2,6-Diaryl-4,4-Disubstituted 1,4-Dihydropyridines: Source for Spiro Heterocycles

V. Padmavathi, A. Balaiah, T. V. Ramana Reddy, 2

B. Jagan Mohan Reddy,1 and D. Bhaskar Reddy1

dihydropyridines.

Received 11 March 2003; revised 1 April 2003

ABSTRACT: Novel spiro heterocycles (**5–12**) were obtained by the cyclocondensation of 2,6-diaryl-4,4-dimethoxycarbonyl-/4-cyano-4-ethoxycarbonyl-1,4-dihydropyridines (**3/4**) with hydrazine hydrate, hydroxylamine hydrochloride, urea, and thiourea. All the compounds were characterized by IR, ¹H NMR, and ¹³C NMR spectral data. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:513–517, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10183

INTRODUCTION RESULTS AND DISCUSSION

Doping of heteroatoms within the carbon framework has been considered as a versatile method to design new heterocycles. In this perspective attempts are made to incorporate nitrogen into 3,3-disubstituted 1,5-diaryl-1,5-pentanediones [1] to furnish 4,4-disubstituted 2,6-diaryl-1,4-dihydropyridines (3/4). Indeed dihydropyridine and its derivatives were used in the treatment of cardiovascular diseases such as angina, hypertension, or arrhythmia [2]. On the other hand 1,4-dihydropyridine fused to a carbocyclic ring exhibited calcium modulatory properties

3,3-dimethoxycarbonyl-1,5-pentanediones (1a-c)/1,5-diaryl-3-cyano-3-ethoxycarbonyl-1,5-pentanediones (2a-c) with ammonium acetate in acetic acid under reflux conditions to give 2,6-diaryl-4,4-dimethoxycarbonyl-1,4-dihydropyridines (3a-c)/2,6-diaryl-4-cyano-4-ethoxycarbonyl-1,4-dihydropyridines (4a-c) [6]. The *gem*-dicarboxylate or *gem*-cyano ester on condensation with hydrazine hydrate, hydroxylamine hydrochloride, urea, and thiourea would furnish pyrazole, isoxazole, pyrimidine, and thiopyrimidine derivartives. Accordingly, treatment of 3a-c with these reagents in the presence of NaOMe resulted in the formation of 7,9-diaryl-2,3,8-triaza-spiro[4.5]deca-6,9-diene-1,4-diones (5a-c), 7,9-diaryl-2-oxo-3,8-diaza-spiro[4.5]deca-6,9-diene-

[3,4]. On the basis of this, it was thought to de-

velop spiro heterocycles from 1,4-dihydropyridines.

In fact remarkable progress has been made by our

group during the last one decade in the synthe-

sis of spiro heterocycles [5], which was tradition-

ally associated with the presence of gem diester

or cyano ester functionality in the molecule and

this has become the basis for the present com-

munication. Thus, this report includes hitherto un-

known spiro heterocycles from 4,4-disubstituted 1,4-

The synthesis involves the reaction of 1,5-diaryl-

¹Department of Chemistry, S.V. University, Tirupati 517 502, India

²Chemical Lab, SPROB, SDC-SHAR Centre (ISRO), Sri Harikota 524124, Andhra Pradesh, India

Correspondence to: V. Padmavathi; e-mail: vkpuram2001@yahoo.com.

Contract grant sponsor: CSIR, New Delhi.

^{© 2003} Wiley Periodicals, Inc.

$$Ar \xrightarrow{X} Y \xrightarrow{NH_4OAc / AcOH} Ar \xrightarrow{X} Y \xrightarrow{NH_4OAc / AcOH} Ar \xrightarrow{X} Ar \xrightarrow$$

$$\mathbf{X} = \mathbf{Y} = \mathbf{CO}_2 \mathbf{Me}; \ \mathbf{X} = \mathbf{CO}_2 \mathbf{Et}, \ \mathbf{Y} = \mathbf{CN}$$

