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LORENTZ SPACES OF VECTOR-VALUED MEASURES

OSCAR BLASCO and PABLO GREGORI

Abstract

Given a non-atomic, finite and complete measure space (Ω,Σ, µ) and a Banach space X, the modulus of
continuity for a vector measure F is defined as the function ωF (t) = supµ(E)�t |F |(E) and the space Vp,q(X)
of vector measures such that t−1/p′

ωF (t) ∈ Lq((0, µ(Ω)], dt/t) is introduced. It is shown that Vp,q(X)
contains isometrically Lp,q(X) and that Lp,q(X) = Vp,q(X) if and only if X has the Radon–Nikodym
property. It is also proved that Vp,q(X) coincides with the space of cone absolutely summing operators
from Lp

′ ,q′
into X and the duality Vp,q(X∗) = (Lp

′ ,q′
(X))∗ where 1/p + 1/p′ = 1/q + 1/q′ = 1. Finally,

Vp,q(X) is identified with the interpolation space obtained by the real method (V 1(X), V∞(X))1/p′ ,q .
Spaces where the variation of F is replaced by the semivariation are also considered.

1. Introduction

Throughout this paper (Ω,Σ, µ) stands for a non-atomic, finite and complete measure
space, X is a (complex or real) Banach space and X∗ is its topological dual space.
As usual p′ denotes the conjugate exponent of p, that is, 1/p+ 1/p′ = 1.

Given a complex-valued measurable function f we denote by µf the distribution
function of f, µf(λ) = µ(Eλ) for λ > 0 where Eλ = {w ∈ Ω : |f(w)| > λ}, by
f∗ the non-increasing rearrangement of f, f∗(t) = inf{λ : µf(λ) � t} and we write

f∗∗(t) = (1/t)
∫t

0 f
∗(s) ds.

Then the Lorentz space Lp,q consists of those measurable functions f such that
‖f‖∗

pq < ∞, where

‖f‖∗
pq =


{
q

p

∫∞

0

[
t1/pf∗(t)

]q dt
t

}1/q

0 < p < ∞, 0 < q < ∞,

sup
t>0

t1/pf∗(t) 0 < p � ∞, q = ∞.

Of course Lp,p = Lp and if we put ‖f‖pq = ‖f∗∗‖∗
pq then we get an equivalent

norm and Lp,q for 1 < p � ∞, 1 � q � ∞ are Banach spaces.
Let us recall also that simple functions are dense in Lp,q for q �= ∞, and also

the duality results, (Lp,1)∗ = Lp
′ ,∞ for 1 � p < ∞, as well as (Lp,q)∗ = Lp

′ ,q′
for

1 < p, q < ∞.
The reader is referred to [1, 12, 14, 16] for these results and for basic information

on Lorentz spaces.
All these notions make sense also for vector-valued strongly measurable functions

by replacing the modulus by the norm. This leads to the natural definition
of Lorentz–Bochner spaces Lp,q(X), where the norm is defined by ‖f‖Lp,q(X) =
‖‖f(·)‖X‖pq .

In the vector-valued case we still have the density of simple functions, but the
corresponding duality (Lp,q(X))∗ = Lp

′ ,q′
(X∗) only holds for Banach spaces X such
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that X∗ has the Radon–Nikodym property. The reader is referred to [8] for a proof
in the case p = q or to [10, Theorem 3.2] for a proof in the more general case
of the Köthe–Bochner space E(X) for certain Banach lattices including Lp,q . An
identification of the dual space without assumptions on X can be achieved from
some general results on the dual of E(X) where E is a Banach lattice (see [6] for
a description in terms of weakly measurable functions or [10] for a formulation in
terms of vector measures).

Since Lp(X) coincides with Lp,p(X), let us first mention here that in the particular
case of Lebesgue–Bochner spaces Lp(X) the dual can be represented as the space of
X∗-valued measures of p′-bounded variation, denoted by Vp′

(X∗) (see [9]).
Our objective is to define a space of vector-valued measures in such a way that it

contains Lp,q(X) isometrically and that it coincides with Vp(X) for p = q.
Following [10], one could define Vp,q(X) as the space of vector measures such that

supπ∈D ‖
∑

A∈π(F(A)/µ(A))χA‖pq < ∞ where the supremum is taken over the set D
of all finite partitions π of Ω, but we would like to present a notion independent of
the knowledge of Lorentz spaces of functions.

