

Available online at www.sciencedirect.com

Materials Research Bulletin

Materials Research Bulletin 42 (2007) 870-874

www.elsevier.com/locate/matresbu

Ternary metal nitrides by the urea route

A. Gomathi *

Chemistry and Physics Materials Unit and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, Karnataka 560 064, India

Received 4 August 2006; received in revised form 17 August 2006; accepted 25 August 2006 Available online 29 September 2006

Abstract

Interstitial molybdenum ternary nitrides, M_nMo_3N (M = Fe and Co, n = 3; M = Ni, n = 2), can be obtained by heating the molybdate precursors, FeMoO₄, CoMoO₄ and NiMoO₄ with urea in the 1:12 molar ratio in the 900–1000 °C range. Fe₃Mo₃N and Co₃Mo₃N are obtained in pure form. The nickel nitride has the composition Ni₂Mo₃N and therefore is in admixture with nickel. All the nitrides have been characterized by various physical methods.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: A. Nitrides; B. Chemical synthesis

1. Introduction

Ternary metal nitrides, such as alkaline earth silicon nitrides (MSiN₂ with M = Ba, Sr, Ca), alkaline earth zinc nitrides (Sr₂ZnN₂, Ba₂ZnN₂) and nickel nitrides (Sr₂NiN₂ and CaNiN) have been synthesized by various means. One of the general procedures involves reacting a transition metal or a main group metal with an alkali or alkaline earth nitride or amide [1–4]. An approach to synthesize ternary nitrides of the type MWN₂ (M = Fe, Ni, Co) has been to heat the respective ternary oxide precursor in NH₃ [5–7]. The first metallic layered nitride, LiMoN₂, was synthesized by the ammonolysis of either a molecular organometallic precursor or a ternary oxide [8]. Weil and Kumta [9] reported the synthesis of Fe₃Mo₃N, FeWN₂, Ni₃Mo₃N and Ti₃AlN using complex precursors. Synthesis of Fe₃Mo₃N, has been prepared by heating a metallorganic precursor in NH₃ [11]. Alconchel et al. [12] have reported a study on the influence of preparative variables on the ammonolysis of the molybdate precursors. Both the ammonolysis as well as the plasma nitridation of FeMoO₄ and CoMoO₄ results in the respective intermetallic nitrides [13]. Synthesis of Fe₃Mo₃N and Co₃Mo₃N by mechanochemical alloying and by the nitridation of the corresponding ternary carbide has also been reported [14]. Prior et al. [15,16] have reported the synthesis of Ni_{2-x}M_xMo₃N (M = Co, Pd) and Fe_{2-x}M_xMo₃N (M = Ni, Pd, Pt) by heating a stoichiometric mixture of the respective oxides under flowing synthesis gas.

Based on our recent success with the urea route to synthesize binary metal nitrides, such as BN, TiN and NbN [17], we decided to examine whether this simple procedure can also be used to produce ternary nitrides. In this article, we report the synthesis of interstitial molybdenum ternary nitrides, M_nMo_3N (M = Fe and Co, n = 3; M = Ni, n = 2) by the reaction of the respective ternary metal oxides with urea.

^{*} Tel.: +91 80 22082825; fax: +91 80 22082760.

E-mail address: gomathi@jncasr.ac.in.

^{0025-5408/\$ –} see front matter 0 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.materresbull.2006.08.021

2. Experimental

Hydrated metal molybdates were prepared by the dropwise addition of 400 mL (0.25 M) of an aqueous solution of the metal chloride (FeC1₂, CoCl₂ or NiC1₂) to a 150-mL (0.55 M) Na₂MoO₄·(H₂O)₂ solution, and the solution stirred for 2 h to ensure completion of the reaction. The solid product was isolated by vacuum filtration and rinsed with two washings of water followed by a washing with ethanol. The solid was air-dried overnight followed by a drying at 150 °C for 24 h. The products were amorphous and had brown, violet and green colors in the case of FeMoO₄, CoMoO₄ and NiMoO₄, respectively.

To obtain crystalline ternary nitrides, a mixture of the respective oxide precursor and urea in the 1:12 molar ratio was taken in an alumina boat, placed in quartz tube and heated at 900 °C for 3 h in a N₂ atmosphere and the product quenched to room temperature. When the reaction was performed at 750 °C we obtained the nitrides, but the products were not completely crystalline.

The products formed in the above reactions were characterized by following techniques. X-ray diffraction (XRD) patterns were recorded using Cu K α radiation on a Rich-Siefert XRD-3000-TT diffractometer. Scanning electron microscope (SEM) images were obtained using a LEICA S440i SEM. Mössbauer spectra were recorded using a Wissel spectrometer. The spectrum was recorded at room temperature using a ⁵⁷Co source. The isomer shift is reported relative to metallic iron at room temperature.

Electrical resistivity of the nitride samples were measured using four probe technique from 50 to 300 K.

