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Introduction

In enzyme-catalyzed reactions, precise regulation of the
enzyme structure is essential to control the various specifici-
ties (e.g., substrate and stereochemical specificities) com-
monly observed in these processes.[1] The cooperativity of
weak hydrogen-bonding interactions[2] in a polypeptide
allows the flexible control of the transition-state architecture
required to achieve the target reaction.[3] Enthalpy and en-

tropy both play significant roles in governing the conforma-
tional changes that occur in the enzyme and the substrate.[4]

Inspired by the well defined, but diverse ways in which en-
zymes function, enormous effort has been devoted to the ex-
ploration of new chiral hydrogen-bond donors that could
serve as asymmetric catalysts.[5–7] However, very few effec-
tive asymmetric hydrogen-bond-donor catalysts with confor-
mationally flexible scaffolds have been found.[8–11] The diffi-
culty in employing acyclic organic molecules as asymmetric
organocatalysts may arise mainly from free bond rotation.[12]

The small barrier to rotation about single bonds connecting
two sp3 carbon atoms often results in rapid and reversible
generation of an infinite number of conformers.[13] This is
one of the reasons why most organocatalysts reported to
date have a conformationally rigid chiral backbone (e.g.,
proline, cinchona alkaloids, cyclohexanediamines, and 1,1’-
bi-2,2’-naphthyl scaffolds) that participates in a structurally
rigid transition state.[5,6] In contrast, our group has shown
that conformationally flexible organocatalysts 1 are effective
for the construction of a variety of chiral environments for
asymmetric organocatalysis,[14] facilitating several classes of
catalytic asymmetric 1,2-additions, including nitroal-
dol,[9,14b–e] nitro-Mannich,[14g] Mannich,[14h,k] and Friedel–
Crafts (FC) reaction of phenols.[14j] The high stereoselectivi-
ties are attributed to chemoselective dual activation of both
the nucleophile and electrophile reacting partners in asym-
metric space.[14,15] Herein, we describe our mechanistic stud-
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ies on the chemo-, regio-, and enantioselective FC reaction
of phenols[16–18] catalyzed by the 1,3-diamine-tethered guani-
dine/bisthiourea organocatalysts 2.[19–21]

The chiral phenol unit is a ubiquitous structural motif in
biologically active natural products,[22] as well as chiral li-
gands.[23] Considering the high acidity of phenolic acid
(pKa = 9.95 in H2O), C-alkylation through phenolic enolates,
which can be generated from phenols under basic condi-
tions, is potentially one of the most straightforward strat-
egies for the preparation of chiral phenols. However, phe-
nolic enolates currently have limited utility in organic syn-
thesis; this is likely to be because they suffer from ligand ex-
change in metal-based catalysis.[24] Although several bifunc-
tional organocatalyst-based approaches have recently been
reported, direct and catalytic asymmetric 1,4-type FC reac-
tions of phenols remain underdeveloped owing to problems
rooted in reaction selectivities (chemo- and regio-) and reac-
tivities.[25–28] With regards to selectivity, a major challenge is
to obtain mono-ortho-alkylated adducts without second-
ortho or O-alkylation to give difunctionalized products.[25,26]

Lowering the reaction temperature is a common method to
avoid overreaction, but this often causes a decrease in the
reaction rate.[25] In this context, we have recently reported
the development of 1,3-diamine-tethered guanidine/bis-
thiourea organocatalyst 2 a, which permitted enantioselec-
tive 1,4-type FC reactions of phenols (Figure 1).[14j] A unique
feature is that stereo-discrimination under optimized condi-
tions is governed by the differential activation entropy

(DDS� = 25.4 Jmol�1 K�1), rather than by the differential ac-
tivation enthalpy (DDH��0 kJ mol�1), thereby attaining
maximum enantioselectivities without strict temperature
control. Herein, we describe details of kinetic studies utiliz-
ing Eyring plots with a variety of guanidine/bisthiourea or-
ganocatalyst variants. A possible catalytic cycle in 2-cata-
lyzed 1,4-type FC reactions, including a chemoselective dual
activation transition state is also discussed.

