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ABSTRACT:The deployment of in situ analytics for monitoring chemical reactions in process chemistry development and scale-up
is facilitated by advanced instrumentation such as Raman spectrometry. Furthermore, greater process understanding can be
engendered by coupling in situ Raman data with multivariate chemometrics analyses and kinetics modeling. Such information is
important for devising science-based process control strategies along the concept of quality by design (QbD) initiated through the
U.S. FDA process analytical technology (PAT) framework. A series of experiments using varied glass reactors, stirring speeds, and
isothermal reaction temperatures were designed with acetic anhydride hydrolysis as the model reaction to successfully demonstrate
the efficacy of combining in situ Raman spectroscopy, multivariate analyses, and kinetics modeling. Two different Raman
measurement methods, using immersion and noncontact probe optics, were tested through a process Raman spectrometer with
multiplexing capability. Information-theoretic multivariate chemometrics were applied to elicit pure component spectra and
transient concentrations of chemical species, and two differential-algebraic equations modeling approaches were adopted for
elucidating chemical and dissolution kinetics information. The variations in reactor vessel type and sizes, stirring speeds, Raman
measurements, and kinetics models were compared in this study.

’ INTRODUCTION

Raman spectroscopy has proliferated into diverse applications1�4

since the landmark experimental discoveries in the late 1920s by
Raman and Krishnan5 and Landsberg and Mendelstam.6 The
application of Raman spectroscopy in industrial scenarios has been
of great interest of late due to first advancement in fiber optics
technology7 and process Raman instrumentation design,8�11 and
second the introduction of Process Analytical Technology (PAT)
guidelines from the United States Food and Drug Administration
(FDA).12,13 To date, Raman spectroscopy has been implemented
in the chemical, biochemical, and pharmaceutical industries for
online monitoring of reactions, distillation processes, fermenta-
tions, polymermorphology, semiconductor fabrication and quality
assurance,11,14 and studying polymorphic transformations, crystal-
lization, and formulations.14�16

The FDA PAT initiative promotes the enlargement and adop-
tion of innovative approaches to pharmaceutical development,
manufacturing, and quality assurance12 alongside FDA Pharma-
ceutical cGMP guidelines for the 21st century.17 This led to active
deliberations in various related issues and methodological con-
cepts such as design of experiment (DoE), design space, criticality,
control strategy, quality riskmanagement, quality by design (QbD),
and real time release (RTR).13 Many of these concepts and related
methodologies were also raised by the EuropeanMedicines Agency
(EMA)PAT team in 200618 and in themore recent ProductQuality
Lifecycle Implementation (PQLI) initiative in 2007 by the Inter-
national Society for Pharmaceutical Engineering (ISPE).19 The
PQLI initiative is for the practical implementation of the Interna-
tional Conference on Harmonisation (ICH) tripartite guideline Q8
(R2), Q9, and Q10.19 Process understanding is the common thread
that strings the aforesaid PAT related issues, which implies in-depth

knowledge about product Critical Quality Attributes (CQAs),
Critical Process Parameters (CPP), and sources of variability
associated with the pharmaceutical operations unit. In the FDA
PAT guideline, it was noted that merely switching from laboratory
to process analytical methods does not constitute a PAT imple-
mentation that engenders process understanding.12 Instead, sys-
tematic studies that incorporate modern process analyzers and
sound experimental design are recommended in PAT endeavors;
beginning from small laboratory scales to process development
and scale-up, optimization, technology transfer, manufacturing
production, and throughout the product life cycle.12

Another suite of tools that is vital for successful PAT applica-
tions contain multivariate data analysis methods that are gen-
erally classified under the scope of chemometrics.13,20,21 A recent
review highlighted “measuring or modeling a process variable” as
one of the two major problems associated with chemical reaction
scale-up.22 This issue can be potentially resolved with the
combination of in situ vibrational spectroscopy (infrared or
Raman) and chemometrics numerical analyses, which were
previously reported to be effective for reaction monitoring,
determining kinetic rate contants, exploratory process devel-
opment, and process control.23�25

In this contribution, an extended series of designed experi-
ments using the model reaction of acetic anhydride hydrolysis
were carried out from typical small laboratory scale glass vessels
tomedium-sized litre scale ones, to simulate the adoption of PAT
during the early stages of laboratory bench and process devel-
opment studies. Acetic anhydride hydrolysis kinetics have been
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previously investigated at typical laboratory scales by using a
variety of analytical techniques such as titration, conductivity,
calorimetry, and in situ optical spectrometry;26�30 including
ATR-FTIR,28 Raman,29 and UV-vis.30 Several of these investi-
gations also reported estimated reaction kinetics data. In this
study, process Raman spectrometry was employed for in situ
monitoring of the transient Raman spectra associated with the
hydrolysis reaction. Both immersion and noncontact fiber optic
probes were comparatively tested for each reaction run. Pertinent
chemical information such as pure component spectra and transient
concentration profiles were elucidated via various multivariate
chemometrics post analyses. Finally, two different approaches
were adopted for reaction kinetics modeling so as to engender
process understanding. The first approach is the simple Arrhenius
modelwhile the second approach is a dissolution-reaction model that
takes into account the effect of poor solubility of the acetic
anhydride organic phase in water.

