Communications

Boranes

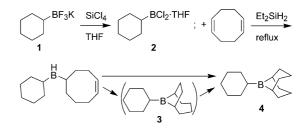
Conversion of Alkyltrifluoroborates into Alkyldichloroboranes with Tetrachlorosilane in **Coordinating Solvents****

Byung Ju Kim and Donald S. Matteson*

Addition of tetrachlorosilane to organotrifluoroborates, RBF_3K (R = alkyl or aryl), in THF or acetonitrile at 20-25°C results in immediate evolution of gaseous tetrafluorosilane and formation of the corresponding solvated organo-

[*] Dr. B. J. Kim, Prof. D. S. Matteson	
Department of Chemistry, Box 644630	
Washington State University	
Pullman, WA 99164-4630 (USA)	
Fax: (+1) 509-335-8867	
E-mail: dmatteson@wsu.edu	
E-mail: dmatteson@wsu.edu	

- [**] We thank the National Science Foundation for support, grant number CHE-0072788. The WSU NMR Center equipment was supported by NIH grants RR0631401 and RR12948, NSF grants CHE-9115282 and DBI-9604689, and a grant from the Murdock Charitable Trust
- Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.


dichloroborane, RBCl₂. This reaction completes a mild and efficient route from boronic esters to reactive alkyldichloroboranes, which are promising intermediates for asymmetric syntheses.

Previously known chemistry of RBF₃K includes the reaction of PhBF₃K with Me₃SiCl in acetonitrile to form PhBF₂.^[1] Allylic RBF₃K derivatives react with aldehydes by defluoridation with BF₃-OEt₂ to give the intermediates RBF₂,^[2] or by defluoridation with Bu₄NI/H₂O.^[3] Alkylboronic esters of $\approx 99\%$ stereopurity are available by the reaction of boronic esters of chiral diols with LiCHCl2.^[4] Conversion of a stereopure (5-azido-1-phenylbutyl)boronic ester to N₃(CH₂)₃-CH(Ph)BF₃K followed by treatment with Me₃SiCl or SiCl₄ has been shown to yield 2-phenylpyrrolidine without loss of stereopurity,^[5] but the nature of the alkyldihaloborane intermediates was not investigated. The chemistry of RBF3⁻ salts has been reviewed in 2003.^[6] No previous instance of direct conversion of an RBF₂ to an RBCl₂ by means other than B-F/ B-Cl exchange has been found in a search of the literature.^[7]

The barrier to F/Cl exchange is thermodynamic. Conversion of BF₃ and SiCl₄ into BCl₃ and SiF₄ [Eq (1)] is endothermic in the gas phase, $\Delta H^{\circ}_{298} = +74.014 \text{ kJ mol}^{-1}$ or $+6.168 \text{ kJ mol}^{-1} \text{ bond}^{-1};$ $\Delta G^{\circ}_{298} = +64.755 \text{ kJ mol}^{-1}$ or +5.396 kJ mol⁻¹ bond⁻¹.^[8]

$$4BF_3 + 3SiCl_4 \rightarrow 4BCl_3 + 3SiF_4 \tag{1}$$

The ¹¹B NMR spectra of the products from treatment of potassium (cyclohexyl)trifluoroborate (CyBF₃K, 1: Scheme 1), phenyltrifluoroborate (PhBF₃K), or (5-azidopentyl)trifluoroborate [N₃(CH₂)₅BF₃K] with SiCl₄ in THF or

Scheme 1. Conversion of potassium (cyclohexyl)trifluoroborate (1) into cyclohexyl-9-BBN (4).

CH₃CN (Table 1) correspond to solvated RBCl₂ and show only minor impurities, including all SiF_nCl_(4-n) (n = 1-4),^[9] in the ¹⁹F NMR spectrum. In CH₂Cl₂ with a catalytic amount of [18] crown-6, the reaction stops at CyBF₂ or PhBF₂, and in Et₂O an unidentified mixture was obtained. The products from Me₃SiCl in all solvents were RBF₂. Commercial PhBCl₂ and PhBF₂ from PhBCl₂+NaBF₄ showed similar NMR spectra. The ¹¹B and ¹⁹F chemical shifts of RBF₂ (Table 1) are consistent with tetracoordinate boron in THF but also tricoordinate boron in CH3CN.^[10] The RBCl2 derivatives are tetracoordinate in both solvents. The stronger solvation of RBCl₂ evidently favors its formation.