Results and Discussion

Structure and Catalytic-Activity Relationship Studies

Utilizing 1,2-Diamine-Tethered Guanidine/Bisthiourea
Organocatalysts

Differential activation parameters, including differential ac-
tivation enthalpy (DDH�) and entropy (DDS�), are useful
parameters for determining binding ability and degrees of
randomness in studies of chiral recognition processes, rather
than nominal activation parameters (DH�

nom and DS�
nom).[30]

For example, Jacobsen and co-workers used differential acti-
vation enthalpy (DDH�) and differential activation entropy
(DDS�) to characterize the mechanism of conformationally
constrained, thiourea-catalyzed, cationic polycyclizations.[31]

In their catalytic system, the values of DDH� and DDS�

were both negative, meaning that the stereo-discrimination
in the catalytic reaction was controlled enthalpically. Based

Abstract in Japanese:

Figure 1. a) Catalytic enantioselective FC reaction of 3 with 4 utilizing 2 a
under optimized conditions. b) Eyring plots of the 2 a-catalyzed FC reac-
tion of sesamol (3a) with b-nitrostyrene (4a) at various concentrations:
0.025 (*), 0.05 (� ), 0.1 (&), and 0.2 m (~).[14j]
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on the correlation of the degree of enantioselectivity and
the increasing magnitude of DDH� with increasing size of
polycyclic aromatic hydrocarbon on the catalyst, they pro-
posed a cation–p activation mechanism, which served to
broaden the scope of enantioselective counterion catalysis.
In contrast, our findings[14j,k] have, for the first time, uncov-
ered a situation where differential activation entropy
(DDS�) controls the outcome of asymmetric hydrogen-
bond-donor catalysis.[32–34] As the entropy term is known to
be tunable by selecting suitable reaction conditions,[14k, 35] it
is particularly important to gain insight into the structural
origin of the catalytic action to attain a large magnitude of
differential activation entropy (DDS�). Therefore, we first
carried out structure–activity relationship (SAR) studies on
guanidine/bisthiourea organocatalysts.

The crucial role played by the 1,3-diamine spacer linking
the two centers in 2 a is evident from the Eyring plots of the
FC reaction of 3 a with 4 a catalyzed by 1 a with the corre-
sponding 1,2-diamine spacer, at a substrate concentration of
0.025 m. As shown in Table 1, 1a showed completely differ-

ent catalytic activity from 2a. 1,2-Diamine-tethered 1 a pro-
duced (R)-5 aa as a major product, whereas 1,3-diamine-
tethered catalyst 2 a predominantly gave (S)-5 aa. Further-
more, the reactivity and enantioselectivity of 1 a are both
drastically reduced in comparison with 2 a. These observa-
tions indicate that the selection of a suitable length of chiral
spacer is critical to synergize the guanidine and thiourea
functionalities in the catalyst and achieve drastic rate accel-
eration and effective stereocontrol. It is also important to
note that the temperature-dependency profiles are different
for the FC reactions catalyzed by 1 a and 2 a. In the case of
1 a, the enantioselectivity increased as the reaction tempera-
ture decreased, indicating that stereo-discrimination cata-
lyzed by 1 a is controlled by differential enthalpy (DDH�)
with an unfavorable entropic contribution (DDS�). Thus, we
concluded that the 1,3-diamine spacer played a principal
role in attaining entropy-controlled stereo-discrimination in
the FC reaction catalyzed by 2 a.