’EXPERIMENTAL SECTION

A Kaiser RamanRXN3 process spectrometer was used for the
experiments described in this work. The spectrometer utilizes
holographic optical elements based on Volume Phase Techno-
logy (VPT) in an axial transmissive spectrograph configuration.31

The RamanRXN3 uses an Invictus 785 nm near-infrared laser
excitation with an average at source power set at 300mWandwas
equipped with two separate fiber optic cables with different
optical probe heads attached that could accommodate both
contact/immersion and noncontact optics. Experimental spectra
were obtained by using both types of in situ Raman monitoring
techniques available, namely, immersion/contact optics with
either 1/4 or 1/2 in. outer diameters (denoted herein as C)
and a noncontact optics with 1.3 in. focal length (denoted herein
asNC). A typical experimental setup for a laboratory bench-scale
jacketed glass reactor is as shown in Figure 1. Regardless of the
size or type of glass reactors (see below), the C and NC optics
positions (i.e., at the sapphire crystal tip of the former and laser
focal point of the latter) were respectivelymaintained at locations
of 0.8 and 0.6 aspect ratios from the bottom of the reactor to the
total liquid volume level. In situ Raman spectra were collected

with single spectrum accumulation at 5 s exposure time, using a
low-noise CCD detector thermoelectrically cooled to �40 �C.
The time interval for switching betweenC andNC optics was 18 s,
using the Kaiser multiplexing softwareHoloPro, in order to achieve
near-simultaneous spectral acquisitions during reaction monitor-
ing that reflect similar spectroscopic changes associated with acetic
acid dissolution and hydrolysis kinetics at both monitoring optics.
The Raman shift was recorded at 1 cm�1 Raman shift intervals for
the range ca. 300�1950 cm�1.

Three types of glass vessels were used in this study. Two of them
are typically found in chemistry laboratories: the typical round-
bottomed flask (RBF) and customized jacketed glass reactor
(JGR) of sizes 50, 100, and 250 mL. Three other Lenz jacketed
glass reactors of sizes 0.5, 1.0, and 3.0 L were also used. The 1/4 in.
thickC opticswas used for glass reactor size of 0.5 L or less, and the
longer 1/2 in. thickC optics was used for 1.0 and 3.0 L vessels. For
all the reactors ranging between 50 and 250 mL in volume, a
Teflon coated magnetic bar stirrer was employed, with its rota-
tional speed Frpm (in rpm) was regulated by using a laboratory
magnetic hot plate stirrer. The accuracy of the magnetic bar stirrer
rotation speed was checked by using a light stroboscope. Because
of the larger sizes of the 0.5, 1.0, and 3.0 L Lenz jacketed glass
reactors, a pitch blade 45� angled impeller connected to an IKA
stirrer motor was used.

Two series of kinetic studies were carried out: (i) stirring speed
and reaction volume/vessel variation Frpm (at constant Vreaction
and Treaction), and (ii) variation in reaction temperature Treaction

(at constant Vreaction and Frpm). The first series was primarily used
for observing effects on acetic anhydride (AA) dissolution at low
stirring speeds, whilst the second series was used for acquiring
Raman spectral data for kinetics modeling and parameters estima-
tion. Stirring speedwas varied between Frpm = [100, 1000] rpm for
the RBF and JGR laboratory bench-sized reactors of 250 mL size.
For the 1.0 and 3.0 L Lenz reactors, the stirring speeds tested were
150, 300, 400, and 500 rpm. Poor AA dissolution was observed for
the 150 rpm stirring run for the 1 L Lenz reactor and 100 rpm
stirring for the smaller 50 and 250 mL reactors. For the 1 L Lenz
reactor low stirring speed experiment, the denser AA phase was
visibly observed to sink and form an organic layer at the bottom of
the vessel due to the low solubility of AA inwater. For stirring rates

Figure 1. Typical lab-scale experimental setup with immersion (C) and noncontact (NC) in situ Raman optic.
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of 300, 400, and 500 rpm in the 1.0 and 3.0 L vessel and also 700
and 1000 rpm in the small laboratory vessels, the stirring rates were
adequate with no visible separation of organic and aqueous phases
(which were corroborated by in situ Raman measurements). At
these high stirring rates, the hydrolysis reaction was not influenced
by AA dissolution problems, i.e. it progresses as reaction-con-
trolled. As such, all further experiments for the second series of
kinetic studies were carried out at 1000 rpm for 50 mL RBF and
JGR vessels and 300 rpm for 0.5 L Lenz reactors. The experimental
runs for 100 and 250 mL laboratory glass reactors and larger 1.0
and 3.0 L Lenz reactors were fixed at the constant temperature of
25 �C to compare their kinetics with those observed in the various
50 mL and 0.5 L glass vessels. Tables S1 and S2 (Supporting
Information) provide a summary of the aforesaid experimental
design.

A typical experiment begins with first filling the reactor with a
fixed volume of distilled water and setting the reaction tempera-
ture. The initial water to AAmole ratio was maintained at ca. 47:1
for fixed volumes of reaction in different glass reactors. For
example, this mole ratio is translated into appropriate water:AA
volumes for total volumes Vreaction of 40, 80, and 200 mL
conducted in 50, 100, and 250 mL vessels, respectively. For the
Lenz jacketed reactors, Vreaction was maintained at 0.4, 0.8, and
2.4 L for the 0.5, 1.0, and 3.0 L vessels, respectively. Sufficient
prereaction time was allowed for the distilled water to reach the
desired temperature, Treaction. Temperature control in jacketed
reactors (JGR and Lenz) was maintained automatically by
monitoring Treaction, using a stainless steel temperature probe
immersed into the reaction mixture before and throughout the
hydrolysis. For RBF vessels, a mercury-based glass thermometer
was used to manually maintain Treaction by using heat supplied by
an external oil bath in which the RBF was immersed. Once initial
Treaction of distilled water was stabilized, the predetermined
volumetric quantity of AA was accurately dosed into the reactor
by using either a Harvard syringe pump (for 50�250 mL reactor
dosing) or a REGIO-Z/-2S pump (for 0.5�3.0 L reactor
dosing). For experiment runs with 1000 rpm in RBF/JGR and
300 rpm in Lenz vessels, AA characteristic Raman peaks were
observed to reach maximum intensity around ca. 2 min after
dosing began. The AA dosing through different pump types,
constant reaction temperature monitoring, and also the IKA
stirrer speeds were controlled by in-house written LabVIEW
software. Data collection of in situ Raman spectra with the Kaiser
HoloPro software for both NC and C optics was simultaneously
started when the AA dosing began for each experiment. Depend-
ing on the reaction temperature Treaction and stirring rate used,
the experimental time to complete the hydrolysis reaction is ca.
0.5 to 2.0 h.

