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Abstract – Various aromatic and heterocyclic aldehydes were easily converted to 

respective nitriles with the combination of trimethylphenylammonium tribromide 

and ammonium acetate in good yields at room temperature. 

Nitriles have been known to be effective for the synthetic intermediates of amides, amines, esters2 and for 

the preparation of bioactive heterocycles such as imidazoles, tetrazoles, thiazoles.3 Aromatic nitriles from 

aryl diazonium salts were synthesized by Sandmeyer reaction and other alkyl nitriles were also prepared 

by the nucleophilic reaction of alkyl halides with inorganic cyanides. 

As those methods using a stoichiometric amounts of inorganic cyanides were harmful and hazardous, 

there have been reported alternative methods such as methylarenes with NBS,4a aryl halides with 

CuSCN,4b or Zn (CN)2,
4c and alkyl halides with TBACN.4d Further, convenient transformation of primary 

alcohols,5a,5b amines,5b,5c and oxiranes5d  to nitriles was also reported respectively. 

Moreover transformations of aldehydes to nitriles have been studied independently.6 The methods for 

producing nitriles via aldehyde derivatives such as aldoximes,7 aldehyde N-tosylimines,8a aldehyde 

trimethylhydrazonium iodides,8b were also investigated. The Fe3O4-catalyzed one-pot three-component 

synthesis of -aminonitriles from aldehydes, amines, and TMSCN was reported.9 The simple and 

economical synthesis of nitriles from aldehydes with hydroxylamine hydrochloride catalyzed by 

KF/Al2O3 was explored.10 Therefore, there is still considerable interest in investigating an alternative 

synthesis of various nitriles from aldehydes. 

On the other hand, the methods for the oxidation of secondary alcohols to ketones,11a the chemoselective 

conversion of aromatic epoxide to 1,3-dioxane derivatives,11b and the transformation of alkoxyfurans to 

3(2H)-furanones11c,11d were achieved with commercially available trimethylphenylammonium tribromide 

(phenyltrimethylammonium tribromide, PTAB). The regioselective one-pot synthesis of 

6-bromobenzothiazoles form arylaldehydes was also achieved with PTAB-SbBr3.
12 The oxidation of 



 

 

carbohydrates to keto-sugars was recently developed with PTAB-K2CO3 in the presence of organotin 

catalyst.13 Thus, the use of PTAB was expected to be attractive in oxidative organic syntheses. Zhu and 

Cai reported the synthesis of nitrile with tetrabutylammonium tribromide in aqueous ammonia.14 

Therefore, it was seemed to be significant in finding a new oxidative procedure for preparation of nitriles 

from aldehydes with PTAB. Recently preparation of aromatic nitriles from aldehydes with 

pentylpridinium tribromide in aqueous NH4OAc was also reported by Bagherzade, Zali, and Sokrolahi.15 

As we have also presented preliminary alternative reports for conversion of aldehydes to nitriles, we 

would like to report on the results of our studies concerning the one-pot synthesis of heterocyclic and 

aromatic nitriles from aldehydes with PTAB-NH4OAc.1  

At first, the reaction of 2-pyridinecarbaldehyde (1), chosen as a representative heterocyclic aldehyde for 

this study, was carried out with various molar ratios of PTAB and NH4OAc over 1 for obtaining 

2-pyridinenitrile (2). The results are summarized in Table 1. At 2.0 molar ratios of PTAB and 10.0 molar 

ratios of NH4OAc over 1 in CH2Cl2 at room temperature, 2-pyridinenitrile (2) was afforded in good yield 

(run 1). To examine the optimum amounts of PTAB for the synthesis of nitrile 2, the reaction of 1 with 

0.0-1.5 molar ratios of PTAB was carried out in the presence of 10.0 molar ratios of NH4OAc over 1. At 

1.5 molar ratios of PTAB, the yield of 2 was 92%, accompanied by small amounts of recovered 1 (run 2). 

A mixture of nitrile 2 (84%) and recovered 1 (10%) was afforded at 1.0 molar ratio of PTAB over 1 (run 

3). A complex mixture was given without PTAB under the same reaction conditions (run 4). 

Consequently, there is need to use at least more than 1.5 molar equivalents of PTAB over 1 for obtaining 

nitrile 2 in moderate yield.  

To clarify the optimum amounts of NH4OAc for conversion of 1 to nitrile 2, the reaction of 1 with 1.0-8.0 

molar ratios of NH4OAc was also carried out in the presence of 2.0 molar ratios of PTAB over 1 

respectively. At 8.0 molar ratios of NH4OAc over 1, the reaction of 1 with PTAB gave nitrile 2 in 95% 

yield(run 5). At 4.0-6.0 molar ratios of NH4OAc over 1, nitrile 2 was afforded in 84-87% yields, 

accompanied by 8-9% recovered 1 (runs 6, 7). The yields of 2 were not fully satisfactory, accompanied 

by recovered 1 (29-48%) at 1.0-2.0 molar ratios of NH4OAc in the presence of 2.0 molar ratios of PTAB 

over 1 (runs 8, 9). The satisfactory yield of nitrile 2 was not observed at 1.0 molar ratio of PTAB and 6.0 

molar ratio of NH4OAc (run 10). In the present experiments, there is need to use at least 6.0-10.0 

equivalents of NH4OAc in the presence of 2.0 equivalents of PTAB over 1 for producing nitriles 2 

quantitatively. Further, the reaction of 1 with ammonium oxalate or NH4Cl instead of NH4OAc was 

carried out to examine the effect of NH4OAc in this method. At 6.0 molar ratios of ammonium oxalate in 

the presence of 2.0 molar ratios of PTAB, the yield of nitrile 2 was not fully satisfactory accompanied by 

recovered 1 (run 11).  At 10.0 molar ratios of NH4Cl, aldehyde 1 was recovered unchanged under the 

same reaction conditions (run 12). Accordingly, this one-pot synthesis of 2-pyridinenitrile 2 from 



 

 

 

2-pyridinecarbaldehyde 1 was suggested to rest on the complemental function of PTAB and NH4OAc.  

