LETTERS TO THE EDITOR

3,5- and 3,6-Disubstituted 3,4-Dihydroquinazolines

L. P. Yunnikova and V. V. Esenbaeva

Pryanishnikov Perm State Agricultural Academy, ul. Petropavlovskaya 23, Perm, 614990 Russia e-mail: yunnikova@yahoo.com

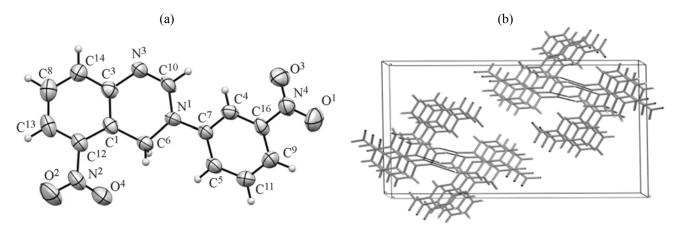
Received November 17, 2015

Keywords: 1,3-dioxolane, dihydroquinazoline, X-ray diffraction analysis

DOI: 10.1134/S1070363216070392


It has previously been shown that the reactions of para-substituted anilines with formaldehyde in the presence of hydrochloric [1–3] or oxalic acid [4] lead to the formation of 6(4')-substituted 3,4-dihydroquinazolines (11-38%). When replacing formaldehyde with another source of methylene group, metoxychloromethane, the reaction with arylamines afforded both 3,4-dihydroquinazolines (25%) and 1,2,3,4-tetrahydroquinazolines (48%) [5]. 3,4-Dihydroquinazolines (30-85%) can be prepared by reacting arylamines with formaldehyde in a ionic liquid (butylpyridinium 1tetrafluoroborate) in the presence of 1-methyl-3-[2-(sulfooxy)ethyl]-1*H*-imidazol-3-ylium chloride as catalyst [6]. 1,3-Dioxolane is known to be used as a methylene group source in the synthesis of diarylmethane derivatives [7], which indicates the possibility of its use as a synthetic equivalent of formaldehyde or metoxychloromethane.

In this work we showed a possibility of using 1,3dioxolane as a methylene group source in the synthesis of substituted 3,4-dihydroquinazolines based on *para*and *meta*-substituted anilines.


The reactions of arylamines 1a-1f with 1,3-dioxolane 2 proceeded in benzene in the presence of trifluoroacetic acid or *p*-toluenesulfonic acid (*p*TSA) at 80–85°C to form 3,4-dihydroquinazolines **3a** and **4b–4f** (Scheme 1).

According to [7], in the case of *m*-nitroarylamine **1a** having a free *para*-position the formation of 4,4'-diamino-3,3'-dinitrodiphenylmethane would be expected as a result of diarylmethane derivatization.

However, 3-(m-nitrophenyl)-5-nitro-3,4-dihydroquinazoline**3a**was isolated as the reaction product,apparently due to the steric hindrances caused by thepresence of nitro moiety in the*meta*-position. The

 $R^{1} = H, R^{2} = NO_{2}(\mathbf{a}), R^{1} = NO_{2}, R^{2} = H(\mathbf{b}), R^{1} = Br, R^{2} = H(\mathbf{c}), R^{1} = COOCH_{3}, R^{2} = H(\mathbf{d}), R^{1} = COOC_{2}H_{5}, R^{2} = H(\mathbf{e}), R^{1} = COOC_{4}H_{9}, R^{2} = H(\mathbf{f}).$

(a) Crystal structure and (b) molecular packing of compound 3a.

structure compound **3a** was confirmed by X-ray diffraction (XRD) method (see figure).

In conclusion, the proposed non-catalytic method of synthesizing 3,5- and and 3,6-disubstituted dihydroquinazolines involving 1,3-dioxolane as a synthetic equivalent of formaldehyde allows to reduce the reaction time and to increase the yield of the target products.

