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ON SIMPLEX SHAPE SPACES

HUILING LE and DENNIS BARDEN

Abstract

The right-invariant Riemannian metric on simplex shape spaces in fact makes them particular Riemannian
symmetric spaces of non-compact type. In the paper, the general properties of such symmetric spaces
are made explicit for simplex shape spaces. In particular, a global matrix coordinate representation is
suggested, with respect to which several geometric features, important for shape analysis, have simple
and easily computable expressions. As a typical application, it is shown how to locate the Fréchet means
of a class of probability measures on the simplex shape spaces, a result analogous to that for Kendall’s
shape spaces.

1. Introduction

In [1] and [2], Bookstein proposed a method for the representation of the shapes of
labelled triangles as points in the Poincaré half plane – a space of constant negative
curvature, with the collinear triangles situated on the infinite horizon formed by
the x-axis. This representation has a geometrically appealing property: the geodesic
distance between any two triangle shapes is equal to a multiple of the logarithm of
the strain ratio of the affine transformation mapping one triangle to the other. In [13],
Small extended the Bookstein model by representing the shapes of labelled simplexes
in Rn on a Riemannian manifold in such a way that the Riemannian distance
between two simplex shapes is invariant under simultaneous transformation of the
simplexes by a common affine transformation and is a function of the principal
strains of the affine transformation mapping one simplex onto the other. These
manifolds are quite distinct from those proposed by D. G. Kendall (cf. [5]) based
upon procrustean arguments, and are designed mainly for applications, such as the
biological ones, where it is reasonable to assume that there is some geometrical
interdependence among the vertices which prevents the simplex they span being
degenerate. In such cases, it would be more appropriate to use Bookstein’s model
than Kendall’s model to measure the difference between shapes, since, in the former,
the shapes of degenerate simplexes are infinitely far from each non-degenerate one.

In [11], using the theory of Riemannian submersions, Le and Small obtained an
explicit formula for the Riemannian metric on simplex shape space and, hence, also
for the Riemannian distance between simplex shapes. In the case of Kendall shape
spaces, much more geometric information is known (cf. [6]), such as a formula
for the geodesic between two given shapes and a formula for the full curvature
tensor at each shape giving, in particular, bounds on the sectional curvature. All of
this information has practical applications in the statistical analysis of Shape. For
example, the geodesics have been used to model change of shape over time (cf. [9]);
the knowledge of the curvature enables one to make a quantitative assessment of
the validity of the common approximation for concentrated data of working in a
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tangent space to the shape space and it also plays an important role in the study
of existence and location of Fréchet mean shapes (cf. [8]). In this paper, we take
a different approach to that of [11] in order to obtain further explicit geometric
information for simplex shape spaces and we also illustrate its practical application.

In the next section, we describe our model of simplex shape space. We explain
how the requirement that the distance between simplex shapes is invariant under
simultaneous affine transformation implies that this metric be invariant under a
natural action of the special linear group on the shape space. If this invariant metric
is induced by a Riemannian metric, this further implies that our simplex shape space
is in fact an irreducible Riemannian globally symmetric space of non-compact type
(cf. [3, p. 518]). This means that it has a number of geometric properties which
are of significance in the study of simplex shapes. For example, the right-invariant
Riemannian metric that we require is unique up to a homothety and, hence, the
choice that we shall make must agree up to a global scalar multiple with those
described rather differently in [11] and [13]. In fact, it agrees with that in [11]
and is

√
n/2 times that in [13]. We describe this and other geometric properties of

symmetric spaces that we shall use and also, since they are not always easy to locate
explicitly in the literature, give readers some idea of how they arise.

In Section 3 we use this basic information to obtain a choice of matrix coordinates
for the simplex shape space in terms of which the various geometric features have
particularly simple expressions. In particular, we obtain explicit expressions for the
induced distance function, the geodesics and the global isometric involutions. All of
these formulae are elementary and easily susceptible to computation.

This lays the foundation for practical results analogous to those mentioned above
for Kendall shape spaces and, in the final section of the paper, we give an example
of such an application: namely, the proof of the existence and uniqueness of Fréchet
means, as well as their identification, for appropriate probability measures on simplex
shape spaces.