3. Results and discussion

On heating a 1:12 mixture of FeMoO₄ with urea, Fe₃Mo₃N with the cubic eta carbide structure was obtained. It is isostructural with η -Fe₃W₃C. The XRD pattern shown in Fig. 1(a) confirms the formation of Fe₃Mo₃N (*a* = 11.0620 Å, JCPDS card no: 48–1408). Fig. 2(a) shows a SEM image of sub-micrometer particles of Fe₃Mo₃N. The Mössbauer spectrum of Fe₃Mo₃N measured at room temperature is shown in Fig. 3. The spectrum shows a symmetric single line with an isomer shift of 0.213 mm s⁻¹ characteristic of Fe₃Mo₃N as reported in the literature [10,18]. The structure of Fe₃Mo₃N has iron atoms occupying the sites between the (NMo₆) octahedra which are corner-shared. By heating a 1:12 mixture of CoMoO₄ and urea, we obtained Co₃Mo₃N showing a XRD

Fig. 1. XRD patterns of (a) Fe₂Mo₃N (b) Co₃Mo₃N (c) Ni₂Mo₃N.

Fig. 2. SEM images of (a) Fe₂Mo₃N (b) Co₃Mo₃N (c) Ni₂Mo₃N.

pattern characteristic of cubic eta carbide structure (Fig. 1(b)), with a cell parameter of 11.0134 Å [11]. The product consisted of sub-micrometer sized particles as revealed by the SEM image in Fig. 2(b). The nitride was metallic as shown by the measurement of the temperature variation of resistivity (Fig. 4). The magnetic susceptibility data of the two nitrides agree well with literature [10,13] with Co_3Mo_3N showing a non-Curie like

Fig. 3. Mössbauer spectrum of Fe₃Mo₃N.

Fig. 4. Variation of resistivity, ρ , of Co₃Mo₃N with temperatures.

and Fe_3Mo_3N showing a Curie behavior. The reactions involved in the formation of Fe_3Mo_3N and Co_3Mo_3N is likely to be (1):

$$3C_0M_0O_4 + 8NH_3 \rightarrow C_{03}M_{03}N + 12H_2O + 7/2N_2$$
 (1)

Here, NH₃ is generated by the decomposition of urea.

On heating a 1:12 mixture of NiMoO₄ with urea we obtained a mixture of Ni₂Mo₃N and Ni. The XRD pattern of the product shown Fig. 1(c) confirms the formation of cubic Ni₂Mo₃N (a = 6.9001 Å) and reveals the presence of nickel impurity as required by the reaction (2).

$$3NiMoO_4 + 8NH_3 \rightarrow Ni_2Mo_3N + Ni + 12H_2O + 7/2N_2$$
 (2)

The structure of Ni_2Mo_3N is similar to that of Al_2Mo_3C with a filled β -Mn structure. The SEM image shown Fig. 2(c) shows sub-micrometer sized particles. The presence of nickel was ascertained by magnetic measurements which showed ferromagnetism.

4. Conclusions

In conclusion, we have been able to prepare three ternary nitrides of type M_nMo_3N (n = 3 with M = Fe and Co and n = 2 with M = Ni) by a simple reaction of the precursor molybdates with urea.

Acknowledgment

The author thanks Professor C.N.R. Rao for suggesting the problem and guidance.

References

- [1] Z.A. Gál, P.M. Mallinson, H.J. Orchard, S.J. Clarke, Inorg. Chem. 43 (2004) 3998.
- [2] G.R. Kowach, N.E. Brese, U.M. Bolle, C.J. Warren, F.J. DiSalvo, J. Solid State Chem. 154 (2000) 542.
- [3] H. Yamane, F.J. DiSalvo, J. Solid State Chem. 119 (1995) 375.
- [4] M.Y. Chern, F.J. DiSalvo, J. Solid State Chem. 88 (1990) 459.
- [5] J.D. Houmes, S. Deo, H.-C. zurLoye, J. Solid State Chem. 131 (1997) 374.
- [6] P.S. Herle, N.Y. Vasanthacharya, M.S. Hegde, J. Gopalakrishnan, J. Alloys Comp. 217 (1995) 22.
- [7] D.S. Bem, H.-C. zur Loye, J. Solid State Chem. 104 (1993) 467.
- [8] S.H. Elder, L.H. Doerrer, F.J. DiSalvo, Chem. Mater. 4 (1992) 928.
- [9] K.S. Weil, P.N. Kumta, Mater. Sci. Eng. B 38 (1996) 109.
- [10] R.N. Panda, N.S. Gajbhiye, J. Alloys Comp. 256 (1997) 102.
- [11] P.S. Herle, M.S. Hegde, K. Sooryanarayana, T.N. Guru Row, G.N. Subbanna, Inorg. Chem. 37 (1998) 4128.
- [12] S. Alconchel, F. Sapiña, D. Beltrán, A. Beltrán, J. Mater. Chem. 8 (1998) 1901.
- [13] S.K. Jackson, R.C. Layland, H.-C. zurLoye, J. Alloys Comp. 291 (1999) 94.
- [14] C.J.H. Jacobsen, J.J. Zhu, H. Lindeløv, J.Z. Jiang, J. Mater. Chem. 12 (2002) 3113.
- [15] T.J. Prior, P.D. Battle, J. Solid State Chem. 172 (2003) 138.
- [16] T.J. Prior, S.E. Oldham, V.J. Couper, P.D. Battle, Chem. Mater. 17 (2005) 1867.
- [17] A. Gomathi, C.N.R. Rao, Mater. Res. Bull. 41 (2006) 941.
- [18] B. Koopmans, P.J. Schurer, F.V. Woude, Phys. Rev. B 35 (1987) 3005.

874