COMPOSÉS ANTITUMORAUX DU GROUPE DE LA VINBLASTINE: NOUVELLE MÉTHODE DE PRÉPARATION

R. Z. Andriamialisoa, N. Langlois, Y. Langlois et P. Potier

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190-Gif-sur-Yvette, France

(Received in UK 13 November 1979)

Abstract—7'-Chloro-indolenines from several dimeric alkaloids of vinblastine type are useful intermediates in the preparation of antitumor derivatives belonging to seco-5',6' and nor-5' series.

La fragmentation de la liaison C_{16} – C_{21} de la catharanthine 1, induite par réaction de Polonovski modifiée, et le couplage avec la vindoline 2 ont permis d'obtenir pour la première fois¹ l'anhydrovinblastine 3 (Schéma 1). Cet alcaloide a, depuis, été extrait de Catharanthus roseus² où sa présence n'avait jamais été observée à cause de son instabilité.^{3,4} Ce composé est vraisemblablement le précurseur de la plupart des

alcaloides bis-indoliques isolés de *C. roseus* et, en particulier, de ceux présentant une activité antitumorale tels que vinblastine **4**,⁵ vincristine **5**, leurosine **6**,⁶ et leurosidine **7**.⁴

Pour accéder à ces derniers composés, de nombreux efforts ont porté sur la fonctionallisation du cycle tétrahydropyridinique de l'anhydrovinblastine 3. Au cours de ces recherches qui ont abouti, dans notre

$$\begin{array}{c} R_2 \\ \frac{4}{5} \quad R_1 = CH_3 \,, \, R_2 = OH \,\,, \, R_3 = C_2H_5 \,, R_4 = H \\ \frac{5}{6} \quad R_1 = CH_3 \,, \, R_2 = OH \,\,, \, R_3 = C_2H_5 \,, R_4 = H \\ \frac{6}{6} \quad R_1 = CH_3 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = -O - \\ \frac{7}{2} \quad R_1 = CH_3 \,, \, R_2 = C_2H_5 \,, \, R_3 = OH \,\,, \, R_4 = H \\ \frac{20}{25} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{26}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = R_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = A_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = A_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = A_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = A_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = A_4 = A - O - \\ \frac{31}{31} \quad R_1 = CH_0 \,, \, R_2 = C_2H_5 \,, \, R_3 = A_4 = A - O - \\$$

laboratoire, à l'hémisynthèse des alcaloides 4 à 7, une fragmentation de la liaison C_5 . C_6 de l'anhydrovinblastine 3 a été mise en évidence et a permis de préparer des analogues de la vinblastine 4, appartenant à une nouvelle classe structurale: dérivés de la série seco-5'-6' (A)⁸ ou dérivés nor-5' (B).

D'autres voies susceptibles de conduire à ces nouveaux composés antitumoraux ont été étudiées. 10

On sait que la réaction en position 7, de certains alcaloïdes indoliques avec un électrophile X^+ (formation d'indolénines de type C) a été très utilisée pour introduire divers nucléophiles (Nu) en α du noyau indolique (Schéma 2).^{11–13}

Dans le cas de la chloro-7 indolénine de l'ibogaine 8, Buchi a montré que l'introduction d'un ion cyanure en C_{16} et la rupture de la chaîne tryptaminique avec formation du dérivé 9 étaient compétitives. ¹³

Ce type de fragmentation a été appliqué à la chloro-7 indolénine de la catharanthine 10:¹⁴

L'action d'une solution aqueuse d'acide chlorhydrique (HCl $10^{\circ}_{\circ o}$, 110° C) ne conduit pas à des intermédiaires seco-5,6 de type 12 mais à la Δ^5 catharanthine 11 (Rdt quantitatif). La structure 11attribuée à ce nouveau dérivé résulte de l'analyse spectrale (cf Partie Expérimentale) et de l'identification de ses produits d'hydrogénation à la catharanthine 1 et à la dihydro-15,20S catharanthine 13; la formation de la Δ^5 -catharanthine 11 pourrait s'expliquer suivant le Schéma 3.

L'utilisation de sels d'argent, tel que le tétrafluoroborate en milieu THF aqueux permet la rupture de la liaison C_5 - C_6 et la préparation, après hydrolyse des intermédiaires de type 12, de la nor-5 catharanthine 14 (Schéma 4).

Toutefois, la liaison C_{16} C_{21} du N_b -oxyde correspondant 15 ne se fragmente pas dans les conditions de la réaction de Polonovski modifiée et les dérivés seco-5',6' (A) ou nor-5' (B) des alcaloides antitumoraux 3 à 7 ne sont pas directement accessibles par cette voie. 10

Cependant, le même type de fragmentation appliqué à l'anhydrovinblastine 3 elle-même et à ses dérivés permet d'obtenir les composés recherchés. Ainsi, les chloro-7' indolénines 16 et 17 de l'anhydrovinblastine 3 et de la leurosine 6 fournissent (AgBF₄; THF-eau, 50°C) avec de très bons rendements les dérivés 18 et 19 de la série nor-5'. Le composé 19 est plus accessible par cette voie que par l'application de la réaction de Polonovski modifiée au N_h-oxyde de leurosine 20.8.9 En effet, celle-ci conduit, après hydrolyse, principalement, à un composé présentant les mêmes caractéristiques spectrales que l'hydroxy-21' leurosine 21,15 et identique à l'un des constituants des extraits alcaloidiques de Catharanthus ovalis Mgf;16 selon nos observations, le composé 21 se transforme très facilement en un mélange du lactame correspondant 22 (oxo-21' leurosine $^{15\overline{.1}7}$) et de leurosine $\overline{6}$, ce qui explique la présence de ces deux composés parmi les produits de la réaction.