2. Simplex shape space as a symmetric space

Our model of simplex shape space starts from the observation that, since the
vertices of a simplex are ordered, or equivalently labelled, a non-degenerate simplex
in Rn can be represented by an n× (n+ 1) matrix whose jth column is the location
of the jth vertex of the simplex. By moving the first vertex to the origin and then
omitting it, the quotient space of labelled non-degenerate simplexes in Rn modulo
translations is then identified with

GL(n) = {Y | Y is a (n× n)-matrix such that det(Y ) 6= 0}.
The absolute value of the determinant of a matrix in GL(n) is, up to a constant
multiple, equal to the volume of the corresponding simplex. Thus, by making
the natural choice of the volume as a measure of the ‘size’ of the simplex, the
quotient space of simplexes in Rn modulo translations, reflections and scaling may
be identified with

SL(n) = {Y ∈ GL(n) | det(Y ) = 1}.
Thus, since the shape of a simplex is also invariant under rotations, the space of sim-
plex shapes in Rn is homeomorphic with the quotient M(n) = SL(n)/SO(n) of SL(n)
by the left action of SO(n). In the following, we shall write π for the quotient map
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from SL(n) to M(n) so that π(Y ) is the left coset SO(n)Y = {Y ′ ∈ SL(n) | Y ′ = TY

for some T ∈ SO(n)}. This is the element of M(n) representing the shape of all sim-
plexes that, after translation, reflection and re-scaling, are identified with Y ∈ SL(n).

Recall that the basic requirement in Bookstein’s and Small’s models is that
the distance between the shapes of two simplexes should depend only on the affine
transformation that takes one onto the other. Since shape is unaffected by translation,
reflection and scalar multiplication, this means that for each T in SL(n), regarded
as the linear part of an affine transformation that preserves volume and orientation,
we require the distance d(π(Y ), π(TY )) between the shapes π(Y ) and π(TY ) to be
independent of the choice of Y , and so equal to the distance d(π(I), π(T )) between
the shapes of two simplexes that, after standardising with respect to translation,
reflection and scaling, are identified with I and T respectively. Then, varying Y will
show that we need this metric to be invariant under the right action of SL(n) on
M(n).

In correlating the results we claim with those in the literature, two technical points
need to be observed. Both are consequences of the facts that we represent the shape
of a simplex in Rn by a left coset of SO(n) in SL(n) and that we are seeking a
right-invariant metric on M(n). Firstly, in order to have a group action of SL(n) on
itself, for T ∈ SL(n), we should define the corresponding right multiplication ρ̃T by
ρ̃T :Y 7→ Y T−1. Similarly, for M(n), we define ρT : π(Y ) 7→ π(Y T−1). Throughout
this paper, the term right invariance will refer to the appropriate one of these right
actions. Secondly, it will be convenient to identify the tangent space to SL(n) at the
identity I with the Lie algebra of right-invariant vector fields with the Lie product
corresponding to the Poisson bracket of vector fields. These are the opposites of the
conventions usually adopted, however all the proofs remain valid mutatis mutandis.

If we further require that the metric on M(n), invariant under the right action
of SL(n), be induced by a Riemannian metric, as was indeed the case in [11] and
[13], then M(n) becomes a Riemannian symmetric space of non-compact type. Such
spaces are classified (cf. [3] and [14]) and their main geometric properties are well
understood. In the remainder of this section, we explain how two basic properties
of symmetric spaces, the essentially unique right-invariant metric and the resulting
geodesics, arise in our specific context.

The group GL(n) has a natural differential structure as an open subset of Euclidean
space and SL(n) is a smooth submanifold of GL(n) for which the right translations
ρ̃T are diffeomorphisms. If we give M(n) the quotient topology, then the induced right
translations ρT will be homeomorphisms. However, M(n) is an example of a coset
manifold, and general theory (cf. [12, 307ff]) tells us that it has a unique differential
structure that makes the natural projection, or quotient map, π : SL(n) → M(n) a
submersion: that is, at each point of SL(n), the derivative of π has rank equal to
the dimension of M(n). In terms of this structure, the homeomorphisms ρT form
a group of diffeomorphisms which acts transitively on M(n). With respect to any
right-invariant metric, these diffeomorphisms will necessarily be isometries which
will be important for our calculations and applications.