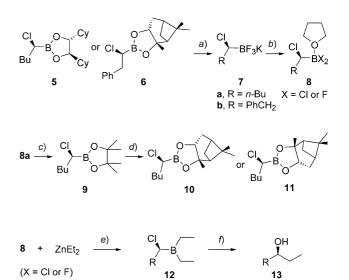
Tetrachlorosilane in acetonitrile is the preferred reagent for converting alkyltrifluoroborates and alkyl azides into secondary amines.^[5] It is now apparent that the relevant

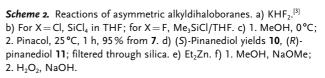
Table 1: NMR spectroscopic data for RBF_3K , RBF_2 , and $RBCl_2$ in various solvents.

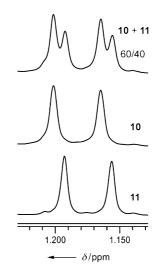
Compound	Solvent	$^{ extsf{11}}$ B, δ	¹⁹ F, δ	Other
CyBF ₃ K ^[a]	CD₃CN	5.4	-145.2 ^[b]	$J_{BF} = 63 \text{ Hz}$
CyBF ₂	THF/CDCl ₃	9.6	-149.5	
CyBF ₂	THF/CD₃CN	9.5	-149.8	
CyBF ₂	CH ₃ CN/CDCl ₃	28	-79.5	
CyBF ₂	CH ₃ CN/CD ₃ CN	33	-79.5	
CyBCl ₂	THF/CDCl ₃	15.7	none	
CyBCl ₂	CH ₃ CN/CD ₃ CN	5.7	none	
PhBF₃K	CD_3CN	4.0	-141	$J_{\rm BF} = 55 \ {\rm Hz}$
PhBF ₂	CDCl ₃	24.6	-92	
PhBF ₂	CD ₃ CN	11.6	-127.9	
PhBF ₂	THF/CD₃CN	7.2	-148.6	
PhBF ₂	THF/CDCl ₃	7.2	-149.8	
PhBCl ₂ ^[c]	CDCl ₃	55	none	
PhBCl ₂	CD ₃ CN	3.3	none	
PhBCl ₂	THF/CD₃CN	12.6	none	
$N_3(CH_2)_5BF_3K$	CDCl ₃	6.1	-139.2	
$N_3(CH_2)_5BF_2$	THF/CDCl ₃	9.5	-145.8	
$N_3(CH_2)_5BCl_2$	THF/CDCl ₃	14.6	none	
$N_3(CH_2)_5BCl_2$	PhCH ₃ /CDCl ₃	7.5	none	

[a] Cy = cyclohexyl. [b] Also measured in D₂O, $\delta = -143$ ppm. [c] Commercial PhBCl₂ (Aldrich).

factors are that RBCl₂ reacts faster than RBF₂ with alkyl azides and that RBCl₂–CH₃CN dissociates more easily than RBCl₂–thf. The more weakly solvated primary RBCl₂ in diethyl ether react with alkyl azides at 25 °C.^[11]


The higher reactivity of RBCl₂ compared to RBF₂ is significant in hydroboration chemistry. In noncoordinating solvents, the addition of an alkylsilane to RBCl₂ and an alkene results in rapid hydroboration, with clean formation of dialkylchloroborane if the molar ratio of reactants is 1:1:1.^[12] However, CyBF₂ ($\approx 0.3 \text{ M}$ in CH₂Cl₂) with Et₂SiH₂ does not hydroborate 1-hexene in 24 h at 20–25 °C. Hydroboration with sterically hindered RBCl₂ in the presence of diethyl ether has been reported.^[13] Accordingly, we briefly investigated hydroborations of alkenes with Et₂SiH₂ and CyBF₃K (1) in THF. Hydroboration is greatly retarded and no pure single product prior to trialkylborane can be produced.


Conversion of CyBCl₂ (2) and 1,5-cyclooctadiene to cyclohexyl-9-BBN (4) in refluxing THF requires ≈ 4 h, or only ≈ 1 h if an equimolar amount of 1-(dimethylamino)-naphthalene is added (Scheme 1). In accord with previous reports,^[14] the borabicyclo[4.2.1]nonane isomer 3 (¹¹B NMR: $\delta = 90.1$ ppm) formed nearly as rapidly as the [3.3.1] isomer 4, (¹¹B NMR: $\delta = 86.3$ ppm), but rearranged into 4. In contrast to the reaction in the absence of coordinating solvent,^[12] 1-hexene could not be converted to CyBClR, R = *n*-hexyl, without generating CyBR₂ (¹¹B NMR spectrum: $\delta = 85.3$ ppm).


Reaction of $CyBF_2$ with BCl_3 in CH_2Cl_2 liberates gaseous BF_3 and free $CyBCl_2$, opening the way to the previously described stepwise control of hydroboration,^[12] but this chemistry is predictably restricted to $RBCl_2$ without alkoxy or other nucleophilic substituents and has not yet been explored.