In this paper we present a natural definiton of a modulus of continuity of a
vector measure (see Definition 2.1) which will allow to define the space Vp,q(X)
independently of the notion of Lp,q(X) and which extends the previous definition
for measures dG = fdµ, and also coincides with the definition presented above (see
Corollary 2.14).

In the case q = ∞, Marcinkiewicz spaces are denoted Vp,∞(X) and Vp,∞(X) and
defined by the existence of a constant C > 0 for which ‖F(A)‖ � Cµ(A)1/p

′
or

|F |(A) � Cµ(A)1/p
′
for all A ∈ Σ.

To deal with the case q < ∞, we define two different moduli of continuity for a
vector measure, namely ω̃F (t) = supµ(E)�t‖F(E)‖ and ωF (t) = supµ(E)�t|F |(E). Then
we define the spaces Vp,q(X) and Vp,q(X) consisting of vector measures such that
t−1/p′

ωF (t) ∈ Lq((0, µ(Ω)], dt/t) and x∗F ∈ Vp,q(�) for all x∗ ∈ X∗ respectively. Also
a space where ωF is replaced by ω̃F is considered.

The paper is divided into three sections.
In the first section, it is proved that Vp,q(X) contains isometrically Lp,q(X) and

that Lp,q(X) = Vp,q(X) if and only if X has the Radon–Nikodym property. It is
also shown that Vp,q(X∗) coincides with the dual of Lp

′ ,q′
(X). The next section

deals with identification of the previous spaces of vector-valued measures as spaces
of operators. In particular, we show that Vp,q(X) and Vp,q(X) can be described
as spaces of bounded operators from Lp

′ ,q′
into X and cone absolutely summing

operators respectively.
In the last section, we describe the space as an interpolation space obtained by

interpolation, using the real method, of two natural spaces of vector measures,
namely Vp,q(X) = (V 1(X), V∞(X))1/p′ ,q where V 1(X) corresponds to the space of
µ-continuous measures of bounded variation and V∞(X) the subspace of those
measures such that ‖F(A)‖ � Cµ(A) for all A ∈ Σ.

2. Marcinkiewicz and Lorentz spaces of vector measures

Let us recall that the variation of a vector measure F : Σ → X at the set E is
given by |F |(E) = supπE

∑
A∈πE ‖F(A)‖ (πE stands for a finite partition of E and

the supremum is taken over all such partitions) and the semivariation is given by
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‖F‖(A) = sup||x∗||=1 |x∗F |(A). It is worth mentioning (see [8]) that

‖F‖(A) ≈ sup
B⊂A

‖F(B)‖. (1)

Let us first introduce the notion of ‘modulus of continuity of a vector measure’.

Definition 2.1. Let (Ω,Σ, µ) be a non-atomic finite measure space and write
I = (0, µ(Ω)]. Let X be a Banach space and let F be an X-valued measure. We
define, for t ∈ I , the functions

ω̃F (t) = sup
µ(E)�t

‖F(E)‖ and ωF (t) = sup
µ(E)�t

|F |(E).

Remark 2.2. (a) Taking into account that µ is non-atomic, and using (1), one
easily sees that for all t ∈ I ,

ωF (t) = sup
µ(E)=t

|F |(E) and ω̃F (t) ≈ sup
µ(E)=t

‖F‖(E).

(b) F 
 µ if and only if limt→0 ω̃F (t) = 0 and, for vector measures of bounded
variation, it is also equivalent to limt→0 ωF (t) = 0.

(c) ωF ≡ +∞ if and only if there exists t ∈ I such that ωF (t) = +∞ or, equival-
ently, F is not of bounded variation.

Proposition 2.3. If f ∈ L1(X) and F(E) =
∫
E
f dµ then tf∗∗(t) = ωF (t) for all

t ∈ I .