Any right-invariant vector field, in the Lie algebra of SL(n), is of course determined
by its value in the tangent space at the identity I , its value at other points being
obtained from that by right translation. The tangent space to CL(n) at I is the space
of all n × n real-valued matrices, and the subspace tangent to SL(n), the kernel of
the derivative of the determinant map there, is the subspace of matrices of trace
zero. Thus, we may further identify the Lie algebra sl(n) of SL(n) with this subspace,
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which we shall still denote by sl(n), and, similarly, the Lie algebra of SO(n) may be
identified with the subalgebra

so(n) = {X ∈ sl(n) | Xt = −X}.
In terms of these matrices, the Lie product is given by [X1, X2] = X1X2 −X2X1.

For any element T of SL(n), the conjugation isomorphism CT :Y 7→ TY T−1

determines a linear isomorphism Ad(T ) = d(CT )I of the tangent space sl(n) at the
identity. Since, in terms of the standard coordinates on GL(n), both left and right
multiplication are linear, it follows that Ad(T ) is the linear map X 7→ TXT−1 of
sl(n) into itself. Using the trivial decomposition X = 1

2
{(X−Xt) + (X+Xt)} for any

X ∈ sl(n), we have

sl(n) = so(n)⊕ p(n),

where p(n) is the subspace {X ∈ sl(n) | Xt = X}, which is clearly Ad(SO(n))-
invariant. This means that M(n) will be what is termed a reductive coset manifold.
When equipped with an SL(n)-invariant metric, it becomes a reductive homogeneous
space and the possible SL(n)-invariant metrics may be determined as in the following
lemma, which is a special case of a result which holds for all reductive coset manifolds
(cf. [12]).

Lemma 1. There is a bijection between Ad(SO(n))-invariant scalar products on
p(n) and SL(n)-invariant Riemannian metrics on M(n), determined by the requirement
that dπI : p(n)→Tπ(I)(M(n)) be an isometry.

One particular choice of Ad(SO(n))-invariant inner product on p(n) is 〈X1, X2〉=
tr(X1X

t
2) for which Ad(SO(n))-invariance follows from the fact that, for R in SO(n),

Ad(R) acts by conjugation. This inner product is in fact a constant multiple of
the restriction to p(n) of the Killing form on sl(n) and is essentially unique. This
uniqueness arises from the fact that the decomposition of sl(n) as so(n)⊕p(n), together
with an Ad(SO(n))-invariant inner product on p(n) and the involution of sl(n) that
is +id on so(n) and −id on p(n), satisfies a couple of other technical conditions that
make it an irreducible orthogonal involutive Lie algebra. The classification of such
algebras implicitly involves the following lemma. See, for example, [14], where the
result we require falls under class 3 of Theorem 8.2.9. However, given our explicit
knowledge of Ad(SO(n))-action on p(n), it is possible, by choosing an obvious basis
of p(n) and generators of SO(n), to give a direct elementary proof for our case.

Lemma 2. The only Ad(SO(n))-invariant inner products on p(n) are positive
scalar multiples of the restriction of the Killing form.

From Lemma 2, together with Lemma 1, we see that the SL(n)-invariant Rieman-
nian metric on M(n) is unique up to homothety, that is, multiplication by a constant.
The choice we make is that corresponding to the multiple 1/2n of the Killing form.
We now use it to characterise the geodesics on simplex shape space and, in the next
section, we shall use it to obtain a simple formula for the distance between two
shapes as well as for the geodesics themselves.

In order to describe the geodesics, we consider the Lie exponential map from sl(n)
to SL(n) given, in terms of matrices, by exp :X 7→∑∞

n=0 X
n/n!. This series converges

and so exp (X) is defined for all X. Since exp (Y XY −1) = Y exp (X)Y −1, conjugation
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of X to the Jordan normal form shows that det(exp (X)) = exp (tr(X)). Thus,
exp (X) is indeed in SL(n) for all X in sl(n). Moreover, when X1 and X2 commute,
exp (X1 + X2) = exp (X1) exp (X2) so that, for real s and t, exp (sX) exp (tX) =
exp ((s+ t)X). This means that αX : t 7→ exp (tX) is a 1-parameter subgroup of SL(n).
It is also the integral curve starting at I of the right-invariant vector field X. On the
other hand, since M(n) is a Riemannian manifold, for each v ∈ Tπ(Y )(M(n)), there is
a geodesic γv , a curve in M(n) starting at π(Y ) determined by the requirement that
γ′v(0) = v and Dv(t)v(t) = 0, where D is the Levi–Civitá connection determined by
the Riemannian metric and v(t) = γ′v(t) is the tangent vector field along γv . We then
have the following, which is, again, a special case of a more general result. See, for
example, [12], Proposition 3.1 on p. 317.

