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Abstract—Six regioisomeric nonracemic dimethylphenyl glycerol ethers were synthesized by asymmetric 
dihydroxylation of the corresponding allyl dimethylphenyl ethers. The enantioselectivity of the reaction with  
o-methyl derivatives was lower (down to 34% ee) than with m-methylphenyl ethers (up to 86% ee). Enantio-
meric 3-(3,4-dimethylphenoxy)propane-1,2-diols were used to obtain enantiomerically pure physiologically 
active amino alcohols and their derivatives. 
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Since the beginning of the XXI century, newly 
designed drugs are represented mainly by enantio-
merically pure chiral compounds [1], and this trend 
can be regarded as long-term. For example, 45 new 
drugs have been approved in the USA in 2015, 12 of 
which were complex biological products of the protein 
or other nature, and 33 were individual chiral com-
pounds. The latter, with only one exception, were pure 
enantiomers [2]. The needs of pharmacology and me-
dicinal chemistry stimulate extension of the range of 
accessible enantiomerically pure compounds and study 
of their properties which often remain unknown or 
relevant data are contradictory. 

Chiral aromatic glycerol ethers of the general 
formula ArOCH2CH(OH)CH2OH exhibit diverse bio-
logical activity [3–5] and are also used as synthetic 
precursors to medicines possessing various activities 
[6–9]. In this work we studied regioisomeric phenyl 
glycerol ethers 1 bearing two methyl groups in the 
aromatic ring (Scheme 1). Compounds of this series 
were used in the synthesis of enantiopure drugs such as 
mexiletine [10], xibenolol [11], and metaxalone [12]. 
Aminopropanol 2 hydrochloride coded as T0502-1048 
was reported as a promising β2-adrenoceptor anta-
gonist [13]. Furthermore, there are patent data ac-
cording to which stereoisomers of 1-(3,4-dimethyl-
phenoxy)-3-(morpholin-4-yl)propan-2-ol (3) show 
useful activities (but different for the racemate and 

individual enantiomers) in the treatment of neuro-
degenerative and neuromuscular disorders, as well as 
of Friedreich’s ataxia [14]. Nonracemic 3-(2,4-, 2,5-, 
and 3,4-dimethylphenoxy)propane-1,2-diols 1b, 1c, 
and 1e were not reported. Both enantiomers of 3,5-di-
methylphenyl derivative 1f were isolated in the course 
of multistep syntheses from natural mannitol [15]. Pure 
enantiomers of 1a and 1d were isolated by us pre-
viously as a result of spontaneous optical resolution 
upon crystallization [10, 11, 16]. Therefore, the goal of 
the present work was to develop a general procedure 
for the synthesis of pure enantiomers of 1 by asym-
metric dihydroxylation of the corresponding allyl 
phenyl ethers, estimate advantages and disadvantages 
of this approach, and obtain enantiomerically pure 
practically useful amino alcohols using diols 1 as 
precursors. 

The Sharpless asymmetric dihydroxylation has 
found wide application in modern organic chemistry 
[17, 18], which is largely determined by the acces-
sibility of the commercial chiral catalysts AD-mix-α 
and AD-mix-β. In most cases, dihydroxylation of allyl 
ethers derived from para-substituted phenols was 
characterized by a satisfactory enantioselectivity (89–
95% ee). The presence of an ortho substituent in the 
initial ether reduced the enantioselectivity (28–63% ee; 
in particular 36% ee for (S)-1d [19]). It is also believed 
that AD-mix-β favors S configuration of the newly 
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Scheme 1. 
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formed chiral center and that AD-mix-α gives rise  
to the corresponding R isomers; the only known 
exception is dihydroxylation of allyl o-nitrophenyl 
ether [20]. 

Precursors to the target compounds, ethers 4a–4f 
were synthesized in moderate yields (~50–70%) from 
the corresponding phenols 5a–5f and allyl bromide in 
the presence of potassium carbonate (Scheme 2). In 
fact, o-methyl derivatives 1b–1d were obtained with 
reduced ee values (35–53%), whereas the dihydroxyla-
tion of 4a, 4e, and 4f gave diols 1a, 1e, and 1f with ee 
values exceeding 80%. In the latter cases, the substrate 
molecules contained a methyl group in the meta 
position; however, this factor may not be related to the 
obtained result. It should be noted that all diols 1a–1e 
can be brought to a high degree of enantiomeric purity 
by recrystallization. 

Enantiomeric diols 1a and 1f were converted by us 
previously to xibenolol and metaxalone, respectively 
[11, 12]. In this work, amino alcohols 2 and 3 were 
synthesized from enantiomeric diols 1e according to 
Scheme 3. Aryloxypropanediols themselves can be 
precursors to amino alcohols of the general formula 
ArOCH2CH(OH)CH2NR1R2, though their preliminary 
activation via conversion to cyclic sulfites [21, 22] or 
oxiranes [19] is necessary for this purpose. The latter 
transformation offers a number of advantages. A re-
liable procedure for the synthesis of oxiranes from 
vicinal diols is based on the Mitsunobu reaction [23]. 
The reaction of 1e with triphenylphosphine and diethyl 
azodicarboxylate was accompanied by a small loss of 
enantiomeric purity [from 99% ee for (R)-1e to 96% ee 
for (R)-6]. By analogy with the cyclizations performed 
by us previously [10, 11], we presumed that the initial 