La formation des chloro-7' indolénines 16 et 17, préparées en général par action du N-chlorobenzotriazole sur les alcaloides 3 et 6, s'accompagne de substitution en position 12; ainsi, à partir de 3, la formation de la dichloro-12,7' indolénine 23, précurseur du dérivé 24 peut devenir prépondérante selon les conditions opératoires utilisées. La position 12 des "dimères" du type de la vincristine 5, comportant un groupe N_a-formyle dans leur partie

dihydro-indolique, n'est plus nucleophile et seules les chloro-7' indolénines correspondantes sont obtenues. Les chloro-7' indolénines 27 et 28 de l'anhydrovincristine 25¹⁸ et de la leuroformine 26, ¹⁹ conduisent aux composés nor-5' 29 et 30, tandis que la chloro-7' indolénine 32 de la N_a-desméthyl N_a-formyl déoxy-20' leurosidine 31 fournit un composé auquel est attribuée la structure 33. Ceci s'accorde avec les résultats obtenus par ailleurs: ⁸ la recyclisation du composé 33 est probablement empêchée par l'encombrement stérique de la chaîne éthyle en C_{20'}, alors que dans le cas de la leurosine 6, la présence de l'époxyde modifie la conformation du cycle pipéridinique.

Tous les nouveaux composés bis-indoliques préparés par cette voie ont été soumis aux tests d'inhibition de la polymérisation de la tubuline, ²⁰ ce qui permet d'approfondir l'étude des relations entre

structure et activité inhibitrice de ces dérivés du groupe de la vinblastine.

PARTIE EXPÉRIMENTALE

Les points de fusion ont été pris sur bloc Kofler et sont corrigés. Les pouvoirs rotatoires ont été mesurés au moyen du polarimètre électronique Perkin-Elmer 141 MC. Les spectres IR (v cm $^{-1}$, CHCl $_3$, sauf indication contraire) ont été enregistrés sur spectromètre Perkin-Elmer 257, les spectres UV (EtOH saufindication contraire; λ_{\max} nm (ϵ)) sur appareil Bausch et Lomb Spectronic 505 et les courbes de DC [λ_{\max} nm ($\Delta\epsilon$)] sur Dichrographe Roussel-Jouan. Les spectres de RMN (sauf mention contraire dans CDCl $_3$, avec le TMS comme indicateur interne $\delta=0$ ppm) ont été effectués pour le 1 H sur appareils Varian T60 IEF 240 21 ou 400 22 MHz (les constantes de couplage sont exprimées en Hz, les lettres s, d, t, et m désignent respectivement les singulets.

doublets, triplets et multiplets), et pour le ¹³C sur appareil Brüker HX90E. Les spectres de masse ont été enregistrés sur spectrographe AEI type MS50. Les chromatographies sur couches épaisses (CCE) ont été effectuées avec le Kieselgel HF 254 + 366 Merck.

Δ5-Catharanthine 11

La chloro-7 indolénine de la catharanthine 10^{14} (10 mg, 0,027 mM) dans une solution aqueuse d'HCl à 10% (1,5 cm³) maintenue sous atmosphère inerte (argon) est portée à 110 C pendant 10 min. Le mélange est ensuite ramené à température ambiante puis alcalinisé par NH₄OH et extrait par du chloroforme. Après traitements habituels (séchage sur Na₂SO₄, élimination du solvant sous pression réduite) de la phase organique, on obtient 9,2 mg de Δ^5 -catharanthine 11.

Hydrogénation de la \(\Delta^5\)-catharanthine 11

La Δ^5 -catharanthine 11 (10 mg) en solution dans de l'éthanol absolu (3 cm³) est hydrogénée en présence de PtO₂ à température et pression ordinaires. Après 48 h d'agitation, le catalyseur est éliminé par filtration. L'évaporation du solvant sous pression réduite donne un mélange de deux produits sépares par CCE (éluant CHCl₃: CH₃OH = 98:2). On obtient 2 mg de catharanthine 1 (R_f comparés) et 8 mg de dihydro-15,20S-catharanthine 13 (spectres IR et RMN du 1 H et R_f comparés à ceux d'un échantillon de référence $^{2.3}$).

Nor-5 catharanthine 14

(a) A une solution de chloro-7 indolénine de la catharanthine 10 (6 mg) dans 2 cm³ de mélange THF· $H_3O = 1:1$, on ajoute 4 mg d'AgB F_4 . Le mélange maintenu sous argon est agité pendant 15 hr à 50°C, puis dilué par une solution aqueuse de Na_2CO_3 à $10°_o$ et extrait par de l'éther. Le résidu obtenu, après traitements habituels, fournit, après CCE (CHCl₃:CH₃OH = 99:1, cuve saturée par NH₃)1.5 mg de nor-5 catharanthine 14 identique à un échantillon préparé par l'intermédiaire de la réaction de Polonovski. 10

(b) La chloro-7 indolénine de la catharanthine 10 (10 mg) est traitée comme décrit au paragraphe précédent. Après extraction par de l'éther, le résidu est dissous dans 2 cm³ de solution aqueuse d'HCl à 10 % puis chauffé sous argon à 120 pendant 1 hr. Le milieu réactionnel refroidi est alcalinisé par NH₄OH et extrait par du chloroforme. Une CCE (CHCl₃, cuve saturée par NH₃) fournit la nor-5 catharanthine 14 (6 mg, 67 %), identique à un échantillon de référence.

Chloro-7' indolénine de l'anhydrovinblastine 16

A une solution de 330 mg d'anhydrovinblastine 3 (0,42 mM) dans 10 cm³ de chlorure de méthylène anhydre, maintenue sous atmosphère d'argon, on ajoute à 0 et sous agitation une solution de 76 mg de N-chlorobenzotriazole (0,49 mM) dans 20 cm³ du même solvant. Après 30 min, le solvant est élimine sous pression réduite à basse température (<15°). La chloro-7′ indolénine de l'anhydrovinblastine 16 (72 mg. Rdt 21 °°a) est séparée, par CCE (CHCl₃: MeOH

= 95:5), de l'anhydrovinblastine de départ (140 mg, 42 %) qui peut être recyclée et des autres sous-produits.