Ar **a**) C_6H_5 , **b**) 4-OMe. C_6H_4 , **c**) 4-CI. C_6H_4

SCHEME 1

Ar a) C_6H_5 , b) 4-OMe. C_6H_4 , c) 4-Cl. C_6H_4

1,4-diones (**6a-c**), 8,10-diaryl-2,4,9-triaza-spiro-[5.5]undeca-7,10-diene-1,3,5-triones (**7a-c**), and 8, 10-diarly-3-thioxo-2,4,9-triaza-spiro[5.5]undeca-7, 10-diene-1,5-diones (**8a-c**), respectively (Scheme 1). In a similar way, the reaction of 4a-c gave 4amino-7,9-diaryl-2,3,8-triaza-spiro[4.5]deca-3,6,-9-trien-1-ones (**9a-c**), 4-amino-7,9-diaryl-2-oxo-3,8diaza-spiro[4.5] deca-3,6,9-trien-1-ones (10a-c), 5-amino-3-hydroxy-8,10-diaryl-2,4,9-triaza-spiro-[5.5]undeca-2,4,7,10-tetraen-1-ones (11a-c), and 5-amino-3-mercapto-8,10-diaryl-2,4,9-triaza-spiro-[5.5]undeca-2,4,7,10-tetraen-1-ones (12a-c), respectively (Scheme 2, Table 1).

The IR spectra of **5–8** exhibited absorption bands in the regions 1645-1682, 3200-3470, and 1495-1510 cm⁻¹ for CO, NH, and C=S of pyrazolidinedione/isoxazolidinedione/pyrimidinetrione/thioxopyrimidinedione moiety. The compounds 9-12 showed absorption bands in the regions 1685-1710 and 3240-3470 cm⁻¹ for CO, OH and NH₂ and NH of aminopyrazolone/aminoisoxazolone/aminopyrimidine/thioxo-pyrimidine moiety. Apart from these, 6 and 10 exhibited bands around 1725-1735 cm⁻¹ for CO-O of isoxazole moiety. In the ¹H NMR spectra the methine protons C_6 —H and C_{10} —H in **5**, **6**, **9**, **10** and C_7 —H and C_{11} —H in **7, 8, 11, 12** showed a sharp

singlet in the region $\delta = 4.85 - 5.63$. The NH in **5-8** displayed a broad singlet at $\delta = 6.19-10.68$. However, a broad singlet observed around $\delta = 6.89-10.14$ in 9-12 accounts for NH and NH₂. Apart from these, 11 showed a singlet for OH at $\delta = 6.89-6.97$ while **12** for SH at $\delta = 1.37$ –1.43 (Table 2). The signals for NH₂, NH, and OH disappeared on deuteration. The structure of **5–12** were also confirmed by ¹³C NMR spectra (Table 2).

EXPERIMENTAL

Melting points were determined on Mel-Temp apparatus and are uncorrected. The IR spectra were recorded on Perkin-Elmer 1600 FT-IR spectrometer using KBr disc. The wave numbers are given in cm⁻¹. ¹H NMR and ¹³C NMR spectra were recorded in DMSO- d_6 operating at 300 MHz and 75.45 MHz, respectively, on a Bruker spectrospin spectrometer with TMS as an internal standard. Purity of the compounds was checked by TLC using silica gel 'G' (BDH) and hexane-ethyl acetate (3:1) as eluents. The elemental analyses were obtained from Micro Analytical Laboratory, University of Pune, Pune, India.