1, 4, 5, 2,3-Me2 (a), 2,4-Me2 (b), 2,5-Me2 (c), 2,6-Me2 (d), 3,4-Me2 (e), 3,5-Me2 (f); 2, X = CH2; 2 · HCl = T0502-1048; 3, X = O. 
1, ee = 86 (a), 50 (b), 53 (c), 35 (d), 83 (e), 82% (f). 
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Scheme 3. 
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configuration of the chiral center is retained. Pure 
enantiomers (R)-2 and (R)-3 were synthesized by 
heating epoxide (R)-6 with an equimolar amount of 
piperidine or morpholine in boiling ethanol in the 
presence of a catalytic amount of pyridine. Taking into 
account that enantiomer (S)-3 was reported [14] to 
possess the highest physiological activity, from diol 
(S)-1e we synthesized enantiomerically pure amino 
alcohols (S)-3 and (S)-2 according to a similar scheme. 
Amino alcohols 2 and 3 were converted to hydro-
chlorides by passing gaseous hydrogen chloride 
through a solution of the free base in acetone. All 
isolated compounds were fully characterized. 

It should be noted that there are no published data 
on enantiomeric amines 2 and 3 hydrochlorides, 
whereas the optical rotation of free base 3 given in [14] 
is erroneous since the value [α]D

20 = –13.10° (c = 0.6, 
CHCl3) was reported for both enantiomers [14]. We 
obtained the following data: (R)-3: [α]D

20 = +19.5° (c = 
1.0, CHCl3), 96% ee; (S)-3: [α]D

20 = –19.7° (c = 1.05, 
CHCl3), 96% ee. 

Thus, the Sharpless asymmetric dihydroxylation is 
appropriate for the synthesis of chiral 3-(3,4-, 3,5-, and 
2,3-dimethylphenoxy)propane-1,2-diols which can be 
used to obtain physiologically active compounds. The 
reactions with 2,4-, 2,5-, and 2,6-dimethyl analogs are 
characterized by a low enantioselectivity, so that alter-
native approaches should be sought for in these cases. 

EXPERIMENTAL 

The NMR spectra were recorded on a Bruker 
Avance-400 spectrometer at 399.9 MHz for 1H and 
100.6 MHz for 13C using CDCl3 as solvent and refer-

ence. The IR spectra were recorded in KBr on a Bruker 
Tensor 27 spectrometer. The optical rotations were 
measured on a Perkin Elmer 341 polarimeter. The 
melting points were determined with a Boetius hot 
stage and are uncorrected. The elemental analyses 
were obtained on a Euro Vector EA3000 CHN ana-
lyzer. Silufol UV-254 plates were used for analytical 
TLC; spots were visualized under UV light or by 
treatment with iodine vapor. HPLC analyses were 
performed on a Shimadzu LC-20AD chromatograph 
equipped with an SPD-20A UV detector (λ 275 nm); 
Chiralpak AD-RH (0.46 × 25 cm), Chiralpak AS-H 
(0.46 × 25 cm), or Chiralcel OD (0.46 × 25 cm) column 
(Daicel), eluent flow rate 1 mL/min. The correspond-
ing racemic compounds were used as calibration stan-
dards. Racemic diols rac-1a–rac-1f were synthesized 
from racemic 3-chloropropane-1,2-diol and the corre-
sponding phenols by analogy with the procedure 
reported in [10]; their melting points were as follows: 
rac-1a: mp 80–89°C (81.5–90°C [16]); rac-1b: 91– 
93°C (92–93°C [24]); rac-1c: 67–69°C (69–70°C [25]); 
rac-1d: 50–52°C (49–50°C [10]); rac-1e: 75–77°C 
(75–76°C [25]); rac-1f: 65–66°C (66–67°C [25]). 

Racemic 3-chloropropane-1,2-diol and substituted 
phenols (Acros Organics), allyl bromide (Alfa Aesar), 
and AD-mix-α and AD-mix-β (Aldrich) were com-
mercial products. 

General procedure for the synthesis of allyl aryl 
ethers 4a–4f. A suspension of 1.00 g (8.3 mmol) of 
phenol 5a–5f, 1.06 g (8.8 mmol) of allyl bromide, and 
1.21 g (8.8 mmol) of ground fused potassium car-
bonate in 13 mL of anhydrous acetone was refluxed for 
about 12 h (TLC, Rf ~ 0.7, hexane–ethyl acetate, 9 : 1). 
The mixture was diluted with 40 mL of water and 
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extracted with diethyl ether (3 × 50 mL). The extract 
was washed with 20 mL of a 1 M aqueous solution of 
sodium hydroxide and dried over MgSO4, the solvent 
was distilled off under reduced pressure, and the oily 
residue was purified by column chromatography on 
silica gel using hexane–ethyl acetate (9 : 1 to 8 : 2) as 
eluent. 