’MODELING AND COMPUTATIONAL ASPECTS

Multivariate Chemometrics. The Raman data acquired via
RamanRXN3 spectrometer during in situ reaction monitoring
intrinsically contain multispectroscopic wavelengths (i.e., Raman
shift wavenumbers) for multireactions in the aforesaid experi-
mental design. Thus, a multivariate approach must be adopted for
its data analysis to elucidate pertinent chemical information for
subsequent reaction kinetics modeling. In general, the set of
Raman data collected for each experimental run can be denoted
by a matrixRm�νwithm number of time-dependent spectra and ν
number of spectroscopic channels (Raman shift/wavenumber).
Data for different optical probe types, that is immersion or

noncontact, were separately analyzed as different optics contain
different backgroundRaman signals (see the next segment below).
Alternatively, the Raman data for all reaction runs conducted for a
particular reaction vessel type and optical probe can be collated
together as a single large data array for chemometrics analysis. In
the calculations herein, the former approach was chosen where
each experimental run data was independently analyzed.

Rm�ν ¼ Cm�s 3 r
pure
s�ν þ Espikes

m�ν þ Eresidual
m�ν ð1Þ

The bilinear relationship between concentrations of Raman
active chemical species and their corresponding pure component
spectra32,33 was relied upon for the multivariate chemometrics
analyses herein. This bilinearity can be expressed as eq 1, which
contains the multiplication of transient (time-dependent) con-
centration matrix and pure component spectra array of s number
of Raman active chemical species observable during in- or online
reaction monitoring.
The errors in this bilinear model of Raman data can be

attributed to various sources, such as cosmic ray, container glass,
and sample fluorescence.34 Signal abberations (spikes) caused by
cosmic rays, Em�ν

spikes, found in the measured Raman data were
removed via an information-theoretic maximum entropy and
minimum entropy (MaxEnt-MinEnt) cosmic ray “unspiking”
algorithm written in-house.35 The residual error Em�ν

residual differs
for the immersion and noncontact optical probes used. For the
immersion probe, this residual error arises primarily from the
Raman spectrum of the sapphire crystal tip of the probe.7 An
independent measurement of the immersion C probe placed in
distilled water, rBl�ν

probe, was taken at the start of each experiment run
so as to account for the residual error Em�ν

residual. For the NC optical
probe, this spectral residual was primarily due to the Raman signals
from the walls of the glass vessels used as reactors34,36 and the
thermal fluid passing through the jacketed vessel.
To account for the background Raman signal when using the

NC probe, the following steps were taken before the start of each
experimental run. First, the optimalNC probe distance from each
glass vessel type was located, which produces Raman spectra with
the least background signal contributions from both reactor glass
and thermal fluid. Second, theNC probe is slightly shifted (a few
millimeters) from this optimal position horizontally either nearer
to or farther away from the outer glass vessel wall, and at each
shifted location a Raman spectrum was measured to capture the
different variations of the background Raman signals for each
reactor vessel (see Figure S1, Supporting Information). The
thermal fluid should be flowing through the glass jacket in this
second step so as to capture Raman signals arising from the
thermal fluid used (in this work water was used as thermal fluid,
which has minimal Raman signals). Both the glass and thermal
fluid Raman signals constitute a large part of the systematic errors
found in Em�ν

residual. Roughly five spectra were acquired in this
manner after the intended amount of distilled water was filled
into each glass vessel before dosing in acetic anhydride. These
background Raman spectra were subsequently collated into a
data matrix R5�ν

bkgrd. This data matrix was subjected to singular
value decomposition (SVD), which is similar to a principal
component analysis (PCA), to obtain VT vectors in its right
singular matrix Vν�ν

T |bkgrd according to eq 2. The initial 2�3
abstractVbkgrd

T vectors obtained were found to effectively account
for the residual Raman signal due to the glassware and thermal
fluid. This method to account for Em�ν

residual in NC optics was
derived from a residual spectral analysis approach.37 The position
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of the NC probe was restored to the optimal location before
starting the hydrolysis reaction by dosing in acetic anhydride.

Rbkgrd
5�ν ¼ U5�5Σ5�νV

T
ν�νjbkgrd ð2Þ

Rm�ν � Espikes
m�ν ¼ RUnspiked

m�ν ¼ Um�mΣm�νV
T
ν�ν ð3Þ

rB
BTEM
1�ν ¼ TB1�j 3V

T
j�ν ð4Þ

ĈMLR
m�s ¼ RUnspiked

m�ν 3 ð̂rs�νÞT 3 ½̂rs�ν 3 ð̂rs�νÞT��1 ð5Þ
The pure component spectra of both acetic anhydride and

acetic acid were recovered by using the band-target entropy
minimization (BTEM) curve resolution algorithm.38�40 BTEM
reconstructs individual pure component spectra from their
corresponding user-specified band-target, using generalized
information entropy terms40,41 that are based on various spectral
vector properties.41 This is in accordance with the principle
of simplicity.40,41 The cosmic spike removed data set Rm�ν

Unspiked

for each experiment underwent SVD to obtain the right singular
vectors inmatrixVν�ν

T , eq 3. ThisRm�ν
Unspiked matrix is equivalent to

the first term after the equality sign in eq 1, that is, the multi-
plication of concentration matrix Cm�s with pure component
spectra matrix rs�ν

pure. Cosmic spike abberations had to be removed
because they will influence the quality of recovered pure compo-
nent spectra from multivariate curve resolution methods.35

As written in eq 4, each BTEM estimate rB̂l�ν
BTEM was resolved via

optimizing for a transformation vector TB1�j via Corana’s Simu-
lated Annealing algorithm, using a basis vector space of j-th initial
singular vectorsVj�ν

T , where 1, j<m.38�40 BTEMwas previously
demonstrated to be comparable, if not better, than other multi-
variate curve resolution methods such as IPCA, SIMPLISMA, and
ALS based algorithms.38,40