TABLE 1 Physical Data of Compounds 5–12

			Mol. Formula		Found ^a (%)	
	mp (° C)	Yield (%)	(Mol. Wt.)	С	Н	N
5a	237-239	72	C ₁₉ H ₁₅ N ₃ O ₂ (317.35)	71.80 (71.91)	4.82 (4.76)	13.39 (13.24)
5b	233-235	64	$C_{21}H_{19}N_3O_4$ (377.40)	66.98 (66.83)	5.00 (5.07)	11.08 (11.13)
5c	224-226	66	$C_{19}H_{13}Cl_2N_3O_2$ (386.24)	59.00 (59.09)	3.48 (3.39)	11.02 (10.88)
6a	194–196	62	$C_{19}H_{14}N_2O_3$ (318.34)	71.48 (71.69)	4.34 (4.43)	8.94 (8.80)
6b	202-204	68	$C_{21}H_{18}N_2O_4$ (378.39)	66.82 (66.66)	4.85 (4.79)	7.30 (7.40)
6c	183-184	73	$C_{19}H_{12}Cl_2N_2O_3$ (387.23)	58.80 (58.94)	3.08 (3.12)	7.36 (7.23)
7a	275-277	69	$C_{20}H_{15}N_3O_3$ (345.36)	69.72 (69.56)	4.34 (4.38)	12.31 (12.17)
7b	284-285	57	$C_{22}H_{19}N_3O_5$ (405.41)	65.36 (65.18)	4.81 (4.72)	10.20 (10.36)
7c	270-271	60	C ₂₀ H ₁₃ Cl ₂ N ₃ O ₃ (414.25)	57.90 (57.99)	3.10 (3.16)	10.26 (10.14)
8a	280-282	68	$C_{20}H_{15}N_3O_2S$ (361.43)	66.67 (66.47)	4.10 (4.18)	11.78 (11.63)
8b	276-277	62	C ₂₂ H ₁₉ N ₃ O ₄ S (421.48)	62.83 (62.69)	4.60 (4.54)	10.11 (9.97)
8c	269-271	63	$C_{20}H_{13}Cl_2N_3O_2S$ (430.32)	55.71 (55.82)	3.00 (3.05)	9.64 (9.76)
9a	207-209	61	C ₁₉ H ₁₆ N ₄ O (316.37)	72.25 (72.14)	5.07 (5.10)	17.85 (17.71)
9b	225-227	58	C ₂₁ H ₂₀ N ₄ O ₃ (376.42)	67.11 (67.01)	5.40 (5.36)	14.81 (14.88)
9c	199-201	65	C ₁₉ H ₁₄ Cl ₂ N ₄ O (385.26)	59.15 (59.24)	3.69 (3.66)	14.61 (14.54)
10a	189-191	70	$C_{19}H_{15}N_3O_2$ (317.35)	72.11 (71.91)	4.71 (4.76)	13.40 (13.24)
10b	195–197	66	C ₂₁ H ₁₉ N ₃ O ₄ (377.40)	66.68 (66.83)	5.12 (5.07)	11.22 (11.13)
10c	176–177	69	C ₁₉ H ₁₃ Cl ₂ N ₃ O ₂ (386.24)	59.22 (59.09)	3.43 (3.39)	10.69 (10.88)
11a	263-265	62	C ₂₀ H ₁₆ N ₄ O ₂ (344.38)	69.92 (69.76)	4.76 (4.68)	16.40 (16.27)
11b	281-283	68	C ₂₂ H ₂₀ N ₄ O ₄ (404.43)	65.50 (65.34)	4.94 (4.98)	14.00 (13.85)
11c	273-274	71	$C_{20}H_{14}Cl_2N_4O_2$ (413.27)	58.01 (58.13)	3.46 (3.41)	13.44 (13.56)
12a	260-262	60	C ₂₀ H ₁₆ N ₄ OS (360.44)	66.55 (66.65)	4.52 (4.47)	15.68 (15.54)
12b	256-258	59	C ₂₂ H ₂₀ N ₄ O ₃ S (420.49)	62.90 (62.84)	4.85 (4.79)	13.47 (13.32)
12c	277–279	62	C ₂₀ H ₁₄ Cl ₂ N ₄ OS (429.33)	55.84 (55.95)	3.37 (3.29)	12.98 (13.05)

^aValues in parentheses indicate calculated values.