La chloro-7' indolénine 16 présente les caractéristiques suivantes: IR: 3460, 2920, 1745, 1620, 1600, 1505, 1465, 1435. UV: 215 (61000), 255 (21000), 313 (12250); milieu acide: 216, 260, 302 (indolénine-dihydroindole), DC: 215 (-70) 230 (+35,8), 258 (-2,0), 285 (+6,9), 311 (-4,1), 345 (+15,1). SM pics à m/e. 792, 748, 703, 691, 612, 598 (100° ₀), 538, 522, 480, 450, 331, 329, 282, 222, 200, 165, 152, 144, 136, 135, 122, 121, 107. RMN du 1 H (240 MHz): 7,58 (s large, 1 H, attribué à C_9 H): 7,3 7,1 (aromatiques): 5,91 (s, 1 H, C_{12} H). 5,80 (dd, 1 H, $J_{14,15}$ = 9 et $J_{3,14}$ = 3, C_{14} H); 5,43 (s, 1 H, C_{17} H); 5,04 (m, 1 H, C_{17} H); 5,05 (d, 1 H, J = 9, C_{16} H); 3,78-3,71 et 3,52 (3s, 9 H, C_{11} — OC H₃, C_{16} — CO₂CH₃ et C_{16} — CO₂CH₃): 2,62 (s, 3 H, N_3 — CH₃); 2,03 (s, 3 H, COCH₃); 1,00 (t, 3 H, J ~ 7,5. attribué à C_{18} H) et -0.28 (attribué à C_{18} H)

Chloro-7' indolénine de la leurosine 17

A une solution de 100 mg de leurosine **6** (0,124 mM) dans $10\,\mathrm{cm}^3$ de chlorure de méthylène anhydre, maintenue sous argon à 0, on ajoute 23 mg de N-chlorobenzotriazole (0,15 mM). Après 1 hr 45 min d'agitation à 0 et évaporation du solvant sous pression réduite à une température inférieure à 20 C, les produits sont séparés par CCE (AcCEt:EtOH 3:1). On isole ainsi 62 mg (Rdt 57",) de chloro-7' indolénine de la leurosine 17 et 30 mg de leurosine **6**. Chloro-7' indolénine de la leurosine 17: IR: 3000, 1750. UV: 220, 248, 300. DC: 245(+), 295(-), 325(+), milieu acide: 210(-), 225(+), 270(-), 295(+). SM pics à m/e: 844, 843, 842, 841, 807, 684, 682, 670, 648, 602, 494, 352 (100 °,), 310, 308, 283, 154, 135, 122, 121.

Nor-5' anhydrovinblastine 18

Une solution de 9,0 mg d'AgBF₄ (0,046 mM) dans 7 cm³ d'un mélange THF: $H_2O=1:1$ est ajoutée à 33 mg de chloro-7' indolénine de l'anhydrovinblastine 16 maintenue, sous atmosphère d'argon. Le mélange est agité pendant 4 hr à 50 C puis refroidi, concentré sous pression réduite à 25 30 C, dilué par $10\,\mathrm{cm}^3$ d'une solution aqueuse de Na_2CO_3 à $10\,^{\circ}$, et extrait par du chloroforme. Les phases organiques sons séchées sur Na_2SO_4 et filtrées. L'élimination du solvant sous pression réduite permet d'obtenir quantitativement 30 mg de nor-5' anhydrovinblastine 18 identique à un échantillon préparé selon le procéde decrit.

Nor-5' leurosine 19

A une solution de chloro-7' indolémine de leurosine $17~(40~mg,~4.75~10^{-5}~M)$ dans $4~cm^3$ d'un mélange de THF. $H_2O = 1:1$, on ajoute 10 mg d'AgBF₄ et on agite le mélange obtenu à 50 °C pendant 3 hr. Après alcalinisation par une solution aqueuse de Na₂CO₃ à 10% et extraction par de l'éther, on obtient la nor-5' leurosine (35 mg, Rdt 93 %) identique à un échantillon préparé par application de la réaction de Polonovski modifiée au N_b.-oxyde de leurosine 20 (voir plus lpin): $[\alpha]_D^{20} = 32$ (C = 0.5, CHCl₃). IR: 3450, 2950, 1750; UV. 217, 270, 285 (ép.), 293 (ép.), 311. DC: 215(-), 220(+), 255(+), 280(-), 310(+). SM pics à m/e: 810, 796, 794, 761, 750, 656, 649, 637, 633, 598 (100%), 538, 522, 496, 480, 469, 450, 449, 448, 369, 367, 340, 331, 329, 282, 240, 238, 222, 210, 208, 188, 174, 165, 154, 152, 135, 122, 121, 107. RMN du ¹H (240 MHz); 8,39 (s, 1 H, N_a, H); 7,61 (1 H, aromatique); 7,13 (3 H aromatiques); 6,36 (s, 1 H, C₉ H); aromanduc), 7,13 (311 aromanducs), 0,30 (8, 711, C_0 17), 6,08 (8, 1 H, C_{12} –H); 5,83 (dd, 1 H, J_{14-15} = 10 et J_{3-14} = 4, C_{14} H); 5,37 (8, 1 H, C_{17} H); 5,28 (d, 1 H, J_{14-15} = 10, C_{15} -H); 4,33 et 4,19 (2d, $J_{6/4-6/6}$ = 13, C_6 H); 3,84, 3,79 et 3,72 (3s, 9 H, C_{11} OCH₃, C_{16} CO₂CH₃ et C_{16} CO₂CH₃); 2,71 (s, 3 H, N_a –CH₃); 2,09 (s, 3 H, COCH₃); 1,08 et 0,67 (2t, 4 H) = 7 (2t, 4 H) $6 \, \text{H}, \, \text{J} = 7, \, \text{C}_{18} \, \text{-H et C}_{18} \, \text{-H}).$

Réaction de Polonovski modifiée appliquée au $N_{\rm b}$ -oxyde de leurosine 20. Préparation de 19, 21 et 22

A une solution de leurosine 6 (150 mg, 0,186 mmole) dans du chlorure de méthylène anhydre (5 cm³) maintenue sous

agitation à 0°, on ajoute l'acide m-chloroperbenzoique (39 mg, 0,22 mmole). Après 5 min, on ajoute 5 cm³ de solution aqueuse de Na_2CO_3 à 10% et le milieu réactionnel est extrait par du chloroforme. Après traitements habituels, on isole 152 mg de N_b -oxyde de leurosine (ou pleurosine²4) **20** qui est purific par CCE (CHCl₃:CH₃OH = 90.10) pour donner 130 mg de pleurosine **20** pure.