As aforesaid, once the BTEM pure component spectral
estimates of acetic anhydride and acetic acid were obtained, they
were combined with either the rBl�ν

probe spectrum or the initial 2�3
vectors Vbkgrd

T depending on whether the experimental data set
was acquired from immersion C or noncontact NC optics. This
consolidated spectral matrix r̂s�v with s number of final spectral
components accounts for Raman signals arising from reactant,
product, and the spectral residual Em�ν

residual, with Em�ν
residual repre-

sented by either real rBl�ν
probe or abstract Vbkgrd

T vectors. That is, the s
number of components in r̂s�v include real spectra (from BTEM
resolved component spectra or immersion C probe spectrum)
and potentially abstract VT vectors of reactor/thermal fluid
background Raman signals (from using NC probe). The relative
concentrations for acetic anhydride and acetic acid were esti-
mated via a multilinear regression (MLR) by using pseudoinverse
eq 5, which together with aforesaid Raman background signals forms
the time-dependent matrix Ĉm�s

MLR corresponding to r̂s�v.
37 With the

relative concentrations calculated, the kinetics for the acetic anhydride
hydrolysis reaction can be modeled and kinetic rate constants
estimated according to the two approaches delineated below.
Kinetics Modeling. The first reaction model assumes that the

dissolution of acetic anhydride in water is fast at a sufficiently
high rate of stirring with the reaction scheme proceeding as eq 6.
Thus the second order rate equation to solve is eq 7, where AA
denotes acetic anhydride for all the equations herein. By keeping
themolar concentration of acetic anhydride low in comparison to
water (ca. 1:47 mol ratio for all experiments herein), the reaction
kinetics approximates a pseudo-first-order as shown in eq 8. The

pseudo-first-order rate constant k at different isothermal reaction
temperatures can be easily estimated by finding the gradient in eq 9.
Since this equation involves the time-dependent dimensionless ratio
[AA]t/[AA]o, the relative concentration values of AA found from
MLR eq 5 suffices. Consequently, there is no requirement to perform
calibrations to obtain the real (actual) concentration. Relative con-
centration data up to at least the secondhalf-life of each hydrolysis run
were used for estimating k. Subsequently, based on the Arrhenius
theory,42 the activation energy of hydrolysis,Ea, can be estimated from
an exponential regression of eq 10.

ðCH3COÞ2OþH2O f 2CH3COOH ð6Þ

� d½AA�
dt

¼ k0½AA�½H2O� ð7Þ

� d½AA�
dt

¼ k½AA� ð8Þ

ln
½AA�t
½AA�o

 !
¼ � kt ð9Þ

k ¼ ko expð�Ea=RTÞ ð10Þ
Besides conducting the hydrolysis reactions at sufficiently high

stirring rates, slow stirring rate experiments indicated that acetic
anhydride is rather insoluble in water (see Figure 6 left plot; in
particular the 100 rpm curve and the corresponding note on
dissolution-reactionmodel in the Results and Discussion section).
This insolubility has also been reported in the literature.26 As such,
a dissolution-reactionmodel was devised, with an assumed zeroth-
order dissolution kinetics of eq 11 coupled to the revised hydro-
lysis reaction of eq 12, where the subscripts “(aq)” and “(organic)”
denote chemical species in the aqueous and organic phases,
respectively. The mathematical equations describing the dissolu-
tion-reaction model were separately solved for two concentration
regimes. Since experimentally the molar ratio of AA to water was
low, the pseudo-first-order reaction kinetics approximation for
hydrolysis, eq 8, applies for both regimes with the previous rate
constant k rewritten as khydrolysis for clarity in eqs 13�15. In the
first regime, where organic AA is present, that is [AA(organic)] > 0,
the governing first-order ordinary differential equation is as eq 13,
with its solution eq 14 found by using an integrating factor. The
second concentration regime chronologically occurs after the first,
in which all the organic phase AA has dissolved. As such, the
exponential equation of eq 15 describes the rate of AA hydrolysis
in the aqueous phase for the second regime.

ðCH3COÞ2OðorganicÞ f ðCH3COÞ2OðaqÞ ð11Þ

ðCH3COÞ2OðaqÞ þH2O f 2CH3COOHðaqÞ ð12Þ

d½AAðaqÞ�
dt

¼ kdissolution � khydrolysis½AAðaqÞ�, " ½AAðorganicÞ� > 0 ð13Þ

½AAðaqÞ� ¼ kdissolution
khydrolysis

f1� expð�khydrolysistÞg ð14Þ

½AAðaqÞ� ¼ ½AAðaqÞ�o expð�khydrolysistÞ ð15Þ
The dissolution and hydrolysis rate constants, kdissolution and

khydrolysis, respectively, in both concentration regimes for each
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experimental run were simultaneously estimated via a quasi-
Newton numerical optimization algorithm, with an objective
function that minimizes the difference between optimized simu-
lation values [AA(aq)] and the time-dependent relative concen-
tration values of AA in the aqueous phase (in matrix Ĉm�s

MLR)
obtained from chemometrics analyses of in situ Raman data. As
with the aforesaid Arrhenius modeling, the actual AA concentra-
tion was not required (i.e., the time-dependent dimensionless
ratio [AA]t/[AA]o was utilized). A logical if-else construct was
built into the quasi-Newton optimization program with use of
Microsoft Excel 2007 to account for the two concentration
regimes that physically occurred in each experimental data set,
and the optimization based on eqs 13�15 was computed as a
nonlinear problem by using tangent linear extrapolation estima-
tion with first derivatives to estimate partial derivatives and non-
negativity constraint.
Computations. All chemometric analyses herein were devel-

oped by using in-house written scriptsMATLAB version 7.3.0.267
(R2006b). The BTEM calculations were performed with in-house
developed BTEM graphical user interface (GUI) software
(version 1.0).43Multilinear regression (MLR)was performedwith
pseudoinverse37 and the MaxEnt-MinEnt cosmic ray unspiking
algorithm35 were both executed by using MATLAB. The linear
regressions and nonlinear optimizations for the Arrhenius theory
and dissolution-reactions kinetics models were performed

with Microsoft Excel 2007. All computations were carried
out on an IBM computer running on Intel Pentium 4 CPU of
3.0 GHz, 512MB RAM with the Windows XP operating
system.