Proof. The result follows easily from the facts that |F |(E) =
∫
E

‖f‖dµ and∫t
0 f

∗(s) ds = supµ(E)�t

∫
E

‖f‖ dµ. �

Proposition 2.4. Let F be a vector measure. Then either ωF ≡ +∞ on I or ωF is
non-decreasing, continuous and concave.

Proof. Let us assume that ωF (t) < +∞ for some t ∈ I . Hence F has bounded
variation and clearly ωF is non-decreasing.

Let us see first that

ωF (s+ h) − ωF (s) � ωF (t+ h) − ωF (t) (2)

for all 0 < s < t < µ(Ω) and 0 < h < µ(Ω) − t.
Indeed, given ε > 0 and t, t+ h, s ∈ I , there exist measurable sets Et, Et+h and Es

for which µ(Et) = t, µ(Et+h) = t+ h and µ(Es) = s and

ωF (t) − |F |(Et) < ε, ωF (t+ h) − |F |(Et+h) < ε, ωF (s) − |F |(Es) < ε.

Let Ah be a measurable set with µ(Ah) = h and Ah ⊂ Et+h\Es. Then

ωF (s+ h) � |F |(Es ∪ Ah) = |F |(Es) + |F |(Ah)

� ωF (s) − ε+ |F |(Ah) + |F |(Et+h\Ah) − ωF (t)

� ωF (s) − ε+ |F |(Et+h) − ωF (t)

� ωF (s) − ε+ ωF (t+ h) − ε− ωF (t).

Thus for any ε > 0 we obtain (2).
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Therefore for any s, t ∈ I we have

|ωF (s) − ωF (t)| � ωF (|s− t|+) − ωF (0
+)

where ωF (a
+) = limh→0+ ωF (a+ h).

Hence ωF is uniformly continuous in I .
It is easy to see from (2) that, for s, t ∈ I ,

ωF

(
s+ t

2

)
�
ωF (s) + ωF (t)

2
.

This fact, together with the continuity, gives the concavity of ωF . �

A measure F is said to belong to Vp(X) (respectively Vp(X)) if

‖F‖p = sup
π∈D

(∑
A∈π

‖F(A)‖p
µ(A)p−1

)1/p

< ∞,

(
respectively ‖|F |‖p = sup

π∈D,||x∗||=1

(∑
A∈π

|x∗F(A)|p
µ(A)p−1

)1/p

< ∞
)
,

where the supremum is taken over the set D of all finite partitions π of Ω.
In particular, if F ∈ Vp(X) then ‖F(A)‖ � Cµ(A)1/p

′
for all measurable sets A.

Definition 2.5. Let (Ω,Σ, µ) be a measure space, X a Banach space and 1 < p �
∞. Let us define by Vp,∞(µ,X) and Vp,∞(µ,X) the spaces of X-valued measures for
which there exists a constant C > 0 such that

‖F(A)‖ � Cµ(A)1/p
′
for any A ∈ Σ

(
equivalently ω̃F (t) � Ct1/p

′)
and

|F |(A) � Cµ(A)1/p
′
for any A ∈ Σ

(
equivalently ωF (t) � Ct1/p

′)
respectively.

We shall consider in these spaces the norms

‖F‖Vp,∞(X) = sup
A∈Σ

‖F(A)‖
µ(A)1/p

′ = sup
t∈I

t−1/p′
ω̃F (t),

‖F‖Vp,∞(X) = sup
A∈Σ

|F |(A)

µ(A)1/p
′ = sup

t∈I
t−1/p′

ωF (t).

We shall use the notation ‖ · ‖p,∞ when the context is not ambiguous, keeping the
notation ‖ · ‖p∞ for vector-valued functions.

Remark 2.6. (a) For p = ∞ we clearly have V∞,∞(X) = V∞,∞(X) and the space
coincides with V∞(X) (see [9]).

(b) Observe that, since 1 < p � ∞ and µ(Ω) < ∞, measures in Vp,∞(µ,X) are
µ-continuous, and measures in Vp,∞(µ,X) are of bounded variation.