A une solution de pleurosine 20 (130 mg, 0,158 mmole) dans du CH₂Cl₂ anhydre maintenue sous atmosphère d'argon à 0, on ajoute, sous agitation, 0,13 cm3 d'anhydride trifluoroacétique. Après 1 h 30 à la même température, le solvant et l'excès de réactif sont éliminés sous pression réduite. A une solution du résidu dans 4 cm³ de THF, on ajoute 0,045 cm³ d'eau. Le milieu réactionnel est agité 1 h à température ambiante avant d'être extrait par du chloroforme. Les constituants du mélange obtenu après habituels sont séparés traitements par (CHCl, CH₃OH 90-10). On obtient par ordre de polarité croissante: 8 mg d'oxo-21' leurosine 22; 11 mg d'hydroxy-21' leurosine 21, 6 mg de nor-5' leurosine 19, 20 mg de leurosine 6 et 70 mg de produits polaires qui sont alcalinisés par NH₄OH et extraits par du chloroforme. Le résidu fournit encore après CCE (CHCl₃: CH₃OH 96: 4): 16 mg d'oxo-21' leurosine 22, 16 mg d'hydroxy-21' leurosine 21 et 5 mg de leurosine 6; les dérivés 21 et 22 ont été identifiés à des composés isolés antérieurement des extraits de C. ovalis Mgf. 16

21: F inst: 246 C. IR: 3460, 2950, 1735, 1615, 1505, 1460, 1435. UV: 218 (44400), 263 (14400), 290 (12100) et 298 (11500). DC ($\Delta \omega$): 215 (-14,4), 226 (+11,8), 260 (+5,5), 305 (+2,5). SMpicså m/e (" ω): absence de pic M à m/e 824; 822; 808, 4010 (33.1), $C_{4\alpha}H_{5\alpha}N_4O_{\gamma}$ calc.: 808,4047; 807,3951 (23,0), $C_{4\alpha}H_{53}N_4O_{\gamma}$ calc.: 807,3969; 806,3898 (48,4). C_{4\alpha}H₅₄N₄O_{\gamma} calc.: 806,3891; 788,3787 (7,3), $C_{4\alpha}H_{52}N_4O_{\gamma}$ calc.: 806,3891; 788,3787 (7,3), $C_{4\alpha}H_{52}N_4O_{\gamma}$ calc.: 757,3601; 729; 701; 669,3023 (60,4), $C_{3\alpha}H_{43}N_3O_{\alpha}$ calc.: 669,3050; 601; 521; 493; 434; 432; 379; 282; 272; 247; 222; 188, 144; 135, 122; 121; 107. RMN ¹H (240 MHz); 8,01 (s large, 1 H, N_a -H); 7,50 (d, 1 H aromatique); 7,14 (3 H aromatiques); 6.63 (s, 1 H, C_{α}) H); 6,13 (s, 1 H, C_{12} -H); 5,87 (dd, 1 H, $J_{14,15}$ = 10 ct $J_{3,14}$ = 4, C_{14} ·H); 5,48 (s, 1 H, C_{17} -H); 5,32 (d, 1 H, $J_{14,15}$ = 10 ct $J_{3,14}$ = 4, C_{14} ·H); 5,48 (s, 1 H, C_{17} -H); 5,32 (d, 1 H, $J_{14,15}$ = 10, C J_{3} -H; 4,70 (1 H, N_b -CH(OH), couplage avec OH disparait par deuteriation); 3,83; 3,81 et 3,62 (3s, 9 H, C_{11} OCH₃, C_{16} CO₂CH₃ et C_{16} -CO₂CH₃); 3,75 (s, 1 H, C_2 -H); 2,73 (s, 3 H, N_a -CH₃); 2,11 (s, 3 H, OCOCH₃); 0,98 et 0,83 (2t, 6 H, J = 7, C_{18} -H et C_{18} -H).

Ce composé présente les mêmes R_j en CCM dans 7 systèmes d'éluants différents que l'hydroxy-21' leurosine obtenue par oxydation de la leurosine 6 par MnO_2 selon le mode opératoire décrit. ¹⁵ Ses caractéristiques spectrales et R_j sont aussi identiques à celles d'un composé minoritaire obtenu par oxydation de la leurosine 6 par l'iode en milieu alcalin selon le mode opératoire décrit. ²⁵

Compose $21 \rightarrow 22 + 6$. Une solution du compose 21 (108 mg) dans 1.5 cm³ de CDCl₃ est laissée pendant une nuit sous argon à une température ≤ 30 (une solution dans CHCl₃ à reflux 15 à 30 min donne le même résultat). L'analyse en CCM de la solution indique la présence de trois produits qui sont séparés par CCE (CHCl₃ CH₃OH 97 3); on obtient par ordre de polarité décroissante: 36 mg de leurosine 6; 26 mg de composé 21 de départ; 46 mg de lactame 22.