’RESULTS AND DISCUSSION

In situ Raman spectral data for each experimental run first
underwent cosmic ray spike removal via an information-theoretic
MaxEnt-MinEnt algorithm previously developed.35 As shown in
Figure 2, this MaxEnt-MinEnt cosmic ray unspiking program
worked extremely well for all data obtained from different vessel
types and sizes and through both C and NC optics. All Raman
spike abberations of varied band shapes and wavenumber loca-
tions were automatically identified and removed within ca. 10
s of computational time, leaving behind “unspiked” Raman
data that retain all genuine spectral band changes due to
hydrolysis (compare Figure 2 left and right columns). The
plots in Figure 2 also show that the spectral baselines for
different glass vessels or different in situ Raman monitoring
optics used do differ somewhat. For some of the experimental
data sets, a minor baseline offset has to be made prior to
executing the unspiking program in order to account for the
baseline shift observed upon dosing in AA.

Once all cosmic ray spikes were removed, the band-target
entropy minimization (BTEM) algorithm was utilized to resolve

Figure 2. Representative removal of cosmic ray spike abberations, using the information-theoretic approach for reactor vessels of varied sizes. The
subplots in the left column with sharp Raman spikes were effectively removed in their respective right column subplots. (a) 50 mL of JGR, noncontact
optics, 20� reaction, (b) 250 mL of RBF, immersion optics, 25 �C reaction, (c) 3 L of Lenz, noncontact optics, 25 �C reaction.
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the pure component spectra of acetic anhydride and acetic acid.
With these resolved chemical species spectra, the background
spectrum of C optics probe rBl�ν

probe or the abstract initial 2�3
singular vectors Vbkgrd

T from corresponding background Raman
spectra combine to form r̂s�ν. Subsequently, the relative spectral
contributions of each chemical and background (real or abstract)
Raman spectral component can be calculated by using multilinear
regression (MLR) according to eq 5. Figure 3 (columns a and c,
top two subplots) shows the BTEM resolved pure component
estimates for AA and acetic acid, and their bottom three subplots
are the three initial Vbkgrd

T vectors that accounted for the Raman
background signals (from glass and thermal fluid) measured by
using theNC probe from either 50mLRBF or 50mL JGR vessels.
The subplots in columns b and d of Figure 3 are the MLR
calculated transient relative concentration profiles corresponding
to the spectrum in each row of Figure 3, columns a and c. The
profiles of AA and acetic acid reflect typical reactant disappearance
and product formation as reaction time progresses. Similarly, the
top two subplots in columns a and c of Figure 4 belong to AA and
acetic acid with their relative concentration profiles shown in
Figure 4, columns b and d. The bottom two subplots in
column a of Figure 4 are the two initial Vbkgrd

T vectors from
Raman background signals, whereas the bottom subplot in
column c of Figure 4 is that from the C probe rBl�ν

probe.
Furthermore, the relative spectral contributions of the two
chemical species in this model hydrolysis reaction are equiva-
lent to their time-dependent relative concentrations, that is,
noncalibrated arbitrary units. The AA and acetic acid BTEM

spectral estimates in Figures 3 and 4 have excellent signal-to-
noise ratio and corroborate well for all experiments in this
work. Their corresponding transient relative concentration
profiles obtained through MLR are thus useful for kinetic
parameter estimation based on the aforesaid two theoretical
kinetics models.

Figure 5 shows the various calculation results for the 0.5 L Lenz
reactorC optics data, which are representative of similar computa-
tions herein that are based on the Arrhenius reaction kinetics
model. The decrease in relative concentration of AA with reaction
time is obtained from MLR, with all values for each reaction time
series (i.e., experimental run) normalized with respect to corre-
sponding maximum relative concentration value. As such, these
normalized relative concentration values are equivalent to the
time-dependent values of the dimensionless ratio [AA]t/[AA]o.
The Arrhenius rate constant k in eq 9 for each reaction tempera-
ture Treaction = [20, 40] is found by calculating the negative
gradient of ln ([AA]t/[AA]o) with reaction time from the point
where [AA]t/[AA]o = 1.0 for at least the initial 2 half-lives in
accordance with pseudo-first-order kinetics approximation of eq 9
(Figure 5, bottom left plot). That is, the initial AA dissolution lag
time of ca. 2 min was not considered in this Arrhenius model, and
the zero reaction time is referenced from the unity value for relative
concentration rather than the start time of AA dosage. The
linear regression R2 value of these gradient calculations in all
experimental runs averages around an excellent value of 0.989
for all C andNC temperature series data of 50 mL RBF, 50 mL
JGR, and 0.5 L Lenz reactors. As demonstrated in the bottom

Figure 3. Multivariate curve resolution and multilinear regression of small lab-scale reactor vessels. RBF (50 mL) with noncontact optics for
25 �C reaction: (a) BTEM spectral estimates with abstract VT vectors and (b) corresponding MLR relative concentration profiles. JGR (50 mL)
with noncontact optics for 25 �C reaction: (c) BTEM spectral estimates with abstract VT vectors and (d) corresponding MLR relative con-
centration profiles.



616 dx.doi.org/10.1021/op100337v |Org. Process Res. Dev. 2011, 15, 610–621

Organic Process Research & Development ARTICLE

right plot of Figure 5, the Arrhenius activation energy Ea for
every glass reactor series is estimated by an exponential
regression according to eq 10, and their average regression

R2 value is 0.981. The estimated Arrhenius model kinetic rate
constant and activation energy values for the temperature
series are given in Table 1.