Substituent Effects on 1,3-Diamine-Tethered Guanidine/
Bisthiourea Organocatalysts

Exploratory studies show that drastic enantioswitching can
occur simply as a result of replacing the substituents (R1 and
R2) on the guanidine moiety in 2.[14j,36] These unique features
of the present catalytic system, along with our wish to charac-
terize the chiral recognition processes that take place in these
asymmetric carbon–carbon bond-forming reactions, prompted
us to conduct kinetic analyses using Eyring plots for selected
1,3-diamine-tethered catalysts 2. According to the differential
Eyring treatment,[31,37–39] the relative rates of formation of
(S)-5aa in the reactions are expressed by Equation (1), in
which DDH� represents the differential activation enthalpy
and DDS� represents the differential activation entropy.

lnðkS=kRÞ ¼ �DDH�
S�R=RTþDDS�

S�R=R ð1Þ

In accordance with Equation (1), plots of the natural loga-
rithm of the relative rate of formation of (S)-5 aa versus re-
ciprocal temperature were fitted to straight lines with good
correlation coefficients (Figure 2).[40] These observations
confirm that a single mechanism is operating in the catalytic
process over the temperature range explored.[38d] An impor-
tant feature is that 2 b–g display broadly similar temperature
and concentration profiles in the FC reaction of 3 a with 4 a.
At less than a threshold concentration, positive values of
DDH�

S�R and DDS�
S�R are obtained from the negative

slopes and positive y intercept of the plots, respectively.
Thus, differential activation entropy (DDS�

S�R) contributes
to lowering the value of DDG�

S�R (= DDH�
S�R�TDDS�

S�R),
with an unfavorable enthalpic contribution (DDH�

S�R). No-
tably, when 2 b and 2 c were used as catalysts, the major
enantiomer produced switched from (R)- to (S)-5 aa at the
equipodal temperature (T0), and thereafter the S selectivity
continued to increase as the temperature further in-
creased.[40] Enantioswitching in the FC reaction when using
1,3-diamine-tethered guanidine/bisthiourea is a consequence
of the occurrence of the equipodal temperature (T0) in the
temperature range with negative slopes in the Eyring
plots.[41] It is also important to note that stereo-discrimina-
tion catalyzed by 2 a (maximum enantiomeric excess (ee) of
(S)-5 aa : 91 % ee)[14j] and 2 g (Figure 2 f, maximum ee of (S)-
5 aa : 91 % ee) is governed by only DDS�

S�R at 0.025 m sub-
strate concentration. In the case of catalysts 2 e (Figure 2 d,
maximum ee of (S)-5 aa : 80 % ee) and 2 f (Figure 2 e, maxi-
mum ee of (S)-5 aa : 80 % ee), a decrease in the substrate
concentration to 0.01 m is effective to increase the magni-
tude of DDS�

S�R for stereo-discrimination and DDH�
S�R ap-

proaches zero. Although further studies to probe the rela-
tionship between kinetics and molecular mechanism are re-
quired, these results suggest that both the six-membered
ring containing the guanidine moiety and the a-branched
substituent on the chiral spacer in 2 are crucial for attaining
the maximum magnitude of differential activation entropy
(DDS�

S�R) in the stereo-determining processes in the FC re-
action of 3 a with 4 a.

Table 1. Temperature profile of the yield in 1a-catalyzed 1,4-type FC re-
actions of 3 a with 4a.

Entry T [8C] Yield [%][a] ee [%][b]

1 �30 30 36
2 �10 43 35
3 0 51 31
4 20 69 27

[a] Yield of isolated product. [b] Determined by HPLC on a chiral sta-
tionary phase.
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Mechanistic Studies

A key assumption in the rationalization of our catalytic
system is that a chemoselective interaction of catalyst 2 and
the substrate in the transition state occurs to control the
ortho- and enantioselective 1,4-addition of 3 with 4. As illus-
trated in the proposed ternary complex (Scheme 1), we an-
ticipate that the electron-deficient thiourea moiety might ac-
tivate 4 through bidentate coordination to the nitro group in
4, and the guanidinium cation would effectively orient the
phenol enolate.[14,42]

To confirm crucial contributions of the guanidine and thi-
ourea functional groups, we initially examined the FC reac-
tion of 3 a with 4 a using variant catalysts 7 and 8.

