indicate that both the presence of OH 

moiety as anchoring group and its distance to the olefinic unit are 

crucial for the efficiency of this Mo-catalyzed anti-

dihydroxylation reaction. 
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Table 2. Mo-catalyzed regioselective anti-dihydroxylation of allylic alcohols containing at least one distal olefinic unit.
11,a-c

   

 

Olefin Product 
Yield 

(%) 

 
Olefin Product 

Yield 

(%) 

  

65 

 

  

62 

  

78 

(74
d
) 

 

1k

OH

  

53 

 

Me

Me Me

(±)-2c

OH

OH

OH
 

78 

 

 
 

75 

  

79 

 

  

49 

  

75 

 

  

36 

  

60 

 

 
 

54 

  

64 

 

  

76, 

dr>99:1 

  

78 

 

Me

Me

i-Pr

Et

HO

Me

1q

H

H

H

H

 
 

62, 

dr=95:5 

  

83 
 

   

a Unless otherwise specified, reactions were performed on a 0.5 mmol scale of allylic alcohols 1 using 2.5 equiv 35 % H2O2, and 10 mol% MoO2(acac)2 in 

MeCN. b Unless otherwise specified, the products were obtained with complete regioselectivities and diastereoselectivities, which were determined by 1H-
NMR-spectroscopy. c Yields of the isolated products after flash chromatography. d Reaction performed on a 1 g scale; e Reactions performed in 1,4-dioxane 

using 20 mol% MoO2(acac)2 and 5 equiv 35 % H2O2. 
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Table 3. Mo-catalyzed anti-dihydroxylation of simple allylic and homoallylic alcohols.
11,a-c

   

 

Olefin Product 
Yield 

(%) 

 
Olefin Product 

Yield 

(%) 

  

97 

 

 

n-Pr OH

(±)-2y

OH

OH

Me

 

94, 

dr=67:33 

 
 

93 

 

 

HO

OH
OH

Me OH

2zd

H

H

H

H

 

56, 

dr>99:1 

  

88 

 

OH

1aa   

80, 

dr=94:6 

  

99 

 

 
 

87 

  

89 

 

  

88 

1w

Et

OH

  

51 

 

  

71 

 
 

94, 

dr=88:12 

 

   

a Unless otherwise specified, reactions were performed on a 0.5 mmol scale of allylic alcohols 1 using 2.5 equiv. 35 % H2O2, and 10 mol% MoO2(acac)2 at 

30 ︒C in MeCN. b Unless otherwise specified, the products were obtained with complete regioselectivities and diastereoselectivities, which were deter-

mined by 1H-NMR-spectroscopy. c Yields of the isolated products after flash chromatography; d Reactions performed in 1,4-dioxane using 20 mol% 

MoO2(acac)2, and 5 equiv H2O2. 

 

 

Scheme 3. Control experiments for the Mo-catalyzed anti-

dihydroxylation 

Relying on the experimental results obtained and the known fact 

that hydroxyl-group favors formation of hydrogen bond instead of 

coordination with molybdenum (VI) complex in the stoichio-

metric epoxidation of allylic alcohols13, we proposed a plausible 

catalytic cycle for this Mo-catalyzed anti-dihydroxylation 

(Scheme 4). Initially, MoO2(acac)2 is oxidized by H2O2 to an 

oxoperoxidomolybdenum (VI) complex, the peroxido group of 

which can form a hydrogen bond with the allylic alcohol, acceler-

ating the oxygen transfer to the proximal C-C double bond. Next, 

the resulting MoO2(acac)2 serves as a Lewis acid for activation of 

the generated epoxy allylic alcohol. Due to the directing effect of 

the hydroxyl moiety the SN-2-type nucleophilic ring opening by 

H2O2 or water proceeds on the C-3 position, preferentially.14 
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Finally, the products are released and MoO2(acac)2 is regenerated 

for the next catalytic cycle.   

 

Scheme 4. Plausible catalytic cycle of the Mo-catalyzed anti-

dihydroxylation  

We have also studied the asymmetric version of this Mo-catalyzed 

anti-dihydroxylation reaction and a series of privileged chiral 

ligands were tested for this Mo-catalyzed reaction.15 The prelimi-

nary investigations demonstrate that a good enantiomeric excess 

could be achieved for the anti-dihydroxylation of geraniol by 

employing an optically pure bishydroxamic acid 3 as chiral ligand 

(Scheme 5). Further optimizations to improve both the efficiency 

and the asymmetric induction are ongoing in our laboratory. 

 

Scheme 5. Mo-bishydroxamic acid catalyzed asymmetric direct 

anti-dihydroxylation of geraniol 

In summary, we developed a highly anti-selective dihydroxylation 

of allylic and homoallylic alcohols catalyzed by commercially 

available MoO2(acac)2 under aerobic reaction conditions using 

environmentally benign hydrogen peroxide as oxidant. This re-

ported method avoids the isolation of t epoxide intermediates and 

thus provides a straightforward access to vicinal diols from alkene 

precursors with anti-selectivity, which is complementary to the 

well-established syn-dihydroxylation. Due to the directing effect 

of the OH-moiety, complete proximal selectivities of this dihy-

droxylation can be achieved for various allylic alcohols bearing at 

least one distal olefinic unit. Further investigations into the 

asymmetric version of this reaction are in progress and will be 

published in due course.  
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