3-(m-Nitrophenyl)-5-nitro-3,4-dihydroqunazoline (**3a**). *a*. A mixture of 4.14 g (30 mmol) of *m*-nitroaniline **1a**, 8 mL of benzene, 4.44 g (60 mmol) of 1,3dioxolane **2**, and 8 mL of trifluoroacetic acid was heated for 1.5 h at 80–85°C. After cooling the mixture was diluted with water. The precipitate was separated, washed twice with water, neutralized with 10% NH₄OH solution to pH 8, and dried. Yield 2.3 g (52%), yellow crystals, mp 198–200°C (benzene). ¹H NMR spectrum (CDCl₃), δ , ppm: 5.35 s (2H, CH₂), 7.35– 7.69 m (5H_{Ar}), 7.93 d (1H, C⁶H, J = 8.4 Hz), 8.09– 8.12 m (2H, C⁴H, CH=N). Mass spectrum, *m/z* (I_{rel} , %): 298 (10.36) [*M*]⁺.

b. A mixture of 1.38 g (10 mmol) of *m*-nitroaniline 1a, 1 mL of benzene, 1.1 g (15 mmol) of 1,3-dioxolane 2, and 2 g of *p*-toluenesulfonic acid was heated for 1.5 h at 80–85°C. After cooling the mixture was diluted with water. The precipitate was separated, washed twice with water, neutralized with 10% NH₄OH solution to pH 8, and dried. Yield 0.4 g (27%).

Compounds **4b–4f** were prepared similarly by the method a.

3-(p-Nitrophenyl)-6-nitro-3,4-dihydroquinazoline (4b). Yield 0.87 g (58%), mp 227–229°C (benzene). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 5.16 s (2H, CH₂), 7.26 d (1H, C⁸H, J = 6.3 Hz), 7.59 d (2H, C^{2',6}H, J = 6.9 Hz), 8.07–8.10 m (3H, C^{5,7}H, CH=N), 8.32 d (2H, C^{3',5'}H, J = 6.6 Hz). Mass spectrum, m/z: 299.0776 $[M + H]^+$.

3-(*p***-Bromophenyl)-6-bromo-3,4-dihydroqunazoline** (4c). Yield 0.62 g (57%), mp 199–201°C (benzene) (mp 195–200°C [5]). ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 4.90 s (2H, CH₂), 6.98 d (2H, C^{2',6}H, *J* = 8.4 Hz), 7.25–7.37 m (4H, Ar-H), 7.60 d (2H, C^{5,7}H, *J* = 8.8 Hz), 7.67 s (1H, CH=N). Mass spectrum, *m*/*z*: 366.9267 [*M* + H]⁺.

3-(*p*-Carbomethoxyphenyl)-6-carbomethoxy-3,4dihydroquinazoline (4d). Yield 1.53 g (47%), mp 242–245°C (benzene). ¹H NMR spectrum (CDCl₃), δ , ppm: 3.90 s (3H, NC₆H₄COO<u>CH₃</u>), 3.92 s (3H, COO<u>CH₃</u>), 4.99 s (2H, CH₂), 7.19–7.23 m (3H, C^{2',6'}H, C⁸H), 7.35 s (1H, C⁵H), 7.74 s (1H, CH=N), 7.93 d (1H, C⁷H, J = 7.8 Hz), 8.12 d (2H, C^{3',5'}H, J = 8.4 Hz). Mass spectrum, *m/z*: 325.1185 [M + H]⁺.

3-(*p***-Carboethoxyphenyl)-6-carboethoxy-3,4-dihydroquinazoline (4e).** Yield 0.21 g (36%), mp 190°C (benzene) (mp 185–188°C [5]). ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 1.37 t (6H, CH₃), 4.35 q (4H, OCH₂), 5.11 s (2H, CH₂), 7.10–7.22 m (2H, C^{5,8}H), 7.50– 7.53 d (2H, C^{2',6}H, *J* = 8.4 Hz) 7.80 s (1H, CH=N), 7.86 d (1H, C⁷H, *J* = 6.6 Hz), 8.04–8.07 d (2H, C^{3',5'}H, *J* = 8.4 Hz). Mass spectrum, *m/z*: 353.1498 [*M* + H]⁺.