TABLE 2 Spectroscopic Data of Compounds 5-12

	δ 1 H NMR	δ ^{13}C NMR		
5а	4.95 (s, 2H, C ₆ & C ₁₀ —H), 7.22–7.78 (m, 10H, ArH), 8.24 (bs, 3H, NH—NH, NH).	45.12 (C ₅), 117.28 (C ₆ & C ₁₀), 137.95 (C ₇ & C ₉), 175.80 (C1 & C ₄).		
5b	3.65 (s, 6H, Ar—OCH ₃), 4.92 (s, 2H, C ₆ & C ₁₀ —H), 7.24–7.75 (m, 8H, ArH), 8.62 (bs, 3H, NH—NH, NH).			
5c	4.99 (s, 2H, C ₆ & C ₁₀ —H), 7.21–7.77 (m, 8H, ArH), 8.76 (bs, 3H, NH—NH, NH).	45.06 (C ₅), 117.26 (C ₆ & C ₁₀), 137.11 (C ₇ & C ₉), 175.70 (C ₁ & C ₄).		
6a	5.11 (s, 2H, C ₆ & C ₁₀ —H), 7.27–7.78 (m, 10H, ArH), 9.32 (bs, 2H, NH—O, NH).	54.84 (C ₅), 114.78 (C ₆ & C ₁₀), 140.97 (C ₇ & C ₉), 176.73, 175.93 (C ₁ & C ₄).		
6b	3.63 (s, 6H, Ar—OCH ₃), 5.19 (s, 2H, C ₆ & C ₁₀ —H), 7.30–7.82 (m, 8H, ArH), 9.39 (bs, 2H, NH—O, NH).	-		
SC .	4.98 (s, 2H, C ₆ & C ₁₀ —H), 7.29–7.80 (m, 8H, ArH), 9.25 (bs, 2H, —NH—O, NH).	54.76 (C ₅), 114.28 (C ₆ & C ₁₀), 140.95 (C ₇ & C ₉), 176.69, 175.94 (C ₁ & C ₄).		
7a 7b	4.98 (s, 2H, C ₇ & C ₁₁ —H), 6.32 (s, 1H, NH), 7.32–7.81 (m, 10H, ArH), 10.11 (bs, 2H, —NH—CO—NH—). 3.62 (s, 6H, Ar—OCH ₃), 4.95 (s, 2H, C ₇ & C ₁₁ —H), 6.36 (s, 1H,	42.78 (C ₆), 118.23 (C ₇ & C ₁₁), 137.94 (C ₈ & C ₁₀), 151.64 (C ₃), 164.35 (C ₁ & C ₅).		
'с	NH) 7.34–7.85 (m, 8H, ArH), 10.44 (bs, 2H, —NH—CO—NH). 4.91 (s, 2H, C ₇ & C ₁₁ —H), 6.59 (s, 1H, NH), 7.33–7.84 (m, 8H,	-		
Ba	ArH), 10.12 (bs, 2H, —NH—CO—NH). 4.85 (s, 2H, C ₇ & C ₁₁ —H), 6.24 (s, 1H, NH), 7.27–7.79 (m, 10H,	41.58 (C ₆), 113.48 (C ₇ & C ₁₁), 137.25 (C ₈ &		
Bb	ArH), 10.59 (bs, 2H, —NH—CS—NH). 3.61 (s, 6H, Ar—OCH ₃), 4.91 (s, 2H, C ₇ & C ₁₁ —H), 6.19 (s, 1H,	C ₁₀), 159.92 (C ₁ & C ₅), 170.27 (C ₃).		
Вс	NH), 7.23–7.79 (m, 8H, ArH), 10.87 (bs, 2H, —NH—CS—NH). 5.11 (s, 2H, C ₇ & C ₁₁ —H), 6.27 (s, 1H, NH), 7.29–7.78 (m, 8H,	41.74 (C ₆), 113.92 (C ₇ & C ₁₁), 137.99 (C ₈ &		
Эа	ArH), 10.68 (bs, 2H, —NH—CS—NH). 5.29 (s, 2H, C ₆ & C ₁₀ —H), 7.25–7.78 (m, 10H, ArH), 8.64–8.66 (bs, 3H, NH ₂ , NH), 10.02 (s, 1H, —NH—N).	C_{10}), 159.87 (C_1 & C_5), 170.31 (C_3). 39.12 (C_5), 109.29 (C_6 & C_{10}), 135.76 (C_7 & C_9), 162.92 (C_4), 175.48 (C_1).		