2,3-Dimethyl-1-(prop-2-en-1-yl)benzene (4a). 
Yield 69%, nD

20 = 1.5161. 1H NMR spectrum, δ, ppm: 
2.23 s (3H, CH3), 2.31 s (3H, CH3), 4.56 d.t (2H, 
OCH2, J = 5.0, 1.6, 1.6 Hz), 5.30 d.d.d (1H, =CH2, J = 
10.6, 3.0, 1.5 Hz), 5.47 d.d.d (1H, =CH2, J = 17.3, 3.4, 
1.7 Hz), 6.07–6.16 m (1H, =CH), 6.74 d (1H, 6′-H, J = 
8.2 Hz), 6.82 d (1H, 4′-H, J = 7.5 Hz), 7.07 d (1H,  
5′-H, J = 7.9 Hz) (cf. [26]). 

2,4-Dimethyl-1-(prop-2-en-1-yl)benzene (4b). 
Yield 52%, nD

20 = 1.5125. 1H NMR spectrum, δ, ppm: 
2.23 s (3H, CH3), 2.26 s (3H, CH3), 4.52 d.t (2H, 
OCH2, J = 5.0, 1.6, 1.6 Hz), 5.26 d.d.d (1H, =CH2, J = 
10.6, 3.0, 1.5 Hz), 5.42 d.d.d (1H, =CH2, J = 17.3, 3.4, 
1.7 Hz), 6.02–6.12 m (1H, =CH), 6.72 d (1H, 3′-H, J = 
8.2 Hz), 6.92–6.96 m (2H, 5′-H, 6′-H) (cf. [27]). 

2,5-Dimethyl-1-(prop-2-en-1-yl)benzene (4c). 
Yield 56%, nD

20 = 1.5120. 1H NMR spectrum, δ, ppm: 
2.23 s (3H, CH3), 2.33 s (3H, CH3), 4.54 d.t (2H, 
OCH2, J = 5.0, 1.6, 1.6 Hz), 5.28 d.d.d (1H, =CH2,  
J = 10.6, 3.1, 1.5 Hz), 5.45 d.d.d (1H, =CH2, J = 17.3, 
3.3, 1.7 Hz), 6.05–6.14 m (1H, =CH), 6.67 d.d (2H,  
4′-H, 6′-H, J = 18.3, 7.4 Hz), 7.03 d (1H, 3′-H, J =  
7.5 Hz) (cf. [28]). 

2,6-Dimethyl-1-(prop-2-en-1-yl)benzene (4d). 
Yield 61%, nD

20 = 1.5005. 1H NMR spectrum, δ, ppm: 
2.37 s (6H, CH3), 4.38 d.t (2H, OCH2, J = 5.6, 1.5,  
1.5 Hz), 5.33 d.d.d (1H, =CH2, J = 10.4, 2.9, 1.4 Hz), 
5.51 d.d.d (1H, =CH2, J = 17.2, 3.3, 1.7 Hz), 6.24– 
6.14 m (1H, =CH), 6.99 d.d (1H, 4′-H, J = 8.2,  
6.2 Hz), 7.08 d (2H, 3′-H, 5′-H, J = 7.7 Hz). 

3,4-Dimethyl-1-(prop-2-en-1-yl)benzene (4e). 
Yield 73%, nD

20 = 1.5095. 1H NMR spectrum, δ, ppm: 
2.20 s (3H, CH3), 2.24 s (3H, CH3), 4.51 d.t (2H, 
OCH2, J = 5.3, 1.5, 1.5 Hz), 5.27 d.d.d (1H, =CH2, J = 
10.5, 2.9, 1.4 Hz), 5.40 d.d.d (1H, =CH2, J = 17.3, 3.3, 
1.6 Hz), 6.01–6.11 m (1H, =CH), 6.66 d.d (1H, 6′-H,  
J = 8.3, 2.7 Hz), 6.74 d (1H, 2′-H, J = 2.6 Hz), 7.02 d 
(1H, 5′-H, J = 8.3 Hz). 

3,5-Dimethyl-1-(prop-2-en-1-yl)benzene (4f). 
Yield 71%, nD

20 = 1.5110. 1H NMR spectrum, δ, ppm: 
2.30 s (6H, CH3), 4.52 d.t (2H, OCH2, J = 5.3, 1.5,  
1.5 Hz), 5.28 d.d.d (1H, =CH2, J = 10.5, 2.9, 1.4 Hz), 

5.42 d.d.d (1H, =CH2, J = 17.3, 3.3, 1.7 Hz), 6.02– 
6.12 m (1H, =CH), 6.57 s (2H, 2′-H, 6′-H), 6.62 t (1H, 
4′-H, J = 0.6 Hz) (cf. [28]). 

Sharpless asymmetric dihydroxylation (general 
procedure) [19]. A suspension of 1.4 g of AD-mix-α in 
a mixture of 5 mL of tert-butyl alcohol and 5 mL of 
water was cooled to 0°C, 1 mmol of allyl phenyl ether 
4a–4f was added, and the mixture was stirred for 20 h 
at 0°C. The mixture was then treated with 1.5 g of 
sodium sulfite and stirred for 30 min at room tempera-
ture. The organic layer was separated, and the aqueous 
layer was extracted with ethyl acetate (3 × 30 mL). The 
extracts were combined with the organic phase, 
washed with 20 mL of brine, and dried over MgSO4, 
the solvent was removed under reduced pressure, and 
the residue was purified by silica gel column chro-
matography using hexane–ethyl acetate (8 : 2 to 4 : 6) as 
eluent. The enantiomeric composition of the product 
was determined by HPLC. The enantiomeric purity 
was increased by recrystallization from hexane–ethyl 
acetate (3 : 1). 