(c) It is clear that, using (1), F ∈ Vp,∞(µ,X) if and only if

‖F‖(A) � Cµ(A)1/p
′

for any A ∈ Σ

if and only if

x∗F ∈ Vp,∞(�) for all x∗ ∈ X∗.
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There are many ways to define spaces of vector measures which extend the Lorentz
spaces. We shall try to find a natural way to define Vp,q(X) in such a way that the
map f 
→ dG = fdµ defines an isometric embedding from Lp,q(X) and that the space
coincides with Vp(X) and Vp,∞ for p = q and q = ∞ respectively.

Definition 2.7. Let X be a Banach space, 1 < p < ∞ and 1 � q � ∞. Let us
define Vp,q(µ,X) and Ṽp,q(µ,X) as the spaces of vector measures such that

t−1/p′
ωF (t) ∈ Lq

(
I,
dt

t

)
and t−1/p′

ω̃F (t) ∈ Lq
(
I,
dt

t

)
respectively. We consider then the norms

‖F‖Vp,q(X) =

(∫
I

(
t−1/p′

ωF (t)
)q dt
t

)1/q

and

‖F‖Ṽp,q(X) =

(∫
I

(
t−1/p′

ω̃F (t)
)q dt
t

)1/q

.

We shall use the notation ‖ · ‖p,q when the context is not ambiguous, keeping the
notation ‖ · ‖pq for vector-valued functions.

Definition 2.8. Let X be a Banach space, 1 < p < ∞ and 1 � q � ∞. Let
us define Vp,q(µ,X) as the space of vector measures F : Σ → X such that x∗F ∈
Vp,q(�), for all x∗ ∈ X∗. We consider then the norm

‖F‖Vp,q(X) = sup
‖x∗‖�1

‖x∗F‖Vp,q(�).

Let us now recollect some elementary results about these spaces.

Proposition 2.9. Let 1 < p � ∞ and 1 � q � ∞. Then the following hold:
(a) (Vp,q(X), ‖ · ‖Vp,q(X)) and (Vp,q(X), ‖ · ‖Vp,q(X)) are Banach spaces.
(b) Vp(X) ⊂ Vp,∞(X) ⊂ Vp,∞(X).
(c) Vp,q(µ,X) ⊂ Ṽp,q(X) ⊂ Vp,q(X).
(d) Vp,q(X) ⊂ Vp,∞(X) and Vp,q(X) ⊂ Vp,∞(X).

Proof. The proofs of (a), (b) and (c) are easy and left to the reader.
To see (d) note that, since ωF is non-decreasing, integrating s−q/p′−1 from t to

µ(Ω), we have

t−1/p′
ωF (t) � C1

(∫µ(Ω)

t

(
s−1/p′

ωF (s)
)q ds
s

)1/q

+ C2,

for some constants C1, C2 > 0. A similar estimate holds for ω̃F (t). �

Example 2.10. Let 1 < p, q < ∞ and let us take X = Lp,q(µ,Ω). Consider the
Lp,q-valued measure F given by F(E) = χE for E ∈ Σ. Then the following hold:

(i) ωF (t) = +∞ for t ∈ I .
(ii) ω̃F (t) = t1/p for t ∈ I .
(iii) For any x∗ = φ ∈ X∗ = Lp

′ ,q′
, the measure x∗F(E) =

∫
E
φ dµ for E ∈ Σ.

Therefore the following hold:
(i′) F /∈ V r,s(X) for any r, s.
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(ii′) F ∈ Ṽr,s(X) if and only if 1 � r � p′ and s = ∞ or 1 � r < p′ and 1 � s � ∞.
(iii′) F ∈ Vr,s(X) if and only if r = p′ and s � q′ or 1 � r < p′.

In particular, there exist F1 ∈ Vp′ ,q′
(X)\Ṽp′ ,q′

(X) and F2 ∈ Vp′ ,∞(X)\Vp′ ,∞(X).

The importance of the following lemma is evident from the several references to
it in the subsequent results.