Asymmetric (α -chloroalkyl)boronic esters can be converted into (α -chloroalkyl)dichloroboranes without measur-

able loss of stereopurity. [(S)-1-Chloropentyl]boronic ester 5, prepared from the (butyl)boronic ester and LiCHCl₂,^[4,15] was converted into the trifluoroborate salt **7a**,^[5] then treated with SiCl₄ in THF to provide **8a** (Scheme 2). Treatment with methanol and pinacol yielded boronic ester 9 (95% from 7). Transesterification of separate portions with the enantiomeric (S)- and (R)-pinanediol esters produced **10** and **11** in high stereopurity, as shown by their ¹H NMR signals in the typically differentiated region,^[15] $\delta = 1.15-1.20$ ppm (Figure 1, Scheme 2).

Figure 1. Differentiated ¹H NMR signals of (*S*)- and (*R*)-pinanediol (*S*)-1-(chloropentyl)boronates **10** and **11**.

An anticipated future synthetic application of asymmetric (α -chloroalkyl)dihaloboranes such as **8** is for joining two alkyl groups, especially combinations in which neither is available from a Grignard reagent. Connection to boron by hydro-

Communications

boration is not an option because (α -chloroalkyl)hydroboranes undergo rapid self-reduction in THF,^[16] but organometallic reagents should be useful. In view of the wide variety of organozinc reagents that have become available from the work of Knochel's group,^[17] diethylzinc was chosen for preliminary tests. All four (α -chloroalkyl)dihaloboranes **8** yielded optically active secondary alcohols **13** after treatment with excess diethylzinc followed by sodium methoxide and then alkaline hydrogen peroxide. The enantiomeric purities of **13** have not been verified, but rotations are in the expected range. Yields were satisfactory for **13a**, excellent for the less volatile **13b**. Intermediate **12** from **8a**, X = F, was verified by the ¹¹B NMR signal at δ = 87.5 ppm.

Experimental Section

13a: Trifluoroborate 7a (1.57 g, 7.4 mmol) was stirred for 4 h with SiCl₄ (1.2 mL, 14.8 mmol) in THF (20 mL) at 20-25 °C under argon. Most of the excess SiCl₄ was removed by concentration under vacuum. The residue of 8a (X = Cl) in THF (20 mL) at 0°C was treated with ZnEt₂ (15 mL, 1M in hexanes). After 12-16 h MeOH (5 mL) was added at 0 °C. When gas evolution ceased, the mixture was treated with NaOMe (2 g, 37 mmol) at 0°C, then stirred for 4 h at 20-25 °C. After cooling to 0 °C, aqueous NaOH (5 mL, 3 M) and H₂O₂ (30%, 5 mL) were added. After 3 h, the mixture was worked up with ether and water and the residue was purified by flash chromatography (10% ether/pentane) and bulb to bulb distillation of 13a (0.507 g, 59%); ¹H NMR (CDCl₃): $\delta = 3.52$ (m, 1H), 1.73 (bs, 1H), 1.23–1.63 (m, 8H), 0.94 (t, J = 7.2 Hz, 3H), 0.91(t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃): $\delta = 73.3$, 36.6, 30.1, 27.8, 22.8, 14.1, 9.9 ppm; $[\alpha]_D^{22} = +7.9$ $(c = 0.03 \text{ in CHCl}_3), \ [\alpha]_{546}^{22} = +8.9 \ (c = 0.03 \text{ in CHCl}_3); \ (\text{lit.}, \ [\alpha]_D = -1.03 \text{ in CHCl}_3)$ +5.83 (CHCl₃) ("95% *ee*"));^[18] $[\alpha]_D = +6.7$ (neat), $[\alpha]_D = +8.0$ (EtOH), $[\alpha]_D = +8.33$ (Et₂O).^[19]

13b: Similar treatment of **7b** (partially epimerized, d.r. 86:14) yielded **13b** (94%); ¹H NMR (CDCl₃): $\delta = 7.18-7.34$ (m, 5H), 3.73 (m, 1H), 2.82 (AB, dd, J = 13.5, 4.2 Hz, 1H), 2.63 (AB, dd, J = 13.5, 8.4 Hz, 1H), 1.64 (bs, 1H), 1.52 (m, 2H), 0.99 ppm (t, J = 7.8 Hz, 3H); ¹³C NMR (CDCl₃): $\delta = 138.6$, 129.4, 128.5, 126.3, 74.0, 43.5, 29.5, 10.0 ppm; [α]_D = +15.7 (*ee* < 72%, *c* = 0.054 in Et₂O); [α]₅₄₆ = +20.0; no literature data available.