Figure 4. Multivariate curve resolution andmultilinear regression ofNC andC data from 0.5 L Lenz jacketed reactor vessel for 35 �C reaction:NC data
(a) BTEM spectral estimates with abstract VT vectors and (b) corresponding MLR relative concentration profiles, and C data (c) BTEM spectral
estimates with immersion probe spectrum and (d) corresponding MLR relative concentration profiles.

Figure 5. Representative graphical plots of Arrhenius model reaction kinetic parameters estimation for 0.5 L Lenz reactor C data. Top: Temperature-
dependent relative concentration transient profiles from multilinear regression. Bottom left: Pseudo-first-order reaction kinetic constant estimation.
Bottom right: Arrhenius model activation energy constant estimation.
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For the dissolution-reaction kinetics model of eqs 13�15,
[AA]t/[AA]o data for reaction time range of ca. 20�35 min
(depending on reaction temperature: longer reaction time ranges
were selected for lower reaction temperatures, and all selected
time ranges exceed beyond the second half-life stage for the
dissolution-reaction modeling) underwent a nonlinear quasi-
Newton optimization, using Microsoft Excel to generate optimal
values for the dissolution and hydrolysis reaction kinetic con-
stants. In contrast to the aforesaid pseudo-first-order Arrhenius
model, this dissolution-reaction model includes the initial ca. 2 min
of AA dissolution, i.e. assuming both dissolution and reaction begin
at the start of AA dosage. The optimization objective is mini-
mizing the sum of square errors (SSE) between simulated values
calculated from solving eqs 13�15 and respective [AA]t/[AA]o
values. The left plot of Figure 6 shows the optimized relative
concentration profiles (solid lines) overlaying the calculated
[AA]t/[AA]o values for 100, 300, and 1000 rpm stirring rates
for three separate AA hydrolysis runs conducted at constant
25 �C in a 250 mL JGR, using the NC optics for Raman
monitoring. The numerical fit with the proposed dissolution-
reactionmodel is very good, with the two aforesaid concentration
regimes of this hybrid kinetics model well accounted. The
same optimization strategy was subsequently applied to other

experimental runs, and yield equally good numerical fit. The right
plot of Figure 6 demonstrates the fitting between simulated
(solid lines) values obtained through the same nonlinear opti-
mization and experimentally calculated transient values of
[AA]t/[AA]o from BTEM-MLR computations for the tempera-
ture series of AA hydrolysis in 50 mL JGR using C data. The
estimated dissolution and hydrolysis rate constants of this hybrid
model for the temperature series experiments in this study are
shown in Tables 2 and 3.

The aforesaid numerical treatments for the pseudo-first-
order reaction kinetics and dissolution-reaction models were
applied to the stirring speed and reaction volume/vessels variation

Table 1. Apparent Pseudo-First-Order Rate Constants and
Arrhenius Parameters of Acetic Anhydride Hydrolysisa

RBF 50 mL JGR 50 mL Lenz 0.5 L

reaction temp (�C) C NC C NC C NC

20 1.548 1.149 1.267 1.311 1.441

25 1.872 1.590 1.707 1.645 1.940 2.100

30 2.366 2.062 2.422 2.449 2.505 2.600

35 3.357 3.073 3.081 3.050 3.720 3.500

40 3.715 2.965 3.915 3.683 4.789 4.800

ln (ko) 8.133 9.339 11.187 10.187 12.549 11.172

Ea (kJ/mol) 35.648 39.147 43.494 41.006 46.582 43.060
a First-order reaction rate constant k (10�3 s�1) calculated for at least
the initial 2 half-lives.

Figure 6. Representative graphical plots of transient AA relative concentration profiles from dissolution-reaction model kinetic parameters estimation
(data points from analyses of experimental Raman spectra; solid lines from quasi-Newton numerical optimization). Left plot: Different stirring rates at
constant temperature 25 �C. Right plot: Different reaction temperatures at constant 1000 rpm stirring rate.

Table 2. Optimized Apparent Hydrolysis Rate Constants of
Acetic Anhydride from Dissolution-Reaction Modela

RBF 50 mL JGR 50 mL Lenz 0.5 L

reaction temp (�C) C NC C NC C NC

20 1.599 1.063 1.256 1.416 1.416

25 2.043 1.541 1.725 1.585 1.870 1.936

30 2.413 1.829 2.392 2.278 2.482 2.458

35 3.335 2.957 3.047 2.916 3.478 3.485

40 3.720 2.466 3.810 3.866 4.755 4.850
aHydrolysis rate constant khydrolysis (10

�3 s�1) monitored via in situ
Raman spectroscopy.

Table 3. Optimized Apparent Dissolution Rate Constants of
Acetic Anhydride from Dissolution-Reaction Modela

RBF 50 mL JGR 50 mL Lenz 0.5 L

reaction temp (�C) C NC C NC C NC

20 5.636 1.248 5.402 2.495 2.495

25 2.529 4.202 3.200 1.623 0.885 10.50

30 2.000 4.637 1.834 5.556 1.990 2.866

35 1.656 2.119 1.413 1.065 0.880 5.007

40 1.460 2.254 1.171 1.481 0.781 5.556
aDissolution rate constant kdissolution (10

�3 s�1) monitored via in situ
Raman spectroscopy.
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experiments and their optimized kinetics parameter estimates
are presented in Tables 4 and 5. The estimated value for the
first-order initial reaction rate (Arrhenius theory) is stated side
by side with that for the optimized hydrolysis rate (dissolution-
reaction model) for each reaction conducted, with the latter
given within parentheses.