22: F inst.: 242 C.1R: 3480, 2960, 1740, 1650 (amide), 1615, 1505, 1460, 1430, 930. UV. 218, 264, 288, 298. DC: 210(-), 224(+), 257(+), 303(+). SM pics à m/e: 822,3839, $C_{46}H_{54}N_4O_{10}$; 806, 793, 764, 763,3694, $C_{44}H_{51}N_4O_{8}$; 747: 703; 687; 675; 663,3540 $C_{40}H_{47}N_4O_4$; 647: 645; 603; 582; 555,2701, $C_{33}H_{37}N_3O_4$; 523; 496: 379; 355; 353; 341: 282,1335 (100° $_o$) $C_{14}H_{20}NO_5$; 272: 258: 240; 222: 214; 210: 200; 188: 171: 144,0807 $C_{10}H_{10}N$, 135,1063 (100° $_o$) $C_{4}H_{13}N$; 122,0993, $C_{8}H_{12}N$, 121, 107. RMN ^{1}H (400 MHz) 8,01 (s large, 1 H, N_a H); 7,51 (d, 1 H aromatique), 7,13 (3 H aromatiques), 6,61 (s, 1 H, C_{4} , H): 6,15 (s, 1 H, C_{1} , H): 5,86 (dd, 1 H, $J_{14,15}$ = 10 et $J_{3,14}$ = 4, C_{14} H): 5,48 (s, 1 H,

 C_{17} ··H): 5,32 (d, 1 H.J_{14,15} = 10, C_{15} ··H; 4,74 (dd, 1 H, J = 13 et 5, N_b ··- C_{5} ··-H); 3,84, 3,81 et 3,61 (3 s, 9 H, C_{11} -OCH₃, C_{16} -CO₂CH₃ et C_{16} ·· CO₂CH₃); 3,79 (s, 1 H, C_{2} -H); 2,74 (s, 3 H, N_a CH₃); 2,12 (s, 3 H, OCOCH₃); 0,99 et 0,84 (2t, 6 H, C_{18} ·· H et C_{18} ··H).

RMN 13 C (attribution par analogie avec les valeurs de la leurosine 6^{26}): 172,9 (CQOCH $_3$): 171,0 et 170,0 (OCQCH $_3$ et CQOCH $_3$): 167,3 (CQ-N $_6$): 157,3 (C $_1$): 152,7 (C $_1$ 3): 134,1 (C $_1$ 3): 130,6 (C $_2$ -): 129,3 (C $_1$ 5): 128,4 (C $_8$ -): 123,8 (C $_1$ 4): 122,8 (C $_8$ + C $_9$ ou C $_1$ 6-): 122,2 (C $_1$ 6-) ou C $_9$ 9: 119,5 (C $_1$ 6-): 118,8 (C $_1$ 7-): 117,6 (C $_9$ 7): 114,7 (C $_7$ 7): 109,9 (C $_1$ 2-): 93,8 (C $_1$ 2): 82,6 (C $_2$ 7): 78,8 (C $_1$ 6-): 75,5 (C $_1$ 7): 65,3 (C $_2$ 1): 60,8 (C $_1$ 6-): 58,8 (C $_2$ 6-): 55,2 (C $_1$ 10CH $_3$ 7): 54,5 (C $_1$ 6-): 52,4 (C $_7$ 7): 51,7 et 51.4 (CCO2CH $_3$ 7): 49,7 (C $_3$ et C $_3$ 7): 45,7 (44,0 et 43,4 (CH $_2$ 7), 76,7 et C $_1$ 6 et C $_9$ 6; 41,9 (C $_2$ 6): 37,3 (N $_4$ 7-CH $_3$ 7): 31,3 (C $_1$ 4-): 30,0 (C $_1$ 9): 28,8 (C $_1$ 7): 24,7 (C $_1$ 9-): 22,8 (C $_6$ 7): 20,2 (OCOCH $_3$ 7): 8,1 (C $_1$ 8-) et 7.6 (C $_1$ 8).

Ce composé présente des caractéristiques spectrales très voisines de celles de l'oxo-21' leurosine isolee de C, roseus par Cordell et al., 17 qui en ont déterminé la structure 17 et de celles du lactame obtenu en oxydant la leurosine $\mathbf{6}$ par MnO_2 . 15 Mais ses caractéristiques spectrales et ses R_f en CCM dans sept systèmes d'éluants différents sont étalement identiques à celles du composé majoritaire formé par oxydation de la leurosine $\mathbf{6}$ par l'iode en milieu alcalin, et dècrit comme étant l'oxo-3 leurosine. 25

Dichloro-12,7' indolénine de l'anhydrovinblastine 23

A une solution de 50 mg d'anhydrovinblastine 3 (0,063 mM) dans 1.7 cm³ de chlorure de méthylène anhydre maintenue sous argon à 0 C, on ajoute une solution de 10,7 mg de N-chlorobenzotriazole (0,07 mM) dans 1,5 cm³ de chlorure de méthylène, puis 11,3 mg du même réactif. Après 45 min d'agitation, le milieu réactionnel est traité comme décrit pour la préparation de 16. La dichloro-12,7′ indolénine de l'anhydrovinblastine 23 est purifiée (CHCl₃: MeOH = 93:7) Rdt 45 %.

IR: 3480, 2920, 1750, 1615, 1465. UV: 223 (35500), 255 (10700), 310 (7200); milicu acide: 226, 262, 305 (indolénine-dihydro-indole). DC: 233 (+11.5), 259 (-2.2), 300 (+4.5), 325 (+5.1). SM pics à $m_f e$. 826, 782, 752, 737, 632, 591, 572, 556, 514, 484, 365, 363, 282, 222, 182, 167, 152, 144, 136, 135 (100 $\frac{9}{100}$), 122, 121, 120, 107, 106. RMN du 1 H (240 MHz): 7.53 (1 H attribué à C_9 -H): 7.34 et 7.25 (aromatiques): 5.77 (dd, 1 H, J_{14-15} = 10 et J_{3+4} = 4, C_{14} H): 5.41 (s, 1 H, C_{17} H): 5.29 (m, 1 H, C_{15} -H): 5.08 (d, 1 H, J_{14-15} = 10, C_{15} H): 394, 3.78 et 3.53 (3s. 9 H, C_{11} OCH₃, C_{16} CO₂CH₃ et C_{16} -CO₂CH₃): 2.86 (s. 3 H, N_a CH₃): 2.03 (s. 3 H, COCH₃): 1,01 (t. 3 H, J = 7, attribué à C_{18} -H) et -0.17 (attribué à C_{18} -H).