(R)-3-(2,3-Dimethylphenoxy)propane-1,2-diol 
(R-1a). Yield 0.15 g (77%), mp 95–102°C, [α]D

20 = 
+9.6° (c = 1.0, MeOBu-t), 86.1% ee [Chiralcel OD, 
20°C; hexane–propan-2-ol, 4 : 1; tR, min: 8.9 (major), 
10.7 (minor)]; mp 102–103°C (after recrystallization); 
published data: mp 101–102.5°C [11, 16], [α]D

20 = 
+13.4° (c = 1.0, MeOBu-t), [α]D

20 = +1.4° (c = 1.0, 
EtOH), 99.3% ee. IR spectrum: ν 3267 cm–1 (OH).  
1H NMR spectrum, δ, ppm: 1.99 br.s (2H, OH), 2.16 s 
(3H, CH3), 2.28 s (3H, CH3), 3.78 d.d (1H, CH2OH,  
J = 11.4, 5.5 Hz), 3.87 d.d (1H, CH2OH, J = 11.4,  
3.9 Hz), 4.04 d (2H, OCH2, J = 5.3 Hz), 4.11–4.16 m 
(1H, CHOH), 6.72 d (1H, 6′-H, J = 7.6 Hz), 6.81 d 
(1H, 4′-H, J = 7.6 Hz), 7.05 t (1H, 5′-H, J = 7.9 Hz). 

(R)-3-(2,4-Dimethylphenoxy)propane-1,2-diol 
(R-1b). Yield 0.16 g (82%; after column chromatog-
raphy), mp 90–93°C, [α]D

20 = +5.0° (c = 1.0, MeOBu-t), 
50.5% ee [Chiralpak AD-RH, 26°C, acetonitrile–water, 
22.5 : 77.5, 0.4 mL/min; tR, min: 25.0 (major), 28.5 
(minor)]. After recrystallization: mp 103–104°C,  
[α]D

20 = +0.9° (c = 1.0, EtOH), [α]D
20 = +11.7° (c = 1.0, 

MeOBu-t), 99.4% ee. IR spectrum: ν 3224 cm–1 (OH). 
1H NMR spectrum, δ, ppm: 2.15 s (3H, CH3), 2.22 s 
(3H, CH3), 2.65 s (2H, OH), 3.72 d.d (1H, CH2, J = 
11.5, 5.7 Hz), 3.80 d.d (1H, CH2, J = 11.5, 3.7 Hz), 
3.96 d (2H, OCH2, J = 5.2 Hz), 4.04–4.09 m (1H, 
CHOH), 6.67 d (1H, 6′-H, J = 8.1 Hz), 6.88–6.91 m 
(2H, 3′-H, 5′-H). 13C NMR spectrum, δC, ppm: 16.1 
(2′-CH3), 20.4 (4′-CH3), 63.9 (CH2), 69.5 (OCH2), 70.6 
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(CH), 111.4 (C6′), 126.5 (C2′), 127.1 (C5′), 130.3 (C4′), 
131.7 (C3′), 154.4 (C1′). Found, %: C 67.52; H 8.14. 
C11H16O3. Calculated, %: C 67.32; H 8.22. 

(R)-3-(2,5-Dimethylphenoxy)propane-1,2-diol 
(R-1c). Yield 0.15 g (77%), mp 71–76°C, [α]D

20 = +5.2° 
(c = 1.0, MeOBu-t), 53.0% ee [Chiralpak AS-H, 28°C, 
hexane–propan-2-ol, 9 : 1; tR, min: 10.7 (major), 12.2 
(minor)]. After recrystallization: mp 80–82°C, [α]D

20 = 
+0.9° (c  = 1.1, EtOH), [α]D

20 = +9.5° (c  = 1.1,  
MeOBu-t), 99.9% ee. IR spectrum: ν 3313 cm–1 (OH). 
1H NMR spectrum, δ, ppm: 2.19 s (3H, CH3), 2.31 s 
(3H, CH3), 3.41 s (2H, OH), 3.77 d.d (1H, CH2OH, J = 
11.5, 5.9 Hz), 3.86 d.d (1H, CH2OH, J = 11.5, 3.6 Hz), 
4.01 d (2H, OCH2, J = 5.3 Hz), 4.10–4.15 m (1H, 
CHOH), 6.65 s (1H, 6′-H), 6.70 d (1H, 4′-H, J =  
7.5 Hz), 7.01 d (1H, 3′-H, J = 7.5 Hz). 13C NMR spec-
trum, δC, ppm: 15.8 (2′-CH3), 21.3 (5′-CH3), 63.9 
(CH2), 69.1 (OCH2), 70.7 (CH), 112.3 (C6′), 121.6 
(C4′), 123.5 (C2′), 130.5 (C3′), 136.8 (C5′), 156.4 (C1′). 
Found, %: C 67.20; H 8.34. C11H16O3. Calculated, %: 
C 67.32; H 8.22. 