To test the suitable solvents in this method, the conversion of 1 to 2 was carried out with PTAB-NH4OAc 

in various solvents such as MeOH, MeCN, hexane, benzene, H2O under the same reaction conditions. In 

MeOH, MeCN, hexane, 1 was converted to 2 in good yields respectively (runs 13-15). A mixture of 

nitrile 2 (48%) and recovered aldehyde 1 (47%) was afforded in benzene (run 16). H2O was also found to 

be appropriate solvent for conversion of 1 to 2 (run 17). Consequently, it was found that the preparation 

of nitrile 2 from aldehyde 1 by PTAB-NH4OAc was not rest on solvents excepting for benzene.  

To examine the effect of ammonium tribromides, the conversion of 1 to 2 was carried out with 

pyridinium hydrobromide perbromide(PHPB) instead of PTAB in the presence of NH4OAc in various 

solvents. Nitrile 2 was respectively given with PHPB in 92-94% yields in CH2Cl2, MeOH, MeCN, hexane, 

H2O under the same reaction conditions (runs 18-22). Accordingly, the combination of ammonium 

tribromides, PTAB or PHPB and NH4OAc was confirmed to be alternative convenient one-pot procedure 

for conversion of 2-pyridinecarbaldehyde 1 to 2-pyridinenitrile 2. 
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To elucidate the limitations for this conversion of heterocyclic aldehydes to nitriles, the reaction of 

various heterocyclic aldehydes was examined with PTAB-NH4OAc. The results of the reaction of 

heterocyclic aldehydes are shown in Table 2. The reaction of 3-pyridinecarbaldehyde (3), 

4-pyridinecarbaldehyde (5), and 6-methyl-2-pyridinecarbaldehyde (7) took place to give corresponding 

nitriles (4), (6), (8) respectively (runs 2-4). 2,6-Pyridinedicarbaldehyde (9) was similarly converted to 

dinitrile(10) in good yield (run 5). 

The reaction of quinolinecarbaldehydes, 2-formylthiazole was also carried out with PTAB-NH4OAc to 

clarify the chemoselectivity for conversion of heterocyclic aldehydes to nitriles. The reaction of 2-, 3-, 4-, 

and 8-quinolinecarbaldehydes (11), (13), (15), (17) also took place to give corresponding nitriles (12), 

(14), (16), (18) in good yields (runs 6-9). 2-Formylthiazole (19) was converted to nitrile (20)(run 10).

A variety of heterocyclic nitriles were found to be easily prepared from respective aldehydes with 

PTAB-NH4OAc. 

To test the application for other aldehydes by this PTAB-NH4OAc system, the reaction of various 

aromatic aldehydes was carried out under the same reaction conditions. The results of aromatic aldehydes 

are shown in Table 3. Benzaldehyde (21) was converted to benzonitrile (22) (run 1). The reaction of o-, 

m-, and p-tolualdehydes (23), (25), (27) took place to give corresponding nitriles (24), (26), (28) in 

64-73% yields, accompanied by respective recovered aldehydes (runs 2-4). o-, and p-Nitrobenzaldehydes  
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Table 2.   Reaction of   aldehydes  and  NH4OAc with PTAB a
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(29) (31) were converted to nitriles (30), (32) (runs 5,6). o-, m-, and p-Chlorobenzaldehydes (33), (35), 

(37) were converted to corresponding nitriles (34), (36), (38). o-, m-, and p-Bromobenzaldehydes (39), 

(41), (43) were also converted to respective nitriles (40), (42), (44) in good yields (runs 7-12). Further, 

2-phenylpropionaldehyde (45) and 3-phenylpropionaldehyde (47) were similarly converted to nitriles (46), 

(48) (runs 13, 14). Thus, the conversion of aromatic aldehydes to nitriles with PTAB-NH4OAc was not 

rested on the substituents of aromatic ring. 

The PTAB-NH4OAc system was confirmed to be useful for conversion of heterocyclic and aromatic 

aldehydes to corresponding nitriles in various solvents.1 

Since aromatic and heterocyclic nitriles are of particular interest as key intermediates in the syntheses of 

biologically active compounds by amidation and ester exchange reactions, the combination of ammonium 

tribromides, PTAB or PHPB and NH4OAc provides a significant alternative method for the synthesis of 

various nitriles from aldehydes.1,16,17 
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Table 3.   Reaction of   aldehydes  and  NH4OAc with PTAB a
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a S: 0.5 mmol; PTAB: 1.0 mmol; NH4OAc: 5.0 mmol;  MeCN: 6.0 mL; Temp: rt. b Recovered 23: 22%. 
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