Préparation de la chloro-12 nor-5' anhydrovinblastine 24

A une solution de 22 mg de chloro-12 chloro-7' indolénine 23 $(2.5 \cdot 10^{-5} \text{ M})$ dans 1.2 cm^3 d'un mélange THF: H_2O = 1:1, on ajoute sous argon et à 0 C une solution de 6 mg d'AgBF₄ (3.10 ⁵ M) dans 2,8 cm³ du même mélange. Le milieu réactionnel est agité à 40-45 C pendant 17 hr puis traité comme décrit précédemment pour obtenir 19,6 mg de chloro-12 nor-5' anhydrovinblastine **24** (rdt 95°₀): $[\alpha]_D^1$ $+ 22 \text{ (CHCl}_3, C = 0.59). IR: 3480, 3460, 2920, 1750, 1610,$ 1462. UV: 221 (46000), 272 (17000), 293 (10500) et 308 (4000). DC: 216(-46.2), 231(+29.1), 245(+11.5), 262(+25.7), 293(-1,1), 306 (+3,4), 320 (+3,4). SM pics à me: 828, 826, 782, 768, 725, 646, 632, 565, 282, 222, 152, 144, 136 (100 °₀), 135, 123, 122, 121, 107 RMN du ¹H: 8,47 (s, 1 H, N₂ H); 7,69 (1 H arom. indolique); 7,14 (3 H arom. indoliques); 6,36 (s, 1 H. aroin: indonque), 7_1 14 (3 H aroin: indonques), 6_2 0 (s. 1 H, C_{14} H); 5,89 (dd, 1 H, $J_{14 15}$ = 10 et $J_{3 14} \sim 4$, C_{14} H); 5,70 (1 H, C_{15} H); 5,29 (s. 1 H, C_{17} H), 5,27 (1 H, C_{15} H); 4,28 (dd, 2 H, J_{64} 6b = 14, C_{6} H); 3,95, 3,78 et 3,75 (3s, 9 H, C_{11} –OCH₃. C_{16} CO₂CH₃ et C_{16} CO₂CH₃); 3,70 (s attribué à C_{2} H); 2,97 (s, 3 H, N_{3} CH₃); 2,09 (s, 3 H, COCH₃); 1,06 (t, 3 H, J_{18719} = 6,5, C_{18} H) et 0,70 (t, 3 H, J_{18719} = 6,5, C_{18719} H) et 0,70 (t, 3 H, J_{18719} = 6,5, C_{18719} H) et 0,70 (t, 3 H, J_{18719} = 6,5, C_{18719} H) et 0,70 (t, 3 H, J_{18719} et 0,70 (t, 3 H, J_{18 $J_{18,19} = 6, C_{18} \cdot H$).

Chloro-7' indolénine de l'anhydrovincristine 27

A une solution de $120\,\mathrm{mg}$ d'anhydrovincristine **25** $(0.15\,\mathrm{mM})^{18}$ dans $12\,\mathrm{cm}^3$ de chlorure de méthylène anhydre maintenue sous argon a 0, on ajoute, sous agitation, $29\,\mathrm{mg}$ de N-chlorobenzotriazole $(0.19\,\mathrm{mM})$. Après $2\,\mathrm{h}$ $30\,\mathrm{min}$ d'agitation, le milieu réactionnel est traité comme pour la préparation de **16**. Par CCE (CH₃CO₂Et: CH₃OH 90:10) on sépare l'anhydrovincristine qui n'a pas réagi $(20\,\mathrm{mg}, 17\,\mathrm{m}_0)$ de la chloro-7' indolènine de l'anhydrovincristine **27** $(87\,\mathrm{mg}, 147\,\mathrm{m}_0)$. IR: $3000, 1760, 1680, 1615, 1600, UV: 222, 256, 310; (EtOH - H⁺). <math>225, 254, 296, DC: 235(+), 300(-), 320(+), (EtOH + H⁻). <math>225(+), 260(+), 305(+), SM: 806, 804, 773, 762, 645, 612, 610, 552, 536, 494, 466, 401, 366, 358, 329, 282, 136 <math>(100^{\circ})$, 135, 122, 121

Nor-5' anhydrovincristine 29

A une solution de 60 mg de chloro-7' indolénine de l'anhydrovincristine 27 (0,07 mM) dans 3 cm³ d'un mélange THF H₂O = 1:1, on ajoute à température ordinaire et sous agitation 20 mg d'AgBF₄ (0,1 mM). Le mélange est agité à 45 pendant 2 h 30 min puis extrait par du chloroforme en presence d'un solution aqueuse de Na₂CO₃ à 10%. Après traitements habituels, on isole 51 mg (Rdt 90%) de nor-5' anhydrovincristine **29**: $[\alpha]_{ij}$ + 36 (C = 0.3, CHCl₃). IR. 3400, 2950, 1745, 1680. UV: 215, 259, 282, 292. DC: 205(-); 220(+); 250(+); 295(+). SM pics à m/e; 806, 794, 792, 776, 762, 645, 630, 610, 599, 587, 536, 508, 494, 466, 152, 136(100"_n), 135, 122, 121, RMN du ¹H (240 MHz); 8,76 (s. 1 H. OH). 8,48 (s large, 1 H, N_a-H); 8,18 (0,5 H) et 7,73 (1,5 H) N_a CHO + aromatique; 7,18, 3 H. aromatiques); 6,80 (s. 1 \dot{H} , C₃, H), 6,71 (2s, 1 H, C₁₂-H); 5,91 (m, 1 H, C_{14} -H): 5,70 (m, 1 H, C_1 , H); 5,40 (d, 1 H, J_{14-1} , = 10, C_1 , H); 5,20 (2s, 1 H, C_1 -H); 4,75 et 4,50 (2s, 1 H, C_2 -H); 3.91, 3.75 et 3.71 (3s, 9 H, C_{11} OCH₃, C_{16} -CO₂CH₃ et C_{16} -CO₂CH₃); 2.09 (2s, 3 H, COCH₃); 1.08 (t, 3 H, J = 7) et $0.71 (3 \text{ H}), C_{18} - \text{H et } C_{18} \text{ H}).$