(R)-3-(2,6-Dimethylphenoxy)propane-1,2-diol 
(R-1d). Yield 0.14 g (71%), mp 53–66°C, [α]D

20 = +1.4° 
(c = 1.0, MeOBu-t), 35% ee [Chiralcel OD, 20°C, 
hexane–propan-2-ol, 4 : 1; tR, min: 8.6 (minor), 11.1 
(major)]. After recrystallization: mp 75–76°C (75–
75.5°C [10]), [α]D

20 = +5.6° (c = 1.0, MeOBu-t), [α]D
20 = 

–2.5° (c  = 1.0, EtOH), 99.3%  ee .  IR spectrum:  
ν 3265 cm–1 (OH). 1H NMR spectrum, δ, ppm:  
2.23 br.s (2H, OH), 2.29 s (6H, CH3), 3.79–3.91 m 
(4H, CH2O, CH2OH), 4.08–4.12 m (1H, CH), 6.94 d.d 
(1H, 4′-H, J = 8.3, 6.5 Hz), 7.02 d (2H, 3′-H, 5′-H,  
J = 7.3 Hz). 

(R)-3-(3,4-Dimethylphenoxy)propane-1,2-diol 
(R-1e). Yield 0.17 g (87%), mp 90–95°C, [α]D

20 = –6.2° 
(c = 1.0, EtOH), 83% ee [Chiralcel OD, 22°C, hexane–
propan-2-ol, 4 : 1; tR, min: 9.4 (major), 14.5 (minor)]. 
After recrystallization: mp 96–98°C, [α]D

20 = –7.7° (c = 
1.0, EtOH), [α]D

20 = +2.3° (c = 1.0, MeOBu-t), [α]D
20 =  

–2.9° (c = 1.1, CHCl3), 99.7% ee. IR spectrum:  
ν 3227 cm–1 (OH). 1H NMR spectrum, δ, ppm: 2.19 s 
(3H, 4′-CH3), 2.22 s (3H, 3′-CH3), 2.72 s (2H, OH), 
3.73 d.d (1H, CH2OH, J = 11.5, 5.6 Hz), 3.83 d.d (1H, 
CH2OH, J = 11.5, 3.8 Hz), 3.97–4.03 m (2H, OCH2), 
4.07–4.11 m (1H, CHOH), 6.65 d.d (1H, 6′-H, J = 8.2, 
2.7 Hz), 6.73 d (1H, 2′-H, J = 2.7 Hz), 7.02 d (1H,  
5′-H, J = 8.2 Hz). 13C NMR spectrum, δC, ppm: 18.8 
(4′-CH3), 20.0 (3′-CH3), 63.8 (CH2), 69.2 (OCH2), 70.6 
(CH), 111.5 (C6′), 116.2 (C2′), 129.2 (C4′), 130.4 (C5′), 
137.8 (C3′), 156.6 (C1′). Found, %: C 67.18; H 8.45. 
C11H16O3. Calculated, %: C 67.32; H 8.22. 

(S)-3-(3,4-Dimethylphenoxy)propane-1,2-diol  
(S-1e) was synthesized according to the general proce-
dure using AD-mix-β. Yield 0.16 g (84%), mp 90– 
95°C, [α]D

20 = +5.6° (c = 1.2, EtOH), 89% ee [tR, min: 
9.0 (minor), 13.4 (major)]. After recrystallization:  
mp 96–97.5°C, [α]D

20 = +6.7° (c = 1.0, EtOH), 99.5% 
ee. Found, %: C 67.20; H 8.05. C11H16O3. Calculated, 
%: C 67.32; H 8.22. The NMR spectra of (S)-1e were 
similar to those of (R)-1e. 

(R)-3-(3,5-Dimethylphenoxy)propane-1,2-diol 
(R-1f). Yield 0.13 g (66%), mp 66–69°C, [α]D

20 = –6.1° 
(c = 1.0, EtOH), 81.9% ee [Chiralcel OD, 22°C, 
hexane–propan-2-ol, 4 : 1; tR, min: 6.7 (major), 9.3 
(minor)]. After recrystallization: mp 73–74°C (74.5–
75.5°C [15]), [α]D

20 = –7.8° (c = 1.0, EtOH), [α]D
20 = 

+2.3° (c = 1.0, MeOBu-t), [α]D
20 = –4.4° (c = 1.1, 

CHCl3), 99.9% ee. IR spectrum: ν 3260 cm–1 (OH).  
1H NMR spectrum, δ, ppm: 2.28 s (6H, CH3), 2.77 s 
(2H, OH), 3.73 d.d (1H, CH2OH, J = 11.5, 5.6 Hz), 
3.82 d.d (1H, CH2OH, J = 11.5, 3.6 Hz), 3.97–4.03 m 
(2H, OCH2), 4.06–4.11 m (1H, CHOH), 6.55 s (2H,  
2′-H, 6′-H), 6.64 s (1H, 4′-H). 13C NMR spectrum, δC, 
ppm: 21.4 (3′-CH3, 5′-CH3), 63.8 (CH2), 69.2 (OCH2), 
70.4 (CH), 112.4 (C2′, C6′), 123.1 (C4′), 139.4 (C3′, C5′), 
158.5 (C1′). 