Several pieces of information can be inferred from the pseudo-
first-order approximation and estimated Arrhenius model para-
meters (see Table 1 and Figure 5). The pseudo-first-approxima-
tion rate constants and Arrhenius model yield excellent regression

estimates with k, ln(ko), and Ea values comparable to those reported
in the literature.26,30 Furthermore, these values were determined by
applying aforesaid multivariate analyses, in contrast to using the
single wavelength/wavenumber (univariate) method.30 As given
in Table S3 (Supporting Information), the pseudo-first-order rate
constants betweenC andNC data of smaller 50mL vessels of RBF
and JGR differ more at the two ends of the reaction temperature
range (i.e., 20 and 40 �C), with the RBF difference ranging from
8.45% to 25.79% and the JGR differing only between 1.01% and
5.93%. For the Lenz 0.5 L temperature series the deviation is

Table 4. Apparent Reaction Rate Constants for Pseudo-First-Order Initial Reaction Rate Approximation (Arrhenius Theory) and
Optimized Hydrolysis Rate (Dissolution-Reaction Model) of Various Reactor Vessels at Different Stirring Speeds (At Constant
Reaction Temperature 25 �C)a

stirring speed (rpm) RBF 50 mL JGR 50 mL RBF 100 mL JGR 100 mL RBF 250 mL JGR 250 mL Lenz 0.5 L Lenz 1.0 L Lenz 3.0 L

immersion/contact (C) optics

100 2.473 (2.228) 9.728 (0.776)

150 0.581 (1.186) 0.590 (1.140)

300 2.508 (2.331) 1.764 (1.771) 1.866 (1.822) 1.866 (1.821) 1.847 (1.544)

400 2.105 (2.005)

500 1.949 (1.933) 1.949 (1.931) 2.267 (2.023)

700 2.265 (2.221) 1.800 (1.768)

1000 1.872 (2.043) 1.707 (1.725) 2.091 (2.102) 1.824 (1.719) 2.099 (2.126) 1.709 (1.810)

noncontact (NC) optics

100 2.447 (2.235) 1.264 (1.319)

150 1.729 (1.142) 0.607 (1.137)

300 2.369 (2.274) 1.762 (1.690) 1.825 (1.758) 1.829 (1.663) 2.985 (2.912)

400 2.230 (1.972)

500 2.053 (1.909) 2.053 (1.928) 2.231 (2.238)

700 2.195 (2.128) 1.771 (1.735)

1000 1.590 (1.541) 1.645 (1.585) 1.939 (1.817) 1.966 (1.728) 2.094 (2.169) 1.731 (1.805)
a First-order reaction rate constants k (10�3 s�1) calculated for at least the initial 2 half-lives; optimized hydrolysis rate constants khydrolysis (10

�3 s�1)
given within parentheses.

Table 5. Apparent Dissolution Rate Constants (Dissolution-Reaction Model) for Different Reactor Vessels at Different Stirring
Speeds (At Constant Reaction Temperature 25 �C)a

stirring speed (rpm) RBF 50 mL JGR 50 mL RBF 100 mL JGR 100 mL RBF 250 mL JGR 250 mL Lenz 0.5 L Lenz 1.0 L Lenz 3.0 L

immersion/contact (C) optics

100 2.632 7.684

150 3.797 1.938

300 4.471 7.046 6.481 6.288 1.755

400 3.101

500 7.096 7.258 2.215

700 5.962 8.942

1000 2.529 3.200 1.425 1.557 5.962 2.092

noncontact (NC) optics

100 2.656 3.975

150 3.005 1.937

300 2.235 4.794 4.167 8.060 8.998

400 1.939

500 5.556 5.091 1.410

700 3.577 4.514

1000 4.202 1.623 1.526 8.088 3.577 5.556
aOptimized acetic anhydride dissolution rate constants kdissolution (10

�3 s�1).
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1.18�9.14%, with its NC data at 20 �C not representative due to
observed condensation of water vapour on the reactor outer wall at
this low reaction temperature (no repetition of this 20 �C experi-
ment was done). Besides this data set outlier, the other values in
bothC andNC data for the 0.5 L Lenz vessel yield comparable rate
constants. Another outlierNC data found was that of 50 mL RBF
at 40 �C temperature. As shown in Figure S2 (Supporting
Information), the [AA]t/[AA]o and ln([AA]t/[AA]o) values
obtained from NC data were scattered for the experiment of
50mL RBF at 40 �C, which is a significant contrast from itsC data
counterpart. Therefore, though numerical calculations can be
performed on the data from 50 mL RBF at 40 �C, the NC data
rate constant was not following the same trend of its correspond-
ingC data. The general observations just described for the pseudo-
first-order approximation are similar for the optimized hydrolysis
reaction rates (see Table 2).

The comparison of optimized hydrolysis reaction rate
(dissolution-reaction model) and pseudo-first-order rate constants
(Arrhenius theory) was made by calculating their average percen-
tage deviation, which is given inTable S4 (Supporting Information).
For the C data, both 50 mL RBF and 0.5 L Lenz reactors have an
average of ca. 2.8% difference between the two kinetic models,
whereas for 50 mL JGR it is only ca. 1.4%. For corresponding NC
data, the dissimilarity decreases from around 9.36% (50mL RBF),
5.6% (50 mL JGR) to 3.7% (0.5 L Lenz). Overall, the difference
between these two models was not very significant for the
temperature series experiments. Since good stirring rates were
maintained for these temperature series experiments, their corre-
sponding Raman spectral data sets reflected reaction-controlled
rather than AA dissolution-controlled scenarios.