)b	3.59 (s, 6H, Ar—OCH ₃), 5.27 (s, 2H, C ₆ & C ₁₀ —H), 7.26–7.77 (m, 8H, ArH), 8.59–8.61 (bs 3H, NH ₂ , NH), 9.98 (s, 1H, NH—N).			
Эс	5.32 (s, 2H, C ₆ & C ₁₀ —H), 7.24–7.80 (m, 8H, ArH), 8.61–8.63 (bs, 3H, NH ₂ , NH), 10.14 (s, 1H, —NH—N).	41.29 (C ₅), 109.95 (C ₆ & C ₁₀), 137.98 (C ₇ & C ₉), 163.29 (C ₄), 175.82 (C ₁).		
l0a	5.63 (s, 2H, C ₆ & C ₁₀ —H), 7.24–7.79 (m, 10H, ArH), 8.58–8.60 (bs, 3H, NH ₂ , NH).	49.93 (C ₅), 108.27 (C ₆ & C ₁₀), 138.10 (C ₇ & C ₉), 177.24 (C ₄), 175.54 (C ₁).		
l0b	3.61 (s, 6H, Ar—OCH ₃), 5.62 (s, 2H, C ₆ & C ₁₀ —H), 7.25–7.80 (m, 8H, ArH), 8.46–8.48 (bs, 3H, NH ₂ , NH).	-		
0c	5.58 (s, 2H, C ₆ & C ₁₀ —H), 7.23–7.79 (m, 8H, ArH), 8.59–8.61 (bs, 3H, NH ₂ , NH).	49.71 (C ₅), 108.88 (C ₆ & C ₁₀), 138.46 (C ₇ & C ₉), 177.84 (C ₄), 175.39 (C ₁).		
1a 1b	5.51 (s, 2H, C ₇ & C ₁₁ —H), 6.89–6.91 (bs, 4H, NH, NH ₂ , OH), 7.22–7.76 (m, 10H, ArH).	37.24 (C ₆), 107.55 (C ₇ & C ₁₁), 135.41 (C ₈ & C ₁₀), 163.02 (C ₃), 179.43 (C ₁), 185.18 (C ₅		
1c	3.58 (s, 6H, Ar—OCH ₃), 5.58 (s, 2H, C ₇ & C ₁₁ —H), 6.92–6.93 (bs, 4H, NH, NH ₂ , OH), 7.24–7.79 (m, 8H, ArH). 5.59 (s, 2H, C ₇ & C ₁₁ —H), 6.95–6.97 (s, 4H, NH, NH ₂ , OH),	- 37.19 (C ₆), 107.14 (C ₇ & C ₁₁), 135.21 (C ₈ &		
2a	7.23–7.77 (m, 8H, ArH). 1.39 (s, 1H, SH), 5.60 (s, 2H, C ₇ & C ₁₁ —H), 7.23–7.75 (m, 10H,	C ₁₀), 163.42 (C ₃), 179.01 (C ₁), 185.61 (C ₅ 37.27 (C ₆), 107.19 (C ₇ & C ₁₁), 136.08 (C ₈ &		
2b	ArH), 8.78–8.80 (bs, 3H, NH, NH ₂). 1.43 (s, 1H, SH), 3.60 (s, 6H, Ar—OCH ₃), 5.57 (s, 2H, C ₇ &	C ₁₀), 175.67 (C ₃), 176.29 (C ₁), 180.47 (C ₅		
2c	C ₁₁ —H), 7.24—7.78 (m, 8H, ArH), 8.69—8.71 (bs, 3H, NH, NH ₂). 1.37 (s, 1H, SH), 5.62 (s, 2H, C ₇ & C ₁₁ —H), 7.23—7.78 (m, 8H,	38.05 (C ₆), 105.25 (C ₇ & C ₁₁), 143.20 (C ₈ &		
-	ArH), 8.68–8.70 (bs, 3H, NH, NH ₂).	C ₁₀), 175.39 (C ₃), 175.95 (C ₁), 180.45 (C ₅		