Mitsunobu intramolecular etherification of diols 
1e (general procedure) .  A solution of 1.07 g  
(6.12 mmol) of diethyl azodicarboxylate in 10 mL of 
anhydrous THF was added dropwise over a period of  
5 min to a solution of 1.00 g (5.10 mmol) of diol 1e 
and 1.61 g (6.12 mmol) of triphenylphosphine in  
10 mL of anhydrous THF with stirring at 4°C under 
argon. The mixture was then refluxed for 24 h, the 
solvent was removed under reduced pressure, and the 
residue was purified by column chromatography on 
silica gel (0.125–0.25 mm) using petroleum ether–
methylene chloride–ethyl acetate (9 : 2 : 1 to 8 : 2 : 1) as 
eluent to isolate ~0.59 g (65%) of oily oxirane 6;  
Rf 0.45 (petroleum ether–methylene chloride–ethyl 
acetate, 4 : 2 : 1). 

(R)-2-[(3,4-Dimethylphenoxy)methyl]oxirane  
(R-6) was synthesized from diol (R)-1e. Yield 0.59 g 
(65%), [α]D

20 = –3.1° (c = 1.0, CHCl3), [α]3
2

6
0

5 = +2.1°  
(c = 1.0, CHCl3); [α]D

20 = –11.2° (c = 1.1, EtOH),  
[α]3

2
6
0

5 = –24.3° (c = 1.1, EtOH); 95.2% ee [Chiralcel 
OD, 25°C; hexane–propan-2-ol, 9 : 1; tR, min: 7.8 
(major), 10.0 (minor)]. 1H NMR spectrum, δ, ppm: 
2.25 s (3H, 4′-CH3), 2.29 s (3H, 3′-CH3), 2.77 d.d (1H, 
CH2, J = 5.1, 2.7 Hz), 2.91 d.d (1H, CH2, J = 5.1,  
4.3 Hz), 3.35–3.39 m (1H, CH), 3.97 d.d (1H, OCH2,  
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J = 11.1, 5.6 Hz), 4.21 d.d (1H, OCH2, J = 11.1,  
3.2 Hz), 6.72 d.d (1H, 6′-H, J = 8.3, 2.7 Hz), 6.80 d 
(1H, 2′-H, J = 2.6 Hz), 7.08 d (1H, 5′-H, J = 8.3 Hz). 
13C NMR spectrum, δC, ppm: 18.7 (4′-CH3), 19.9  
(3′-CH3), 44.6 (CH2), 50.2 (CH), 68.8 (OCH2), 111.6 
(C6′), 116.3 (C2′), 129.1 (C4′), 130.3 (C5′), 137.7 (C3′), 
156.7 (C1′) (cf. [14]). 

(S)-2-[(3,4-Dimethylphenoxy)methyl]oxirane  
(S-6) was synthesized from diol (S)-1e. Yield 0.50 g 
(55%); [α]D

20 = +2.1° (c = 1.0, CHCl3), [α]3
2

6
0
5 = –2.7°  

(c = 1.0, CHCl3); [α]D
20 = +10.4° (c = 1.0, EtOH),  

[α]3
2

6
0

5 = +23.1° (c = 1.0, EtOH); 95.9% ee [Chiralcel 
OD, 25°C; hexane–propan-2-ol, 9 : 1; tR, min: 7.8 
(minor), 10.0 (major)]. The NMR spectra of (S)-6 were 
similar to those of (R)-6. 

rac-2-[(3,4-Dimethylphenoxy)methyl]oxirane 
(rac-6) was synthesized from diol rac-1e. Yield  
0.54 g (60%). 

Amino alcohols 2 and 3 (general procedure). A so-
lution of 0.20 g (1.12 mmol) of oxirane 6, 1.12 mmol 
of piperidine or morpholine, and a catalytic amount of 
pyridine in 10 mL of ethanol was refluxed for 4 h with 
stirring. The mixture was concentrated under reduced 
pressure, and the residue was purified by column 
chromatography on silica gel (0.125–0.25 mm) using 
methylene chloride–methanol (100 : 3) as eluent. Com-
pounds 2 and 3 were isolated as oily materials in 
almost quantitative yield (≥97%). The free bases were 
converted to the corresponding hydrochlorides by 
passing gaseous hydrogen chloride through a solution 
of the base in acetone, followed by recrystallization of 
the precipitated salt from methanol–ethyl acetate. 

(R)-1-(3,4-Dimethylphenoxy)-3-(piperidin-1-yl)-
propan-2-ol (R-2) was synthesized from oxirane (R)-6 
and piperidine. Yield 0.27 g (92%), Rf 0.03 (CH2Cl2); 
[α]D

20 = +27.4° (c = 1.1, CHCl3), [α]3
2

6
0
5 = +77.2° (c = 

1.1, CHCl3); [α]D
20 = –1.2° (c = 1.1, EtOH), [α]3

2
6
0

5 =  
–5.1° (c = 1.1, EtOH); 96% ee [Chiralcel OD, 22°C; 
hexane–propan-2-ol–diethylamine, 6 : 4 : 0.01; tR, min: 
5.5 (major), 7.0 (minor)]. 1H NMR spectrum, δ, ppm: 
1.47–1.51 m (2H, CH2) and 1.59–1.66 m (4H, CH2) 
(piperidine), 2.21 s (3H, 4′-CH3), 2.25 s (3H, 3′-CH3), 
2.37–2.43 m (2H, NCH2, piperidine), 2.48–2.55 m 
(2H, NCH2), 2.60–2.65 m (2H, NCH2, piperidine), 
3.85 s (1H, OH), 3.93–4.00 m (2H, OCH2), 4.07– 
4.13 m (1H, CH), 6.70 d.d (1H, 6′-H, J = 8.3, 2.6 Hz), 
6.78 d (1H, 2′-H, J = 2.6 Hz), 7.04 d (1H, 5′-H, J =  
8.3 Hz). 13C NMR spectrum, δC, ppm: 18.7 (4′-CH3), 
19.9 (3′-CH3), 24.2 and 26.0 (CH2, piperidine), 54.7 
(NCH2, piperidine), 61.4 (NCH2), 65.5 (CH), 70.6 

(OCH2), 111.4 (C6′), 116.2 (C2′), 128.6 (C4′), 130.1 
(C5′), 137.4 (C3′), 156.9 (C1′).  