Received: January 7, 2004 [Z53690]

Keywords: alkyl boranes · asymmetric synthesis · boron · hydroboration

- [1] E. Vedejs, R. W. Chapman, S. C. Fields, S. Lin, M. R. Schrimpf, J. Org. Chem. 1995, 60, 3020-3027.
- [2] a) R. A. Batey, A. N. Thadani, D. V. Smil, *Tetrahedron Lett.* **1999**, 40, 4289-4292; b) R. A. Batey, A. N. Thadani, D. V. Smil,
 A. J. Lough, *Synthesis* **2000**, 990-998.
- [3] A. N. Thadani, R. A. Batey, Org. Lett. 2002, 4, 3827-3830.
- [4] a) D. S. Matteson, *Tetrahedron* 1998, 54, 10555-10607; b) D. S. Matteson, *J. Organomet. Chem.* 1999, 581, 51-65; c) D. S. Matteson, *Chem. Rev.* 1989, 89, 1535-1551.
- [5] D. S. Matteson, G. Y. Kim, Org. Lett. 2002, 4, 2153-2155.
- [6] S. Darses, J.-P. Genet, Eur. J. Org. Chem. 2003, 4313-4327.
- [7] Other than B–F/B–Cl exchange, the only examples found of any derivation of a chloroborane from a corresponding fluoroborane involved two steps, elimination of hydrogen fluoride or trimethylsilyl fluoride from a suitably substituted sterically hindered (amino)(fluoro)borane to form an iminoborane, which was isolated, followed by addition of HCl to make a B–Cl bond: a) B.

Glaser, H. Nöth, Angew. Chem. **1985**, 97, 424–425; Angew. Chem. Int. Ed. Engl. **1985**, 24, 416–417; b) G. Elter, M. Neuhaus, A. Meller, D. Schmidt-Baese, J. Organomet. Chem. **1990**, 381, 299–313.

- [8] Calculated from NIST-JANAF Thermochemical Tables (Ed.: M. W. Chase, Jr.), J. Phys. Chem. Ref. Data, Monograph 9, American Institute of Physics, 1998.
- [9] a) K. Hamada, G. A. Ozin, E. A. Robinson, *Bull. Chem. Soc. Jpn.* **1971**, *44*, 2555–2556; b) R. B. Johannesen, F. E. Brinckman, T. D. Coyle, *J. Phys. Chem.* **1968**, *72*, 660–667; c) S. G. Frankiss, *J. Phys. Chem.* **1967**, *71*, 3418–3421.
- [10] B. Wrackmeyer, R. Köster, Houben-Weyl, Vol. 13/3c (Ed.: R. Köster), Thieme, Stuttgart, 1984, p. 377-611.
- [11] H. C. Brown, M. M. Midland, A. B. Levy, J. Am. Chem. Soc. 1973, 95, 2394–2396.
- [12] a) R. Soundararajan, D. S. Matteson, J. Org. Chem. 1990, 55, 2274–2275; b) D. S. Matteson, R. Soundararajan, Organometallics 1995, 14, 4157–4166.
- [13] a) U. P. Dhokte, S. V. Kulkarni, H. C. Brown, *J. Org. Chem.* 1996, 61, 5140–5148; b) U. P. Dhokte, H. C. Brown, *Organometallics*, 1998, 17, 2891–2896.
- [14] a) H. C. Brown, N. N. Joshi, C. Pyun, B. Singaram, J. Am. Chem. Soc. 1989, 111, 1754–1758; b) U. P. Dhokte, H. C. Brown, J. Org. Chem. 1997, 62, 865–869.
- [15] D. S. Matteson, K. M. Sadhu, M. L. Peterson, J. Am. Chem. Soc. 1986, 108, 812–819.
- [16] a) D. J. Pasto, Sr., R. Snyder, J. Org. Chem. 1966, 31, 2773–2777; b) D. J. Pasto, J. Hickman, T. C. Cheng, J. Am. Chem. Soc. 1968, 90, 6258–6260.
- [17] A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, Angew. Chem. 2000, 112, 4561–4792; Angew. Chem. Int. Ed. 2000, 39, 4414– 4435.
- [18] E. Keinan, E. K. Hafeli, K. K. Seth, R. Lamed, J. Am. Chem. Soc. 1986, 108, 162–169.
- [19] a) P. A. Levene, H. L. Haller, J. Biol. Chem. 1929, 83, 579–600;
 b) Further confirmation of absolute configuration with partially resolved samples: P. A. Levene, A. Walti, J. Biol. Chem. 1932, 94, 367–372; R. L. Johnson, J. Kenyon, J. Chem. Soc. 1932, 722.