Lemma 3. For X ∈ p(n), the geodesic γdπI (X), with respect to the above SL(n)-
invariant metric on M(n), is the image π ◦ αX of the 1-parameter subgroup of SL(n)
generated by X.

Since exp (tX) is defined for all t, this lemma confirms the completeness of M(n),
another property common to all Riemannian symmetric spaces.

3. Some explicit geometry of simplex shape spaces

The results of the previous section enable us to give an elementary account in our
context of the features of symmetric spaces which interest us. Firstly, we describe
a convenient set of matrix coordinates for simplex shape space, in terms of which
we then give explicit formulae for the distances and geodesics between shapes and
for the global isometric involutions which characterise it as a symmetric space. We
close with some comments on the sectional curvature of our spaces.

Our coordinates will lie in the submanifold

P(n) = {P ∈ SL(n) | P t = P and P is positive definite},
a relatively open subset of a linear subspace, of SL(n). From the unique polar
factorisation of Y ∈ SL(n) as Y = RY PY , where RY ∈ SO(n) and PY ∈ P(n), it
follows that PY is the unique element of P(n) in the SO(n)-coset π(Y ). Thus, the
restriction of the quotient map π to P(n), mapping PY to π(PY ) = π(Y ), is bijective
and is easily checked to be a diffeomorphism.

This diffeomorphism π̄ of P(n) onto M(n) has particularly convenient properties,
which we now elucidate. Note first that exp maps the subspace p(n) into the
submanifold P(n). In fact, if P is in P(n), then all the eigenvalues of P are positive,
so that P may be written as P = TΛT t with T orthogonal and Λ a diagonal
matrix with positive entries and det(Λ) = 1. Thus, Λ = exp (X) with X ∈ p(n)
and so P = exp (TXTt) with TXTt also in p(n). This shows that the restricted
map exp : p(n) −→ P(n) is surjective and it may similarly be seen to be injective
and so a diffeomorphism between the two spaces. Thus, the composite π̄ ◦ exp is a
diffeomorphism of p(n) onto M(n). However, the Riemannian exponential Exp of
M(n) at π(I) is given by

Exp(tdπI (X)) = γtdπI (X)(1) = γdπI (X)(t),

so Lemma 3 says that π̄ ◦ exp = Exp ◦ dπ̄I . Since, by choice, in order to apply
Lemma 1, dπI is an isometry of p(n) with Tπ(I)M((n)), it follows that Exp is also
a diffeomorphism between Tπ(I)(M(n)) and M(n) and, by homogeneity, a similar
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property holds at all points of M(n). This fact will be used in Section 4 when
applying the result of Lemma 4 to simplex shape spaces.

In view of the above diffeomorphism π̄, we shall, when it is convenient, identify
M(n) with P(n) and so denote π(Y ) just by PY or P . This gives another system of
local coordinates on the simplex shape space, which is different from those arising
from the upper-triangular representation given in [13] or from the representation
based on the singular-values decomposition used in [11]. Our present coordinates
have the advantage that by Lemma 3, when M(n) has the SL(n)-invariant metric
induced by the inner product 〈X1, X2〉 = tr(X1X

t
2) on p(n), the Riemannian geodesics

on M(n) starting at π(I) correspond in P(n) to the 1-parameter groups

γX(t) = exp (tX), t ∈ R, (1)

for X ∈ p(n). Since exp : p(n) → P(n) is bijective, this shows in particular that the
Riemannian distance from P = exp(X) to I , corresponding to that in M(n), is given
by d(I, P )2 = tr(XXt). However, if λ1, . . . , λn are the eigenvalues of P , then the
eigenvalues of X are log λ1, . . . , log λn, and so we have

d(I, P )2 = tr(XXt) =

n∑
i=l

(log λi)
2.

Note that P ∈ P(n) implies that all the λi are positive and
∏n

i=1 λi = 1. The right
invariance of the metric on M(n), together with the fact that the eigenvalues of the
positive definite symmetric factor in the polar decomposition of Y ∈ SL(n) are the
positive square roots of the eigenvalues of Y Y t, gives us the following result.

