Products of the condensation reaction of 2-(4-fluorobenzoyl)benzoic acid with *m*-cresol

J. Gronowska* and A. Kalinowska

Department of Organic Chemistry, Institute of Chemistry, N. Copernicus University, 87-100 Toruń (Poland)

(Received February 14, 1992; accepted July 15, 1992)

Abstract

The preparation and structural elucidation of the new isomeric 3-(4-fluorophenyl)-3-(hydroxymethyl)phthalides made from m-cresol and 2-(4-fluorobenzoyl)benzoic acid are described.

Introduction

In our investigations on 3,3-diarylphthalides [1-3], which have been obtained as intermediates for the syntheses of derivatives of 9-acetoxy-10-phenylanthracene [4,5], we have prepared two new 3,3-diarylphthalides from m-cresol. These phthalides may have physiological activity and related anthracene compounds can be used as dye lasers [6] for generating electromagnetic waves over the range 360-410 nm.

Results and discussion

Condensing 2-(4-fluorobenzoyl)benzoic acid with m-cresol (method described in ref. 6) gave two new compounds: 3-(4-fluorophenyl)-3-(2-hydroxy-4-methylphenyl)phthalide (1) and 3-(4-fluorophenyl)-3-(4-hydroxy-2-methylphenyl)phthalide (2) in the ratio 32:48 (cf. analogues from the condensation of 2-benzoylbenzoic acid with m-cresol: ratio, 36:51 [1]).

Phthalides 1 and 2 on reaction with Ac₂O/AcONa gave the acetates 1a and 2a, and with Zn dust in 80% AcOH the corresponding derivatives of 2-

^{*}To whom all correspondence should be addressed.

benzhydrylbenzoic acid (1b and 2b). Acid 1b with $Ac_2O/AcONa$ yielded its ϵ -lactone 1c, but in the presence of a catalytic amount of conc. H_2SO_4 , the intracyclization of 1b into 9-acetoxy-2-fluoro-10-(2'-acetoxy-4'-methylphenyl)anthracene (1d) occurred.

F
$$CH_3$$
 $Ac_2O-AcONa$ $Ac_2O-AcONa$ Ac_2O $AcONa$ Ac_2O Ac_2O

Scheme 1.

Under the same conditions as for 1b, compound 2b formed its acetate 2c: the anthracene derivative was not obtained in crystalline form.

The structures of compounds 1, 1a-1d, 2 and 2a-2c have been confirmed using chemical and spectral IR methods. Boiling compound 1d with HNO₃ in AcOH (cf. ref. 7) caused degradation to 2-fluoroanthraquinone, confirming that the OAc and Me substituents are not contained in the anthracene skeleton. The structures of 1c and 1d were additionally elucidated via their ¹H NMR spectra; for 1c: δ 2.30 (9-OAc); 5.02 (\geq C-H) ppm; for 1d: δ 2.64 (9-OAc); 1.34 (2'-OAc); 2.25 (CH₃) ppm. For the model compounds [8]: 9-acetoxy-10-phenylanthracene: δ 2.65 ppm (9-OAc); and for 9-acetoxy-10-(2'-acetoxyphenyl)anthracene: δ 2.51 (9-OAc); 1.35 (2'-OAc) ppm. Comparison of the ¹H NMR spectrum of 1d with that of the model compound [8] elucidated the exact position of substituents in the phenyl ring. The ¹H NMR shift for the OCOCH₃ absorption in the 2'-position for compound 1d confirmed the structure and hence also that of phthalide 1.

Experimental

All melting points have been corrected. Infrared (IR) spectra were recorded on a Specord Unicam SP 200 instrument. Values of $\nu_{\rm max}$ are reported only for characteristic groups. ¹H NMR spectra of **1c** and **1d** were measured on a 80 MHz Tesla BS 787 C spectrometer in deuteriochloroform solution: tetramethylsilane (TMS), δ 0.00 ppm was applied as the internal standard.

The purities of compounds 1, 1a-1d, 2 and 2a-2c were checked by TLC methods [kieselgel, benzene/ethyl acetate/acetic acid (32:8:1 v/v): iodine or conc. H_2SO_4 were used for detection].

Compounds 1, 1a-1d, 2 and 2a-2c are new. All physical data are presented in Table 1.