The optimized catalyst 2 a promoted ortho-selective 1,4-
type FC alkylation reactions of 3 a with 4 a to give the corre-
sponding FC adduct in 97 % yield with 91 % ee (Table 2,
entry 1). In contrast, no reaction occurred with 7, in which
the guanidine moiety of 2 a was replaced with a thiourea
group (Table 2, entry 2). Compound 8, in which the elec-

tron-deficient thiourea moieties in 2 a are replaced with Boc
groups, promoted the FC reaction to afford 5 aa in 77 %
yield with 3 % ee. The drastic decrease in the ee value clear-
ly shows the importance of the thiourea moieties for stereo-
determination in the FC reaction catalyzed by 2 a. In addi-
tion, when O-methylsesamol 9 a was used in place of sesa-
mol 3 a, then 2 a displayed no catalytic activity. These obser-
vations suggest that generation of phenolic enolate catalyzed

Figure 2. Temperature dependence of the enantioselectivity in the enantioselective FC reaction of 3a with 4 a using various catalysts at various concentra-
tions: 0.01 (*), 0.025 (*), 0.05 (� ), 0.1 (&), and 0.2 m (~). Bn=benzyl.
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by the guanidine base is critical for the enhancement in the
FC reactions of phenols. This is complementary to the situa-
tion in the Brønsted acid catalyzed FC reaction of arenes.[43]

Because the ee values in FC alkylation of 3 a with 4 a cata-
lyzed by 2 a are independent of the percentage conversion,
stereo-discrimination appears to be kinetically governed by
cooperative activation of the substrates by thioureas and
guanidine base in 2 a.

We next investigated the re-
lationship between the ee value
of the catalyst and ee value of
FC product 5 aa to gain insight
into the assembly state of the
catalyst,[44] because assembly
states generally play a key role
in constructing the ordered con-
formation of acyclic mole-
cules.[45] Indeed, mechanistic
studies and the observation of
nonlinear effects established
the importance of catalyst as-
sembly in catalytic asymmetric
nitroaldol reactions utilizing
1·HCl with a lipophilic long
alkyl chain on the guanidinium
moiety.[14d] In sharp contrast,
linear relationships between the
ee values of 2 a and adduct 5 aa
were obtained for reactions at

substrate concentrations of both 0.1 and 0.025 m (Figure 3).
These results suggest that the enantioselectivity in the FC
reaction in toluene catalyzed by 2 a is governed by the inher-
ent structures of the monomeric chiral catalyst 2 a without
generation of complex dimers or oligomers,[46] regardless of
substrate concentration.

In order to obtain further information on the catalytic
cycle, initial rate kinetic studies at �30 8C were performed
at 0.025 m substrate concentration.[47] The rate dependencies
of each reaction component are shown in Figure 4. First-
order dependency was observed for the catalyst (Figure 4 a),
whereas the reaction rate had zeroth-order dependency for
sesamol (3a, Figure 4 b) and b-nitrostyrene (4a, Figure 4 c).
The initial kinetics indicate that the rate-determining step is
dissociation of the complex of protonated 2a and nitronate.

Scheme 1. Proposed ternary complex involved in the FC reaction of
phenol enolate with 4 catalyzed by 2.

Table 2. Catalytic asymmetric FC reaction of 3a or 9a with 4a.

Entry Catalyst Nucleophile Yield [%][a] ee [%][b]

1 2 a 3a : R=H 97 91
2 7 3a : R=H n.r. –
3 8 3a : R=H 77 3
4 2 a 9a : R=Me n.r. –

[a] Yield of isolated product. [b] Determined by HPLC on a chiral sta-
tionary phase. [c] n.r.=no reaction.

Figure 3. Relationships between ee values of 2 a and (S)-5aa for substrate
concentrations of a) 0.1 and b) 0.025 m.