2,6-Diaryl-4,4-dimethoxycarbonyl-1,4dihydropyridine (**3a-c**)/2,6-Diaryl-4-cyano-4-ethoxycarbonyl-1,4-dihydropyridine (4a-c)

Compound 1/2 (10 mmol), was dissolved in AcOH (20 ml). To this NH₄OAc (1.5 g) was added and refluxed for 2 h. The reaction mixture was cooled and poured onto crushed ice. The product obtained was recrystallized from methanol.

7,9-Diaryl-2,3,8-triaza-spiro[4.5]deca-6,9-diene-1,4-dione (**5a-c**)/7,9-Diaryl-2-oxo-3,8-diazaspiro[4.5]deca-6,9-diene-1,4-dione (**6a-c**)/8,10-Diaryl-2,4,9-triaza-spiro[5.5]undeca-7,10-diene-1,3,5-trione (**7a-c**)/8,10-Diaryl-3-thioxo-2,4,9triaza-spiro[5.5]undeca-7,10-diene-1,5-dione (8a-c)

A mixture of 3 (10 mmol), 80% hydrazine hydrate (15 mmol)/hydroxylamine hydrochloride (10 mmol)/urea (10 mmol)/thiourea (10 mmol), methanol (25 mL), and 10% NaOMe (5 ml) was refluxed for 5–6 h, cooled, and poured onto crushed ice containing HCl. The product obtained was recrystallized from methanol.

4-Amino-7,9-diaryl-2,3,8-triaza-spiro[4.5]deca-3,6,9-trien-1-one (**9a-c**)/4-Amino-7,9-diaryl-2-oxo-3,8-diaza-spiro[4.5]deca-3,6,9-trien-1-one (**10a-c**)/5-Amino-3-hydroxy-8,10-diaryl-2,4,9triaza-spiro[5.5]undeca-2,4,7,10-tetraen-1-one (11a-c)/5-Amino-3-mercapto-8,10-diaryl-2,4,9triaza-spiro[5.5]undeca-2,4,7,10-tetraen-1-one (12a-c)

To a solution of 4 (10 mmol) in ethanol (25 mL), 80% hydrazine hydrate (15 mmol)/hydroxylamine hydrochloride (10 mmol)/urea (10 mmol)/thiourea (10 mmol), and 10% NaOEt (5 ml) was added. The contents were refluxed for 5-8 h, cooled, and poured onto crushed ice and acidified with acetic acid. The separated solid was filtered and recrystallized from ethanol.

ACKNOWLEDGEMENT

Two of the authors (VP & DBR) are thankful to CSIR, New Delhi, India for the financial assistance to their projects and AB for CSIR for providing Senior Research Fellowship.

REFERENCES

- [1] Padmavathi, V.; Balaiah, A.; Bhaskar Reddy, D. Indian J Chem (in press).
- [2] (a) Triggle, D. J.; Langs, D. A.; Jamis, R. A. Med Res Rev 1989, 9, 123; (b) Mehdi, S.; Ravikumar, K. Acta Cryst 1992, C48, 1627; (c) Rowan, K. R.; Holt, M. E. Acta Cryst 1996, C52, 2207.
- [3] Rose, U. Arch Pharm 1990, 323, 281.
- [4] Rose, U.; Drager, M. J Med Chem 1992, 35, 2238.
- [5] (a) Bhaskar Reddy, D.; Padmavathi, V.; Ramana Reddy, P. V. Indian J Chem 1992, 31B, 774; (b) Bhaskar Reddy, D.; Padmavathi, V.; Seenaiah, B.; Padmaja, A. Heteroat Chem 1993, 4, 55; (c) Bhaskar Reddy, D.; Ramana Reddy, M. V.; Padmavathi, V. Indian J Chem 1998, 37B, 167; (d) Bhaskar Reddy, D.; Ramana Reddy, M. V.; Padmavathi, V. Heteroat Chem 1999, 10, 17; (e) Bhaskar Reddy, D.; Chandrasekhar Babu, N.; Padmavathi, V. Heteroat Chem 2001, 12, 113; (f) Bhaskar Reddy, D.; Chandrasekhar Babu, N.; Padmavathi, V. J Heterocycl Chem 2001, 38, 769; (g) Padmavathi, V.; Balaiah, A.; Venugopal Reddy, K.; Padmaja, P.; Bhaskar Reddy, D. Indian J Chem 2002, 41B, 1670.
- [6] Padmavathi, V.; Balaiah, A.; Bhaskar Reddy, D. J Heterocycl Chem 2002, 39, 649.