(R)-1-(3,4-Dimethylphenoxy)-3-(piperidin-1-yl)-
propan-2-ol hydrochloride [(R)-2·HCl]. mp 175–
176°C; [α]D

20 = +40.8° (c = 1.0, CHCl3), [α]3
2

6
0
5 = 

+129.3° (c = 1.0, CHCl3), [α]D
20 = +26.0° (c = 1.0, 

EtOH), [α]3
2

6
0
5 = +78.2° (c = 1.0, EtOH); 99.7% ee [the 

HPLC conditions were the same as for (R)-2; tR, min: 
5.5 (major), 7.0 (minor)]. IR spectrum, ν, cm–1: 3268 
(OH), 2726, 2651, 2633, 2586, 2542 (NH+). 1H NMR 
spectrum, δ, ppm: 1.39–1.48 m (1H) and 1.84–1.87 m 
(3H) (CH2, piperidine), 2.16 s (3H, 4′-CH3), 2.19 s 
(3H, 3′-CH3), 2.24–2.36 m (2H, CH2, piperidine), 
2.72–2.88 m and 3.14–3.27 m (2H each, N+CH2, 
piperidine), 3.67 d (2H, N+CH2, J = 9.6 Hz), 3.85 d.d 
(1H, OCH2, J = 9.5, 7.9 Hz), 4.09 d.d (1H, OCH2, J = 
9.5, 4.6 Hz), 4.54–4.63 m (1H, CH), 5.44 br.s (1H, 
OH), 6.59 d.d (1H, 6′-H, J = 8.2, 2.5 Hz), 6.67 s (1H, 
2′-H), 6.99 d.d (1H, 5′-H, J = 8.2, 5.0 Hz), 11.25 br.s 
(1H, NH+). 13C NMR spectrum, δC, ppm: 18.9  
(4′-CH3), 20.1 (3′-CH3); 22.0, 22.76, 22.83 (CH2, 
piperidine); 54.2 (NCH2); 56.0, 56.2, 62.6, 62.9 
(NCH2, piperidine); 64.4 (CH), 69.2 (OCH2), 111.6 
(C6′), 116.1 (C2′), 129.6 (C4′), 130.5 (C5′), 138.0 (C3′), 
156.2 (C1 ′). Found, %: C 64.29; H 8.94; N 4.45. 
C16H26ClNO2. Calculated, %: C 64.09; H 8.74; N 4.67. 

(S)-1-(3,4-Dimethylphenoxy)-3-(piperidin-1-yl)-
propan-2-ol (S-2) was synthesized from oxirane (S)-6 
and piperidine. Yield 0.29 g (98%), [α]D

20 = –26.9°  
(c = 1.0, CHCl3), 95% ee [tR, min: 5.5 (minor),  
7.0 (major)].  

(S)-1-(3,4-Dimethylphenoxy)-3-(piperidin-1-yl)-
propan-2-ol hydrochloride [(S)-2 · HCl]. mp 175.5–
177.5°C; [α]D

20 = –40.6° (c = 1.0, CHCl3), [α]3
2

6
0

5 =  
–128.2°  (c  = 1 .0,  CHCl3) ,  99.4% ee  [ t R,  min:  
5.5 (minor), 7.0 (major)]. The NMR spectra were 
similar to those of (R)-2 · HCl. 

rac-1-(3,4-Dimethylphenoxy)-3-(piperidin-1-yl)-
propan-2-ol (rac-2) was synthesized from oxirane 
rac-6 and piperidine. Yield 0.29 g (98%), mp 75–77°C 
(from aqueous EtOH) [29]).  

rac-1-(3,4-Dimethylphenoxy)-3-(piperidin-1-yl)-
propan-2-ol hydrochloride (rac-2 · HCl). mp 171–
174°C (171–173°C [29]). IR spectrum, ν, cm–1: 3234 
(OH), 2730, 2681, 2543 (NH+). 