(continued)

Physical and spectral data for compounds 1-1d and 2-2c

TABLE 1

No.	Compound	Formula ^a (molecular mass)	M.p. [°C]	Yield [%]	Yield IR spectra [cm ⁻¹] [%]
T	3-(4-Fluorophenyl)-3-(2-hydroxy-4- methylphenyl)phthalide	C ₂₁ H ₁₅ O ₃ F (334)	147–149 (AcOH)	32	1750 (s) (C=O, γ -lactone); 1425 (m) (C-H, CH ₃); 1245 (s) (C-O-C, γ -lactone); 1165 (s) (C-O, phenol); 1130 (m) (C-F).
1a	Acetate of 1	$C_{23}H_17O_4F$ (376)	142–143.5 (aų. EtOH)	83	1765 (s) (C=O of γ-lactone and OCOCH ₃); 1470 (m) (C-H, CH ₃); 1370 (m) (CH ₃ , acetate); 1200 (s) (C-O-C, acetate); 1110 (m) (C-F).
1b	2-(4-Fluoro-2'-hydroxy-4'-methylbenzhydryl)- benzoic acid	C ₂₁ H ₁₇ O ₃ F (336)	174–177 (aq. EtOH)	68	2660 (mb) (OH, dimer COOH); 1700 (s) (C=0, COOH); 1410 (m) (C-H, CH ₃); 1230 (s) (C-O, phenol); 1100 (m) (C-F).
1c	e-Lactone of 1b	$C_{21}H_{15}O_{2}F$ (318)	128-130 (aq. AcOH)	91	1710 (s) (C=0, \(\epsilon\)-factone); 1420 (w) (C-H, CH ₃); 1230 (s) (C-O-C, \(\epsilon\)-factone); 1130 (s) (C-F).
1d	9-Acctoxy-2-fluoro-10-(2'-acctoxy-4'-methyl-phenyl)anthracene	$C_{26}H_{19}O_4F$ (402)	281–284 (AcOH)	84	1765 (s) (C=O of OCOCH ₃); 1370 (s) (CH ₃ , acetate); 1200 (s) (C-O-C, acetate); 1140 (m) (C-F).

TABLE 1 (continued)

No.	No. Compound	Formula ^a (molecular mass)	M.p. [°C]	Yield [%]	Yield IR spectra [cm ⁻¹] [%]
21	3-(4-Fluorophenyl)-3-(4-hydroxy-2-methyl-phenyl)phthalide	C ₂₁ H ₁₅ O ₃ F (334)	109–111.5 (CC1 ₄)	48	1730 (s) (C=O, γ -lactone); 1465 (m) (C-H, CH ₃); 1235 (m) (C-O-C, γ -lactone); 1160 (m) (C-O, phenol); 1125 (m) (C-F).
23	Acetate of 2	$C_{23}H_{17}O_4F$ (376)	149–152 (aq. EtOH)	06	1770 (s) (C=0 of γ -lactone and OCOCH ₃); 1465 (m) (C-H, CH ₃); 1380 (m) (CH ₃ , acetate); 1200 (s) (C-0-C, acetate); 1110 (m) (C-F).
2b	2-(4-Fluoro-4'-hydroxy-2'-methylbenzhydryl)- benzoic acid	$C_{21}H_17O_3F$ (336)	140.5–141.5 (aq. EtOH)	88	2530 (wb) (OH, dimer COOH); 1680 (s) (C=0, COOH); 1460 (m) (C-H, CH ₃); 1250 (s) (C-O, phenol); 1100 (m) (C-F).
20 20	Acetate of 2b	$C_{23}H_{19}O_4F$ (378)	199–201 (EtOH)	82	2660 (mb) (OH, dimer COOH); 1760 (s) (C=0, OCOCH ₃); 1690 (s) (C=0, COOH); 1420 (m) (C-H, CH ₃); 1370 (m) (CH ₃ , acetate); 1210 (s) (C-O-C, acetate); 1100 (m) (C-F).

"Satisfactory microanalyses: C±0.2; H±0.2.

3-(4-Fluorophenyl)-3-(hydroxymethylphenyl)phthalides (1 and 2)

Anhydrous $\rm ZnCl_2$ (22 g) was added to a mixture of 2-(4-fluorobenzoyl)benzoic acid (15.0 g, 0.06 mol; synthesized according to ref. 9) and m-cresol (10.5 g, 0.06 mol). The mixture was heated at 115–120 °C on an oil bath for 8 h. The brown melt was dissolved in hot acetic acid and poured into water. The yellowish amorphous precipitate was filtered off, washed with water and twice with 15% aq. $\rm Na_2CO_3$, then again with water and dried. The yield was 18 g (88%) of isomers 1 and 2.