Proposition 1. Let the general points P1 and P2 of P(n) represent the
simplex shapes π̄(P1) and π̄(P2) in M(n). Then, the squared distance d(π̄(P1), π̄(P2))2

between these two shapes, induced by the right-invariant Riemannian metric on M(n),
is
∑n

i=1(log λi)
2, where the λi are the positive square roots of the eigenvalues of

P1P
−1
2 (P1P

−1
2 )t.

Now, to correlate this distance function with that given in [11], for any Ỹ ∈ GL(n),
we define

Y = diag{1, . . . , 1, sign(det(Ỹ ))} Ỹ

(| det(Ỹ |)1/n
.

so that Y is in SL(n). If γ̃1 > . . . > γ̃n > 0 and γ1 > . . . > γn > 0 are the
singular-values of Ỹ and Y respectively, then we have

γI =
γ̃i n∏

j=1

γ̃j

1/n
,

and the point PY in P(n) that corresponds to π(Y ) ∈ M(n) has eigenvalues γi,
i = 1, . . . , n. Thus, the squared Riemannian distance from the simplex shape π(Y ) to
the shape π(I) is

d(π(I), π(Y ))2 =

n∑
i=1

(log γi)
2 =

n∑
i=1

{
log γ̃i − 1

n

n∑
j=1

log γ̃j

}2

,

which is equivalent to the formula given in [11].
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We have already given the simple formula (1) for geodesics on M(n) starting at
π(I) in terms of their coordinates in P(n). For geodesics starting from other points,
a little care is needed. Firstly, we note that, if we define an inner product on sl(n) by
the same formula, 〈X1, X2〉 = tr(X1X

t
2), that we are using on p(n) and then, regarding

sl(n) as the tangent space to SL(n) at the identity, extend this to a right-invariant
Riemannian metric on SL(n) using the derivatives of right translations, then the
projection π of SL(n) onto M(n) will be a Riemannian submersion with respect to
the SL(n)-invariant metric on M(n). This follows from the fact that so(n) and p(n)
are orthogonal subspaces of sl(n) so that, as so(n) is the tangent space to the fibre
SO(n), p(n) is the horizontal subspace at I ∈ SL(n). Then, since right translations
preserve fibres and are isometric, HY = dρ̃Y −1 (p(n)) is the horizontal subspace
at Y ∈ SL(n). However, the projection dπY :HY → Tπ(Y )(M(n)) is the composite
dρY −1 ◦ dπ1 ◦ dρ̃Y of maps all of which are isometries by the definitions.

Given points P1 and P2 in P(n), representing the simplex shapes π̄(P1) and
π̄(P2) in M(n), let P2P

−1
1 = RPP2P

−1
1

, where R ∈ SO(n) and PP2P
−1
1
∈ P (n). If

X ∈ TI (P (n)) = p(n) is such that PP2P
−1
1

= exp (X), then P (t) = exp (tX) is a,
necessary horizontal, geodesic in P(n) from I to PP2P

−1
1

and so

ρ̃P−1
1

(P (t)) = P (t)P1 = exp (tX)P1

is a horizontal geodesic in SL(n) from P1 to RtP2. Thus, π(ρ̃P−1
1

(P (t))) is the geodesic
in M(n) from π̄(P1) to π̄(P2). Since

d

dt
(ρ̃P−1

1
(P (t)))|t=0 = XP1,

we have

ρ̃P−1
1

(P (t)) = exp (tX)P1 = ẼxpP1
(tXP1),

where ẼxpP1
is the Riemannian exponential map on SL(n) at P1. Hence, the required

geodesic π(ρ̃P−1
1

(P (t)) is Expπ̄(P1)(tdπ(XP1)), where, as before, Expπ̄(P1) is the Rieman-
nian exponential map on M(n) at π̄(P1). Thus, we have established the following
result.

Proposition 2. Writing the general tangent vector V at π̄(P1) ∈M(n), where P1 ∈
P(n), as the image V = dπ(XP1) of the horizontal vector XP1 at P1 in SL(n), where
X ∈ p(n), the geodesic Expπ̄(PI )(tV ) in M(n) is given by π̄(P (t)), where
exp (tX)P1 = R(t)P (t) with R(t) ∈ SO(n) and P (t) ∈ P(n). This geodesic joins π̄(P1)
and π̄(P2) when X is chosen such that P2P

−1
1 = R exp (X) with R in SO(n).