3-(*p***-Butoxycarbonylphenyl)-6-butoxycarbonyl-3,4-dihydroquinazoline (4f).** Yield 0.45 g (45%), mp 140°C (dichloromethane). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.98 t (6H, CH₃), 1.41–1.54 m (4H, CH₂), 1.70– 1.80 m (4H, CH₂), 4.28–4.35 m (4H, OCH₂), 4.99 s (2H, CH₂), 7.19–7.26 m (3H, C^{2',6'}H, C⁸H), 7.74 s (1H, CH=N), 7.93 d (2H, C^{5,7}H, J = 7.5 Hz), 8.12 d (2H, C^{3',5'}H). Mass spectrum, m/z: 409.2120 $[M + H]^+$.

¹H NMR spectra were obtained on a Mercury 300 instrument (300 MHz), internal reference HMDS. Mass spectra were recorded on a high resolution mass spectrometer maXis Impact HD Bruker Daltonik GmbH.

X-Ray diffraction experiment for compound 3a. The parameters of the unit cell and the intensity of the reflections were measured at 295(2) K on a Xcalibur R diffractometer. The extinction was accounted for empirically by multiscan method using SCALE3 ABSPACK algorithm [9]. The structure was solved by the direct method and refined by full-matrix leastsquares method using SHELX2013 software package [10]. The structure was refined by using a data file with reflections intensities of HKLF 5 format as a twin with two components. The final refinement parameters: $R_1 = 0.0659$, $wR_2 = 0.1671$ [for 2092 reflections with $I > 2\sigma(I)$], $R_1 = 0.1642$, $wR_2 = 0.1911$ (for all 5849 independent reflections), S 0.785, the ratio of twinning components 0.505(2) : 0.495(2) . Crystals of compound **3a** are monoclinic, $C_{14}H_{10}N_4O_4$, space group P21/n, the unit cell parameters: a = 14.909(6), b = 3.8772(11), c = 22.142(7) Å, $\beta = 91.78(3)^{\circ}, V =$ 1279.3(7) Å³, $d_{calc} = 1.549$ g cm⁻³, $\mu = 0.117$ mm⁻¹, Z = 4, λ (Mo K_{α}) = 0.71073 Å.

Crystallographic data were deposited in the Cambridge Crystallographic Data Centre (CCDC 1,481,780).

AKCNOWLEDGMENTS

This work was financially supported by the Ministry of Education and Science of Perm region (MIG competition, 2013–2015).

REFERENCES

- Wagner, E.C., J. Org. Chem., 1937, vol. 2, no. 2, p. 157. DOI: 10.1021/jo01225a003.
- Wagner, E.C. and Eisner, A., J. Am. Chem. Soc., 1937, vol. 59, p. 879. DOI: 10.1021/ja01284a033.
- Elderfield, R., *Heterocyclic Compounds*, Wiley & Sons, 1957, vol. 6.
- Peesapati, V. and Kancharla, A., J. Indian Chem. Soc., 1996, vol. 73, no. 10, p. 544. DOI: 10.1002/chin.199739183.
- Fisher, J., Tóth, G., and Vágó, P., Acta Chim., 1977, vol. 93, no. 1, p. 95.
- Wan, Y., Yuan, R., Zhang, W., Shi, Y., Lin, W., Yin, W., Bo, R., Shi, J., and Wu, H., *Tetrahedron*, 2010, vol. 66, p. 3405. DOI: 10.1016/j.tet.2010.03.057.
- 7. Yunnikova, L.P., Yaganova, N.N., and Yakimova, I.D., *Butlerovsk. Soobshch.*, 2013, vol. 36, no. 10, p. 157.
- Wiesner, I. and Wiesnerova, L., J. Chromatogr., 1975, vol. 114, no. 2, p. 411. DOI: 10.1016/S0021-9673(01) 92006-0.
- 9. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171.NET).
- Sheldrick, G.M., Acta Crystallogr. (A), 2008, vol. 64, p. 112. DOI: 10.1107/S0108767307043930.