The crude product (18 g) was dissolved in an aqueous solution of sodium hydroxide (144 cm³ of 10% aq. NaOH) yielding a yellow solution. After some hours the white crystals of the sodium salt of 3-(4-fluorophenyl)-3-(2-hydroxy-4-methylphenyl)phthalide (1) was filtered off; yield 8.15 g; m.p., 241–247 °C (with decomposition). The salt of 1 was dissolved in water and aq. HCl was added. The white amorphous precipitates was filtered off and recrystallized from acetic acid to give colourless crystals of phthalide 1 (6.75 g).

The addition of water and then hydrochloric acid (1:2) to the filtrate resulting from the separation of the sodium salt of $\mathbf 1$ afforded a white precipitate, which was filtered off, washed with water and dried: yield, 10 g. Recrystallization of the precipitate from $\mathrm{CCl_4}$ gave colourless, fine needles of phthalide $\mathbf 2$.

Acetates 1a and 2a of phthalides 1 and 2

A sample consisting of 0.005 mol of phthalide 1 [or 2] was treated with 15 cm^3 of Ac_2O and c. 1.5 g of anhydrous AcONa, and heated for 3 h on an oil bath at $120 \,^{\circ}\text{C}$. The mixture was poured into water, the precipitate filtered off, washed with water and recrystallized several times from dilute ethanol; colourless crystals of 1a [or 2a] were obtained.

2-(4'-Fluorohydroxymethylbenzhydryl)benzoic acids (1b and 2b)

A sample consisting of 0.01 mol of phthalides 1 and 2 was reduced with 5 g of Zn dust in 100 cm³ of 80% AcOH for 7–10 h with heating under reflux until TLC showed the absence of phthalide. After filtration, the solution was poured into 800 cm³ of water. The white, amorphous precipitate was filtered off, washed with water and recrystallized from dilute ethanol.

ϵ -Lactone 1c

To a solution of acid 1b (0.002 mol) in 15 cm³ Ac₂O, 2 g anhydrous AcONa was added. The reaction mixture was heated for 3 h at 120 °C. This mixture was then poured into 300 cm³ of water. The crude precipitate yielded crystals after recrystallization from dilute acetic acid.

Acetate 2c of acid 2b

Acetate 2c was obtained from acid 2b under the same conditions as described above for the ϵ -lactone 1c. Recrystallization of the crude compound from ethanol gave fine colourless crystals of 2c.

9-Acetoxy-2-fluoro-10-(2'-acetoxy-4'-methylphenyl)anthracene (1d)

A mixture consisting of 0.02 mol of acid 1b, 50 cm^3 of Ac_2O and 1 drop of conc. H_2SO_4 was heated on an oil bath at 120 °C for 1-3 h until TLC showed the absence of acid 1b. The brown solution with blue—violet fluorescence was poured into 500 cm^3 of water. The crude product was recrystallized several times from acetic acid when yellow crystals were obtained.

Heating compound 1d with conc. HNO $_3$ in AcOH gave 2-fluoroanthraquinone; m.p., 205–207 °C (lit. [9], 203–204 °C).

References

- 1 J. Gronowska, P. Miecznik and A. Dzieleńdziak, Polish. J. Chem., 64 (1990) 737.
- 2 J. Gronowska, A. Dzieleńdziak and P. Miecznik, Polish J. Chem., 64 (1990) 317.
- 3 J. Gronowska, P. Miecznik and K. Aleksandrzak, J. Fluorine Chem., 56 (1992) 309.
- 4 J. R. Heldt, J. Heldt and J. Gronowska, Z. Naturforsch., 30a (1975) 612.
- 5 J. Gronowska and A. Dzieleńdziak, J. Fluorine Chem., 22 (1983) 115.
- 6 J. R. Heldt, Z. Naturforsch., 38a (1983) 1197.
- 7 J. Gronowska and A. Dzieleńdziak, Polish J. Chem., 53 (1979) 517.
- 8 J. Gronowska, K. Aleksandrzak, J. Łukaszewicz and R. Żebrowska, Polish J. Chem., 56 (1982) 705.
- 9 F. C. Hahn and E. E. Reid, J. Am. Chem. Soc., 46 (1924) 1645.