The defining property of a Riemannian symmetric space is the existence at each
point π(Y ) of an isometric involution fixing π(Y ) whose derivation is −id on the
tangent space at π(Y ) (cf. [4] and [12]). These involutions will play an important role
in Theorem 1 below. They are easily identified in our context: if σ = exp ◦ ι ◦ exp−1

is the ‘polar’ diffeomorphism that the involution ι = −id of p(n) induces on P(n),
then the involution ζ = π̄ ◦ σ ◦ π̄−1 that σ induces on M(n) via π̄ is the required
isometric involution at π(I). That dζπ(I) = −id follows immediately from the fact
that d exp (0) = id and dπ̄I is an isomorphism. Writing P = exp (X) for X in p(n),
we see that σ(P ) = P−1 = (P t)−1, since P ∈ P(n), so that σ is the restriction of the
involutive automorphism σ̃ :Y 7→ (Y −1)t of SL(n). From the polar decomposition
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Y = RY PY of Y , we see that

π ◦ σ̃(Y ) = π(RY (PY )−1) = π̄ ◦ σ(PY ) = ζ ◦ π(Y ).

We then find that, for all P ∈ P(n), ρπ̄(P−1) ◦ ζ = ζ ◦ρπ̄(P ) on M(n). This result follows
from the bijectivity of π̄ and the fact that, for all P ′ in P(n),

ζ ◦ ρπ̄(P )(π̄(P ′)) = ζ ◦ π(P ′P−1) = π ◦ σ̃(P ′P−1)

= π((P ′)−1P ) = ρπ̄(P−1) ◦ π̄((P ′)−1) = ρπ̄(P−1) ◦ ζ(π̄(P ′)).

Thus, for any v ∈ T̄π(P )(M(n)), writing v0 = dρπ̄(P )(v) ∈ Tπ(I)(M(n)), we get

〈dζ(v), dζ(v)〉 = 〈dζ ◦ dρπ̄(P−1)(v0), dζ ◦ dρπ̄(P−1)(v0)〉
= 〈dρπ̄(P ) ◦ dζ(v0), dρπ̄(P ) ◦ dζ(v0)〉
= 〈dζ(v0), dζ(v0)〉 = 〈−v0,−v0〉 = 〈v, v〉.

Thus, ζ is the induced global isometric involution of M(n) fixing π(I).
In terms of our chosen coordinates, ζ is just represented by the polar

diffeomorphism σ of P(n). As right translations are isometries and the composite
ρπ̄(P−1

0 ) ◦ ζ ◦ρπ̄(P0) has derivative at π̄(P0) equal to −id, it must be the global isometric
involution at π̄(P0). Since the coordinate representation of the right translation ρπ̄(P0)

is P1 7→ PP1P
−1
0

, we have the following result.

Proposition 3. The global isometric involution M(n) at the shape π̄(P0) has coor-
dinate representation

P1 7→ P(
P
P1P
−1
0

)−1

P0

, (2)

where PY is the positive definite symmetric factor in the polar decomposition RY PY
of Y .

Finally in this section we briefly mention the sectional curvature of simplex shape
spaces, referring to [3], for example, for details. Since it is a symmetric space of
non-compact type of rank n − 1, we know that M(n) has non-positive sectional
curvature with a totally geodesic flat submanifold of dimension n− 1 through each
point. There is also, through each point, a totally geodesic submanifold of maximally
negative curvature. When calculated with respect to the metric induced by the Killing
form, this minimal value is −(2− 3/n). Since the metric we are using is induced by
1/2n times the Killing form, it follows that, for our choice, the minimal curvature is
6 − 4n. The curvature will influence the range over which it is reasonable to make
linear approximations, projecting for example onto the tangent space at a convenient
point. However, for any desired level of accuracy, the different metrics will give the
same result since any two given shape points will be deemed to be

√
2n times further

apart with respect to the ‘Killing metric’ than with respect to ours; the domains on
which the approximation is valid will have a different measure, but will contain the
same shape points.

4. Fréchet means of certain probability measures on simplex shape spaces

We now use the geometric properties of the simplex shape space consequent on its
structure as a symmetric space, when it is equipped with its unique SL(n)-invariant
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Riemannian metric, to study a probabilistic issue that arises in the statistical analysis
of shape.