(R)-1-(3,4-Dimethylphenoxy)-3-(morpholin-4- 
yl)propan-2-ol [(R)-3] was synthesized from oxirane 
(R)-6 and morpholine. Yield 0.28 g (95%), Rf 0.03 
(CH2Cl2); [α]D

20 = +19.5° (c = 1.0, CHCl3), [α]3
2

6
0
5 = 

+56.1° (c = 1.0, CHCl3); published data [14]: [α]D
20 =  
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–13.10° (c = 0.6, CHCl3); 96% ee [the HPLC condi-
tions were the same as for (R)-2; tR, min: 7.2 (major), 
17.3 (minor)]. 1H NMR spectrum, δ, ppm: 2.21 s (3H, 
4′-CH3), 2.25 s (3H, 3′-CH3), 2.47–2.52 m (2H, 
NCH2CH2O), 2.54–2.61 m (2H, NCH2), 2.65–2.70 m 
(2H, NCH2CH2O), 3.21 s (1H, OH), 3.73–3.76 m (4H, 
NCH2CH2O), 3.97 d (2H, OCH2, J = 5.0 Hz), 4.08–
4.14 m (1H, CH), 6.68 d.d (1H, 6′-H, J = 8.3, 2.7 Hz), 
6.75 d (1H, 2′-H, J = 2.5 Hz), 7.04 d (1H, 5′-H, J =  
8.3 Hz). 13C NMR spectrum, δC, ppm: 18.9 (4′-CH3), 
20.1 (3′-CH3), 54.0 (CH2, NCH2CH2O), 61.3 (NCH2), 
65.7 (CH), 67.1 (NCH2CH2O), 70.4 (OCH2), 111.6 
(C6′), 116.4 (C2′), 129.1 (C4′), 130.4 (C5′), 137.8 (C3′), 
157.0 (C1′) (cf. [14]).  

(R)-1-(3,4-Dimethylphenoxy)-3-(morpholin-4- 
yl)propan-2-ol hydrochloride [(R)-3 · HCl]. mp 169–
171°C; [α]D

20 = +35.2°C (c = 1.0, CHCl3), [α]3
2

6
0

5 = 
+112.2° (c = 1.0, CHCl3); [α]D

20 = +22.9° (c = 1.0, 
EtOH), [α]3

2
6
0
5 = +68.1° (c = 1.0, EtOH); 99.9% ee [the 

HPLC conditions were the same as for (R)-2; tR, min: 
7.3 (major), 16.7 (minor)]. IR spectrum, ν, cm–1: 3259 
(OH), 2731, 2644, 2596, 2469 (NH+). 1H NMR spec-
trum, δ, ppm: 2.17 s (3H, 4′-CH3), 2.21 s (3H, 3′-CH3), 
2.97–3.05 m (2H, N+CH2CH2O, J = 14.1 Hz), 3.29 d 
(2H, N+CH2, J = 6.2 Hz), 3.71 d.d (2H, N+CH2CH2O,  
J = 22.3, 12.0 Hz), 3.89 d.d (1H, OCH2, J = 9.6,  
7.3 Hz), 3.93–3.99 m (2H, NCH2CH2O), 4.09 d.d (1H, 
OCH2, J = 9.6, 4.6 Hz), 4.28 t (2H, NCH2CH2O, J = 
12.8 Hz), 4.65–4.71 m (1H, CH), 5.23 br.s (1H, OH), 
6.60 d.d (1H, 6′-H, J = 8.3, 2.7 Hz), 6.68 d (1H, 2′-H,  
J = 2.5 Hz), 7.00 d (1H, 5′-H, J = 8.3 Hz), 12.02 br.s 
(1H, NH+). 13C NMR spectrum, δC, ppm: 18.9  
(4′-CH3), 20.1 (3′-CH3), 52.9 and 54.5 (NCH2CH2O), 
62.6 (NCH2), 63.8 and 63.9 (NCH2CH2O), 64.2 (CH), 
69.3 (OCH2), 111.6 (C6′), 116.2 (C2′), 129.7 (C4′), 130.6 
(C5′), 138.1 (C3′), 156.2 (C1′). Found, %: C 60.08;  
H 8.23; N 4.58. C15H24ClNO3. Calculated, %: C 59.69; 
H 8.02; N 4.64. 

(S)-1-(3,4-Dimethylphenoxy)-3-(morpholin-4-yl)-
propan-2-ol [(S)-3]. Yield 0.29 g (97%), [α]D

20 =  
–19.7° (c = 1.05, CHCl3), [α]3

2
6
0

5 = –56.6° (c = 1.05, 
CHCl3); published data [14]: [α]D

20 = –13.10° (c = 0.5, 
CHCl3); 96% ee [the HPLC conditions were the same 
as for (R)-2; tR, min: 7.2 (minor), 17.3 (major)].  

(S)-1-(3,4-Dimethylphenoxy)-3-(morpholin-4-yl)-
propan-2-ol hydrochloride [(S)-3 · HCl]. mp 168–
171°C; [α]D

20 = –35.0° (c = 1.0, CHCl3), [α]3
2

6
0

5 =  
–111.5° (c = 1.0, CHCl3); [α]D

20 = –23.3° (c = 1.0, 
EtOH), [α]3

2
6
0
5 = –70.4° (c = 1.0, EtOH); 99% ee [the 

HPLC conditions were the same as for (R)-2; tR, min: 

7.3 (minor), 16.7 (major)]. The spectral parameters 
were the same as those of (R)-3 · HCl. 

rac-1-(3,4-Dimethylphenoxy)-3-(morpholin-4- 
yl)propan-2-ol (rac-3) was synthesized from oxirane 
rac-6 and morpholine. Yield 0.29 g (97%).  

rac-1-(3,4-Dimethylphenoxy)-3-(morpholin-4- 
yl)propan-2-ol hydrochloride (rac-3 · HCl). mp 148–
151°C. IR spectrum, ν, cm–1: 3229 (OH), 2735, 2695, 
2596, 2465 (NH+). The spectral parameters were 
similar to those of (R)-3 · HCl. 
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