The strength of using the relatively more sophisticated dissolu-
tion-reactionmodel can be seen in the comparison of reaction rate
constants at isothermal 25 �C across different stirring speeds with
various glass vessel types (see Tables 4 and 5). As aforementioned,
this is to mock up systematic kinetics studies that occur during
process development, in which new reactions are investigated
through various reaction volumes and vessels, using different
stirring rates and regimes to find optimal large-scale process
operation parameters. From Tables 1 and 2, the reaction rates
for 25 �C hydrolysis runs in three different vessels (50 mL RBF,
50mL JGR, and 0.5 L Lenz) spread over 1.541� 10�3 to 2.100�
10�3 s�1 with an average value of ca. 1.796� 10�3 s�1. This serves
as a benchmark average value for comparing the reaction rates
obtained for the stirring speed and reaction volume variations
studies. For the experimental runs with stirring speeds of 400 rpm
and above in Table 4, the spread of reaction rates ranges is 1.541�
10�3 to 2.238� 10�3 s�1 (NC data) and 1.707� 10�3 to 2.267�
10�3 s�1 (C data), with averages of 1.919 � 10�3 and 1.960 �
10�3 s�1, respectively. Out of these 24 hydrolysis runs, two-thirds
of the estimated pseudo-first-order reaction rates are slightly
higher than corresponding optimized rates obtained from the
dissolution-reaction model, with average percentage differences of
0.74% (C data) and 3.89% (NC data) between the two kinetics
models. Taking the benchmark value of 1.796 � 10�3 s�1, the C
data deviates by an average of 9.66% (pseudo-first-order) and
8.59% (dissolution-reaction), whilst the corresponding NC data
deviates by 9.02% (pseudo-first-order) and 4.64% (dissolution-
reaction). A similar comparison using the reaction rates in Table 4
for stirring speeds of 300 rpm or less yield more striking findings.
Their spread of reaction rates spans 0.607 � 10�3 to 2.985 �
10�3 s�1 (NCdata) and 0.581� 10�3 to 9.728� 10�3 s�1 (Cdata),
with averages of 1.830 � 10�3 and 2.102 � 10�3 s�1, respectively.

Abnormally diverse reaction rates such as 0.607� 10�3 s�1 or even
9.728 � 10�3 s�1 were obtained due to the shift of reaction-
controlled regime to dissolution-controlled regime at low stirring
rates, especially at 150 or 100 rpm. The left plot in Figure 6 shows
the comparison between fast and slow dissolution relative concen-
tration profiles resulting from the different stirring speeds. Con-
trasting with the benchmark value of 1.796� 10�3 s�1, the C data
deviate by an absolute average of 43.66% (pseudo-first-order) and
9.57% (dissolution-reaction), whereas correspondingly theNC data
deviate by 4.03% (pseudo-first-order) and 0.22% (dissolution-
reaction). In summary, the differential equations in the dissolu-
tion-reaction model describing two distinct regimes during AA
hyrolysis phenomenon provided a means to correct the errors
arising from poor dissolution; albeit this is a partial numerical
rectification rather than a full physicochemical theoretical treatment.

Between using immersion (C) and noncontact (NC) optics for
in situ Raman spectroscopy, there appears to be a slight advantage in
using the former. In the temperature series experiments, the larger
deviation found in the NC data of RBF could be due to better
temperature control and strirring rates maintained in the jacketed
JGR and Lenz reactors in contrast to the RBF. The conditions near
the sapphire crystal of the immersion optics and the laser focal point
of the noncontact optics differ more for the RBF.

Moreover, noncontact optics measurements can be impeded by
condensation that occurs on outer reactor walls for low-tempera-
ture studies (especially in environments with high atmospheric
humidity), and the glass Raman scatter background has to be
compensated (see Figure S1, Supporting Information). Figure S3
(Supporting Information, left bottom image) shows water vapour
condensation on the reactor outer wall for a hydrolysis conducted
at 15 �C. Furthermore, the quantitative results obtained in this
study indicate more consistent measurements from the C data
compared to NC. At adequate stirring speeds that favor the
reaction-controlled regime, the deviation of hydrolysis reaction
rates between the two kinetics modeling approaches is slightly
lower for the C data, reflecting the spectroscopic complications
that are associated with the noncontact optics method. Apart from
these slight differences, the present work demonstrated that the
kinetics parameter estimations obtained from noncontact optics is
in very good agreement with those of immersion optics.

The immersion optics is not without drawbacks. At times
when there are bubbles surrounding the sapphire crystal tip of the
immersion optics during AA hydrolysis, these bubbles will
obstruct Raman measurements (see Figure S3, Supporting
Information, right top image). Such untimely obstructions will
cause anomalies to both the Raman spectra and their regressed
transient concentration data points as shown in Figure S3
(Supporting Information, left top image). A similar analytical
impasse can be anticipated during monitoring of multiphase
systems, e.g. crystallization, suspensions, slurry, gas-liquid, etc.,
if Raman immersion optics is employed. When deploying in situ
Raman spectroscopy for real-time process monitoring and on-
the-flight chemometrics analysis, the aforesaid Raman spectro-
scopic anomalies arising from abnormal physical situations for
noncontact and immersion optics has to be intelligently dealt
with by using appropriate numerical algorithms in order not to
raise premature alarms that erroneously signify process failure.

’CONCLUSION

The combination of in situ Raman monitoring, information-
theoretic multivariate chemometrics, and kinetics modeling
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approaches was demonstrated herein to be effective for generat-
ing better process understanding of the acetic anhydride model
reaction during process development. The similarities and
differences in spectroscopic measurements (immersion and
noncontact optics), data processing (cosmic ray aberrations
removal, accounting for spectral anormalies and glass vessel
background, and sapphire crystal of probe), multivariate analysis
(curve resolution and data regression), use of different reaction
volumes in varied glass reactors, and their estimated kinetics
modeling parameters (pseudo-first-order reaction, Arrhenius
theory, and dissolution-reaction kinetics) were studied and
discussed.

Pertinent chemical process information encoded within the
recorded in situ Raman data were decoded, i.e. unraveled, via the
sequence of chemometrics analyses and explained through
postulated kinetics models. The estimated pseudo-first-order
hydrolysis rate constants and Arrhenius theory parameters were
consistent with those previously reported in the literature, and
the dissolution-reaction model provided a means for partially
correcting the hydrolysis rate constants of experiments at low
stirring speeds. Both noncontact and immersion probe optics
were comparable for measuring in situ Raman spectra and
reflecting hydrolysis rates under well-mixed reaction-controlled
conditions, but each has its advantages and shortfalls that should
be considered in actual deployment. The overall protocol
described in this work, which connects in situ analytical measure-
ments, multivariate chemometrics, and kinetics modeling, can
serve as a general methodology for studies of novel chemistries in
process development.
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