Recall that a Fréchet mean, a generalisation of the mean or the expectation of a
probability distribution on a Euclidean space to that of a probability measure µ on
a general metric space (M, dist), is defined to be any point that achieves the global
minimum of the function

F(p) = 1
2

∫
M

dist(p, q)2dµ(q).

Fréchet means of probability measures on shape spaces have been used in studying
the shape of the means, although such Fréchet means are in general not unique (cf.
[6] and [7]). Nevertheless, when it is equipped with its SL(n)-invariant Riemannian
structure, M(n) has properties from which it will follow that any probability measure
on it has unique Fréchet mean with respect to this Riemannian metric and that there
is a simple criterion to identify this mean. The properties of M(n) that we require
are its non-positive curvature and the fact that the Riemannian exponential map
at each point is a diffeomorphism of the tangent space there onto M(n). A point
with the latter property is called a pole. As for M(n), though not necessarily by
homogeneity, it suffices that one point of a Riemannian manifold be a pole for all
its points to be poles. The following, then, are the implications for Fréchet means
of these two properties of a manifold.

Lemma 4. Let M be a Riemannian manifold of non-positive sectional curvature
for which every point is a pole. Then, p ∈ M is a Fréchet mean, with respect to the
Riemannian distance d on M, of a given probability measure µ on M if and only if
0 ∈ Tp(M) is a Fréchet mean of the induced probability measure µ ◦ Expp on Tp(M)

with respect to the distance d̃ on Tp(M) determined by the Riemannian metric gp at
p. Furthermore, such Fréchet means are unique.

Proof. A Fréchet mean of the induced probability measure onTp(M) with respect
to d̃ is a global minimum of the function

F̃p(X) = 1
2

∫
Tp(M)

‖X −X ′‖2
pdµ(Expp(X

′)), X ∈ Tp(M),

where ‖ · ‖p is the norm determined by the inner product gp.

Firstly, since Expp is a diffeomorphism betweenTp(M) and M and, since d̃(0, X) =
d(p,Expp(X)) for all X in Tp(M), we have

F̃p(0) = F(p) (3)

and, in particular, one is defined if and only if the other is. Secondly, it fol-
lows from Gauss’ lemma together with the Rauch comparison theorem (cf. [4])
that, since M has non-positive sectional curvature, Expp is distance-increasing:

d(Expp(X1),Expp(X2)) > d̃(X1, X2) for all X1, X2 ∈ Tp(M). This implies that

F̃p(X) 6 F(Expp(X)), ∀ X ∈ Tp(M). (4)

Thus, it follows from (3) and (4) that, if 0 is a Fréchet mean of µ ◦ Expp on Tp(M)

with respect to the distance d̃, then p is a Fréchet mean of µ on M with respect to
the Riemannian distance d.

On the other hand, the global minimum of F̃p can only occur at a critical point
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and, since
∫
Tp(M) dµ(Expp(X)) = 1, we see that F̃ ′p(X̂) = 0 if and only if

X̂ =

∫
Tp(M)

Xdµ(Expp(X)). (5)

We also find that F̃ ′′p (X) = gp so that this unique critical point is a local, and hence

global, minimum. However, since gradp(d(p, q)2) = −2Exp−1
p (q), we have

gradF(p) = −
∫

M

Exp−1
p (q)dµ(q) = −

∫
Tp(M)

Xdµ(Expp(X)) = −X̂.

Thus, when p is a critical point, in particular a global minimum, of F , then the
unique global minimum of F̃p occurs at the origin:

F̃p(0) < F̃p(X), ∀ X ∈ Tp(M)\{0}. (6)

Then, (3), (4) and (6) imply that p is the unique global minimum of F . q

It is clear from (5) that X̂ is the Fréchet mean of µ ◦ Expp on Tp(M) with
respect to the distance d̃ if and only if X̂ is the Euclidean mean of µ ◦ Expp on
Tp(M). Note also that this lemma gives us a context in which Fréchet means are
unique and, together with our proof of it, two further sufficient conditions for such
a Fréchet mean to exist: it will exist if, for any point p, the corresponding F̃p
has its unique global minimum at the origin or if, on any domain on which the
integral defining it converges, F has any critical point p and, in each case, that
point p will be the unique Fréchet mean. However, since it is usually difficult to
express the Riemannian exponential map explicitly, their identification still remains
a hard problem in general. On the other hand, in the case of simplex shape space,
our detailed knowledge of the geometry enables us to make further progress in
that context. Identifying M(n) with P(n) and TP (P(n)) with the horizontal subspace
HP (SL(n)), the function F̃P defined in the proof of Lemma 4 can be expressed as

F̃p(XP ) = 1
2

∫
HP

‖XP −X ′P‖2
P dµ ◦ ẼxpP (X ′P )

= 1
2

∫
HP

‖XP −X ′P‖2
P dµ(exp (X ′)P )

= 1
2

∫
p(n)

‖X −X ′‖2
Idµ(exp (X ′)P ).