Chloro-7' indolénine de la leuroformine 28

A une solution de $60\,\mathrm{mg}$ de $\mathrm{N_a}$ -desméthyl $\mathrm{N_a}$ -formyl leurosine ou leuroformine 26^{20} ($0.072\,\mathrm{mM}$) dans $6\,\mathrm{cm}^3$ de chlorure de méthylène anhydre maintenue sous argon à 0, on ajoute, sous agitation, $14\,\mathrm{mg}$ de N-chloro benzotriazole, ($0.092\,\mathrm{mM}$). Après 2 heures d'agitation, le milieu réactionnel est évaporé à sec sous pression réduite à une température inférieure à $20\,\mathrm{C}$; on ajoute $1.5\,\mathrm{cm}^3$ de méthanol, $10\,\mathrm{cm}^3$ d'une solution de carbonate de sodium aqueux (40°_{-0}) et on extrait par du benzène. Après traitements classiques et purification par CCE (CHCl $_3$ CH $_3$ OH 95-5, cuve saturée de NH $_3$) on obtient la chloro-7' indolénine de la leuroformine $28\,\mathrm{(52\,mg}$. Rdt 85°_{-0}): IR: 3000, 1760, 1690, 1600. UV (EtOH) $_{\mathrm{max}}$; 226, 256, 310, (EtOH + H $^-$): 225, 254, 298. DC (EtOH). 205(-), 235(+), 258(+), 295(-), 325(+); (EtOH + H $^-$): 230(+), 255(+), 258(+), 295(-), 386, 822, 616, 365, 282, 149, 133, $122(100^{\circ}_{-0})$, 121

Nor-5' leuroformine 30

A une solution de 50 mg de chloro-7' indolénine de leuroformine 28 (0,07 mM) dans 4 cm³ d'un mélange THF: H₂O 1:1, on ajoute à température ordinaire et sous agitation 20 mg d'AgBF₄ (0,1 mM). Le mélange est agité à 20 pendant 16h puis extrait par de l'éther en présence de Na₂CO₃ à 10 ° ... Après séchage sur Na₂SO₄, évaporation du solvant sous pression réduite et purification par CCE (CHCl₃, CH₃OH 95:5, cuve saturée de NH₃), on isole 20 mg de nor-5' de leuroformine 30 (Rdt: 40%): IR: 3400, 2950, 1750, 1680, UV: 222, 260, 286, 295, DC: 205(-), 225(+), 255(+), 298(+) SM pics à m/e: 824, 822, 764, 612, 610, 584, 494, 282, 154, 152, 144, 136(100°_o), 122, 121. RMN du ¹H (240 MHz): 8,70 (s. 1 H, OH), 8,41 (s large, 1 H, N_a -H); 8,12 (0.5 H) et 7.70 (0.5 H): N₃CHO, 7.62 (d, $\hat{J} = 7$, 1 H aromatique), 7.12 (m, 3 H aromatiques); 6.76 (s, 1 H, C, H); 6.64 (2s. 1 H, C_{12} H): 5.86 (dd, 1 H, $J_{14+15} = 10$, $J_{3+14} = 3$,

 $\begin{array}{l} C_{14}-H);\; 5,33\;\; (d,\;1\,H,\;J_{14\;15}=10,\;C_{15}-H),\; 5,16\;\; (2s,\;1\,H,\;C_{17}-H),\; 4,70\;\; \text{et}\; 4,45\;\; (2s,\;1\,H,\;C_{2}-H),\; 4,32\;\; (d,\;1\,H,\;J_{AB}=12,\;C_{6}-H);\; 4,21\;\; (d,\;1\,H,\;J_{AB}=12,\;C_{6}-H');\; 3,92,\; 3,76\;\; \text{et}\; 3,68\;\; (3s,\;9H,\;C_{11}OCH_3C_{16}CO_2CH_3\;\; \text{et}\; C_{16}-CO_2CH_3);\; 2,05\;\; (2s,\;3\,H,\;OCOCH_3);\; 1,07\;\; \text{et}\; 0,70\;\; (2t,\;6\,H,\;J=7,\;C_{18}-H\;\; \text{et}\; C_{18}-H\;\; \text{h}. \end{array}$

Chloro-7' indolénine de la N_a-desméthyl N_a-formyl déoxy-20' leurosidine **32**

La N_a-desméthyl N_a-formyl déoxy-20' leurosidine 31 (90 mg, 0,11 mmole) est traitée par du N-chlorobenzotriazole (21 mg) comme décrit pour la préparation de 28. La purification du produit brut obtenu, par CCE (C₂H₃OH:CH₃CO₂Et 1:3) fournit 40 mg (Rdt 43 %₀) de chloro-7' indolénine 32: UV: 220, 248, 310. SM pics à m/e: 824, 822, 808, 764, 750, 748, 632, 617, 554, 494, 144, 138(100 %₀), 136, 125, 121.