Scheme 2. Proposed catalytic cycle in FC reaction of 3 with 4 catalyzed by 2 a.
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On the basis of the series of mechanistic studies described
above, we propose a catalytic cycle for the 1,4-type FC reac-
tion catalyzed by 2 a (Scheme 2). The SAR studies with re-
spect to catalytic active sites, summarized in Table 2, suggest
crucial roles of both guanidine and thiourea moieties in 2 a.
Thus, we assumed that the guanidine base deprotonated 3
and the electron-deficient thiourea moieties might have acti-
vated 4 through bidentate coordination to the nitro group,
thus forming the reactive ternary complex I, in which the
stereoselectivity of the FC reaction should be controlled. Ki-
netic studies performed by using Eyring plots suggested that
the dynamic motion of conformationally flexible 2 a in re-
sponse to formation of the ternary complex I leads to exten-
sive desolvation of toluene from the catalyst, resulting in ef-
fective stereocontrol simply due to the differential activation

entropy (DDS�).[48] Finally,
proton transfer between the
guanidinium 2 a-H and nitro-
nate intermediate produces 5
and regenerates the catalyst.
Further investigations to broad-
en the utility of the conforma-
tionally flexible guanidine/bis-
thiourea organocatalysts 2
based on these mechanistic
studies are ongoing.

Conclusion

We have carried out a series of
mechanistic studies on the
chemo-, regio-, and enantiose-
lective FC reaction of phenols
catalyzed by 1,3-diamine-teth-
ered-guanidine/bisthiourea or-
ganocatalysts. Extensive kinetic
studies performed by using
Eyring plots identified that
both the six-membered ring
containing the guanidine
moiety and the a-branched sub-
stituent on the chiral spacer in
2 play a pivotal role for attain-
ing the maximum magnitude of
differential activation entropy
(DDS�

S�R) in the stereo-deter-
mining processes in the FC re-
action of 3 a with 4 a. Evidence
for the proposed guanidine/thi-
ourea cooperative reaction
mechanism and for the impor-
tance of the 1,3-diamine chiral
spacer in 2 a was obtained by
means of experiments with
structural variants of the cata-
lyst. We believe our findings

provide basic information that will be broadly useful in the
design of conformationally flexible architectures and will
extend the utility of asymmetric organocatalysts.

Experimental Section

Nitroolefin 4 a (14.9 mg, 0.100 mmol) was added to a mixture of 2a
(4.3 mg, 0.005 mmol) and 3a (13.8 mg, 0.100 mmol) in toluene (4.0 mL)
at 20 8C. After stirring for 9 h at 20 8C, the reaction was quenched with a
saturated aqueous solution of NH4Cl. The resulting mixture was diluted
with EtOAc and poured into water. The aqueous layer was extracted
with EtOAc (� 3) and the combined organic layer was washed with brine
and then dried over MgSO4. After removing solvents under reduced pres-
sure, the residue was purified by flash column chromatography (n-
hexane/EtOAc=15:1 to 5:1) to afford (�)-(S)-5aa (27.8 mg, 97% yield)
and 2 a·HCl (4.5 mg, 99% recovery). The ee value of (�)-(S)-5 aa

Figure 4. A) Reaction profiles of the FC reaction for 2a at concentrations of 0.75 (*), 1.25 (&), 1.75 (~), and
2.0 mm (� ). B) Reaction profiles of the FC reaction for 3a at concentrations of 20 (*), 25 (&), 27.5 (~), and
30 mm (� ). C) Reaction profiles of the FC reaction for 4 a at concentrations of 20 (*), 25 (&), 27.5 (~), and
30 mm (� ). a) Rate dependency on 2 a. y=0.963x�2.97 (R2 =0.983) b) Rate dependency on 3a. y=

�0.0423x�2.56 c) Rate dependency on 4 a. y =�0.00926x�2.66
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(91 % ee) was determined by means of chiral HPLC analysis (Chiral AD-
H, 0.46 cm (f)� 25 cm (L), n-hexane/2-propanol= 90:10, 1.0 mL min�1,
major 39.4 min, minor 30.4 min).
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