Let X̂p be the Euclidean mean of µ̃p on p(n) defined by

dµ̃P (X ′) = dµ(exp (X ′)P ),

which is clearly computable once µ is given. Then, X̂PP is the Euclidean mean of
µ ◦ ẼxpP on HP . Thus, the criterion of Lemma 4 for π̄(P ) to be a Fréchet mean of
µ is effectively calculatable, at least for simple µ.

We can go further than this to obtain an implementable algorithm for locating
the Fréchet mean of µ, given that it exists. Suppose that π̄(P ) is not the Fréchet
mean of µ, so that X̂p 6= 0. Then,

Gπ̄(P )(t) = F(Expπ̄(P )(tdπ(X̂PP )))

is a convex function, which is again directly computable using Proposition 2. From
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the proof of Lemma 4, we see that Gπ̄(p) is decreasing at zero. Thus, there is a unique
t0 in (0, l] such that Gπ̄(P )(t0) 6 Gπ̄(P )(t) for all t in [0, 1]. In particular,

F(π̄(P )) = Gπ̄(P )(0) > Gπ̄(P )(t0) = F(Expπ̄(P )(t0dπ(X̂PP ))).

Repeating the calculation at π̄(P ′) = Expπ̄(P )(t0dπ(X̂pP )), we obtain a sequence of
points at which F takes a strictly decreasing sequence of values. Since these values
are bounded below by the assumed global minimum value of F , they must converge
and the above argument implies that they can only do so at a point π̄(P̂ ) such that
X̂P̂ = 0, that is, by Lemma 4, they can only do so at the Fréchet mean.

In certain cases, making use of the global isometric involutions of M(n), we can
also locate the Fréchet mean immediately without any need for such an approxi-
mating algorithm, as in the following result which is analogous to one obtained for
Kendall shape spaces (cf. [7]) and is a generalisation of a result in [10].

Theorem 1. Suppose that M(n) is equipped with the unique SL(n)-invariant Rie-
mannian metric and that the Radon–Nikodým derivative f, with respect to the volume
element ν, of a given probability measure µ on the simplex shape space is a function of
distance to a fixed point π(Y0). If any Fréchet mean, with respect to the Riemannian
distance, of µ exists, then it is π(Y0) and is unique.

Proof. By Lemma 4, we know the Fréchet mean of µ is unique. Suppose that
π(Y1) 6= π(Y0) is the Fréchet mean of µ. Then, if ζ is the global isometric involution
of M(n) centred on π(Y0) and if ζ(π(Y1)) = π(Y2), we have π(Y1) 6= π(Y2), again since
M(n) is complete and has non-negative curvature. Then, since ζ(π(Y0)) = π(Y0),

F(π(Y2)) =

∫
M(n)

d(π(Y2), π(Y ))2f(d(π(Y0), π(Y )))dν(π(Y ))

=

∫
M(n)

d(π(Y1), ζ−1(π(Y )))2f(d(π(Y0), ζ−1(π(Y ))))dν(ζ−1(π(Y )))

=

∫
M(n)

d(π(Y1), π(Y ))2f(d(π(Y0), π(Y )))dν(π(Y )) = F(π(Y1)).

This contradicts the fact that F(π(Y2)) > F(π(Y1)). q

Note that this proof only involves the single involution ζ and so we actually only
need to require that µ be invariant with respect to ζ. Such probability measures
are easily identifiable, since the explicit coordinate representation (2) that we have
given for this involution only requires the computation of the polar decomposition
of a matrix which is readily available in mathematical computer packages. Note
also that, if the Radon–Nikodým derivative f in the statement of Theorem 1 has
compact support, then the Fréchet mean of the corresponding probability measure
does exist.
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