Préparation du composé 33

Une solution de chloro-7' indolénine 32 (40 mg, 0,047 mM) dans 5 cm³ de mélange THF: H₂O = 1:1, est agitée à 50 C sous atmosphère inerte en présence d'AgBF₄ (15 mg). Après 1 h, le milieu réactionnel est dilué par une solution aqueuse de Na₂CO₃ à 10% avant d'être extrait par de l'éther. Le compose 33 est purifié par CCE (CHCl₃:CH₃OH 90:10) Rdt 73 %: IR: 3450, 2950, 1750, 1670. UV: 224, 260, 286, 294, 304. DC: 205(-), 225(+), 255(+), 280(+), 305(-). SM pics à m/e: 824, 822, 808, 794, 764, 750, 748, 692, 663, 648, 632, 508, 494, 466, 144, 138(100 %), 136, 125. RMN du ¹H (240 MHz): 8,71 (s, 1 H, OH ou N_a : H); 8,19 (s, 0,5 H) et 7,58 (1,5 H): N_J CHO + N_J H ou OH; 7,34 (d, 1 H, J = 8, aromatique); 7.25 7.00 (4 H, aromatiques + C₉ H); 6.66 (s, 1 H, C₁₂ H); 5,97 (m, 1 H, C_{14} H): 5,51 (d, 1 H, $J_{14,15} = 12$, C_{15} H): 5,17 (s dédoublé; 1 H, C_{17} -H); 4,75 et 4,53 (2s, 1 H, C_{2} -H); 4,47 (d, 1 H, J_{AB} = 15) et 4,24 (d, 1 H, J_{AH} = 15): C_6 -H; 3.66 et 3,46 (3s, 9 H, C_{11} -OCH₃), C_{16} · CO₂CH₃, C_{16} · CO₂CH₃): 2.05 (s dédoublé, 3 H, OCOCH₃): 0.81 et 0.55 (2t, 6 H, J = 7, C_{18} - H et C_{18} - H).

Remerciements -Nous remercions le Professeur P. Bladon (Université de Strathclyde, Glasgow) pour l'enregistrement du spectre de masse du composé 21 en haute résolution.

RÉFÉRENCES

¹N. Langlois, F. Guéritte, Y. Langlois et P. Potier, J. Am. Chem. Soc. 98, 7017 (1976) et réfs citées.

²A. I. Scott, F. Guéritte et S. L. Lee, *Ibid.* **100**, 6253 (1978).

³N. Langlois et P. Potier, *J. Chem. Soc. Chem. Commun.* 102 (1978).

⁴N. Langlois et P. Potier, *Ibid.* 582 (1979).

^{5a}S. B. Hassam et C. R. Hutchinson, Tetrahedron Letters 1681 (1978); ^bR. L. Baxter, C. A. Dorschel, S. L. Lee et A. I. Scott, J. Chem. Soc. Commun. 257 (1979).

^{6a}K. L. Stuart, J. P. Kutney, T. Honda et B. R. Worth, *Heterocycles* **9**, 1391 (1978); ⁶*Ibid*. 1419 (1978).

⁷P. Mangeney, R. Z. Andriamialisoa, N. Langlois, Y. Langlois et P. Potier, J. Am. Chem. Soc. 101, 2243 (1979) et réfs citées.

^bP. Mangeney, R. Z. Andriamialisoa, N. Langlois, Y. Langlois et P. Potter, J. Org. Chem. 44, 3765 (1979).

⁷P. Mangeney, R. Z. Andriamialisoa, J.-Y. Lallemand, N. Langlois, Y. Langlois et P. Potier. *Tetrahedron* 35, 2175 (1979).

¹⁰R. Z. Andriamialisoa, N. Langlois, Y. Langlois, P. Potier et P. Bladon, Can. J. Chem. 57, 2572 (1979).

¹¹W. I. Taylor, Proc. Chem. Soc. 247 (1962).

¹² Inter alia ^aL. J. Dolby et S. I. Sakai, J. Am. Chem. Soc. 86, 5362 (1964); ^bF. Bylsma, Ph.D. Thesis, Vancouver, 1970; ^cN. Aimi, Y. Asada, S. Tsuge, T. Kohmoto, K. Mogi et S. Sakai, Heterocycles 5, 267 (1976).

¹³G. Buchi et R. E. Manning, J. Am. Chem. Soc. 88, 2532

- ¹⁴K. V. Lichman, J. Chem. Soc. (C) 2539 (1971).
- ¹⁵G. L. Thompson, G. C. Paschal et R. A. Conrad, U.S. Pat. 4122081 (24.10.1978), Appl. 822466 (8.08.1977).
- ¹⁶N. Langlois, R. Z. Andriamialisoa et N. Neuss, Helv. Chim.
- Acta 63, 793 (1980).

 Acta 63, 793 (1980).

 Acta 63, 793 (1980).

 Acta 63, 793 (1980). Meeting of the American Society of Pharmacognosy, Purdue University, 29 Juillet-3 Août 1979, bA. El Sayed, G. H. Handy et G. A. Cordell, J. Natur. Prod. 43, 157 (1980)

¹⁸J. P. Kutney, J. Balsevitch, T. Honda, P. H. Liao, H. P. M. Thillier et B. R. Worth, Can. J. Chem. 56, 2560 (1978).

- ¹⁹⁴K. Jovanovics, K. Szasz, B. Kellner, L. Nemeth, Z. Relle, E. Bittner, E. Dezseri et J. Eles, Ger. Offen. 2404120, 29 Août 1974, Hung. Appl. RI 502, 16 Février 1973; bRichter Gédéon Vegyeszeti, Belg. 823560 (16.04.1975), Hung. Appl. RI 531 (20.12.1973).
- ^{20a}F. Zavala, D. Guénard et P. Potier, Experientia 34, 1497 (1978); bF. Zavala, Thèse de Doctorat de 3ème Cycle, Paris 16 Octobre 1979.
- ²¹S. Kan, P. Gonord, C. Duret, J. Salset et C. Vibet, Rev. Sci. Instrum. 44, 1725 (1973).
- ²²S. Kan et al., résultats non publiés.
- ²³M. Gorman, N. Neuss et N. J. Cone, J. Am. Chem. Soc. 87, 93 (1965).
- ²⁴N. Neuss, M. Gorman, N. J. Cone et L. L. Huckstep, Tetrahedron Letters 783 (1968).
- ²⁵J. P. Kutney, J. Balsevitch, G. H. Bokelman, T. Hibino, T. Honda, I. Itoh, A. H. Ratcliffe et B. R. Worth, Can. J. Chem. 56, 62 (1978).
- ²⁶E. Wenkert, E. W. Hagaman et B. Lal, G. E. Gutowski, A. S. Katner, J. C. Miller et N. Neuss, Helv. Chim. Acta 58, 1560 (1975).