Lemma 2.11. Let 1 < p < ∞ and 1 � q � ∞. The following are equivalent:
(a) F ∈ Vp,q(X).
(b) There exists ϕ � 0, ϕ ∈ Lp,q such that |F |(A) =

∫
A
ϕ dµ for all A ∈ Σ.

Moreover if |F |(A) =
∫
A
ϕ dµ for all A ∈ Σ for some ϕ � 0 then ‖F‖Vp,q(X) = ‖ϕ‖pq .

Proof. Assume that (a) holds and that q = ∞. Let us take F ∈ Vp,∞(X). Then
using the Radon–Nikodym theorem we find a non-negative function ϕ such that
|F |(A) =

∫
A
ϕ dµ for all A ∈ Σ. Now observe that

‖F‖Vp,∞(X) = sup
A∈Σ

|F |(A)

µ(A)1/p
′ = sup

t>0

(
sup
µ(A)=t

|F |(A)

t1/p
′

)
= sup

t>0

(
t−1/p′

sup
µ(A)=t

∫
A

ϕ dµ

)
= sup

t>0
t−1/p′

∫ t
0

ϕ∗(s) ds

= sup
t>0

t1/pϕ∗∗(t) = ‖ϕ‖p∞.

For q < ∞ if F ∈ Vp,q(X) then F ∈ Vp,∞(X). From the previous case we find a
non-negative function ϕ such that |F |(A) =

∫
A
ϕ dµ for all A ∈ Σ. Now, with a look

at Proposition 2.3, it is plain to see that ‖F‖p,q = ‖ϕ‖pq .
The converse also follows from Proposition 2.3. �

With the help of Lemma 2.11 we can prove the following.

Theorem 2.12. Let X be a Banach space and 1 < p < ∞, 1 � q � ∞. Then the
following hold:

(a) Lp,q(X) is isometrically embedded into Vp,q(X).
(b) Lp,q(X) = Vp,q(X) if and only if X has the Radon–Nikodym property.

Proof. Let f ∈ Lp,q(X), then the measure F(E) =
∫
E
f dµ belongs to Vp,q(X).

This follows from the fact that |F |(E) =
∫
E

‖f‖ dµ and Lemma 2.11 for ϕ = ‖f‖.
To prove (b), let us assume that Lp,q(X) =Vp,q(X) and let T :L1 → X be a bounded

operator. We need to show that T is representable (see [8]). Note that F(E) =T (χE)
gives a measure in V∞(X), and then F ∈Vp,q(X). Now by the assumption there exists
f ∈Lp,q(X) such that F(E) =

∫
E
f dµ for all E ∈ Σ. This shows that T (ψ) =

∫
ψf dµ

for all ψ ∈L1.
Conversely, let us assume that X has the Radon–Nikodym property and take

F ∈Vp,q(X). Because F is µ-continuous and with bounded variation, F(E) =
∫
E
f dµ

for all E ∈ Σ for some f ∈L1(X). To show that f ∈Lp,q(X), apply Lemma 2.11 for
ϕ= ‖f‖ again. �
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Lemma 2.13. Let 1 < p < ∞ and 1 � q � ∞ or p = q = ∞. If F ∈ Vp,q(X) then

‖F‖Vp,q(X) ≈ sup

{∑
i

|αi| ‖F(Ai)‖ :

∥∥∥∥∥∑
i

αiχAi

∥∥∥∥∥
p′q′

� 1

}

= sup

{∑
i

|αi| |F |(Ai) :

∥∥∥∥∥ ∑
i

αiχAi

∥∥∥∥∥
p′q′

� 1

}
.

Proof. If ϕ is the function in Lemma 2.11, we use [1, Theorem 4.7, p. 220]
on the dual norm in the space Lp,q , to show that ‖F‖p,q = ‖ϕ‖pq is equivalent to
sup{

∫
Ω
ϕ|f| dµ : ‖f‖p′q′1}.

Hence

‖F‖p,q ≈ sup

{ ∫
Ω

ϕ

( ∑
i

|αi|χAi

)
dµ : f =

∑
i

αiχAi , ‖f‖p′q′ � 1

}

= sup

{∑
i

|αi|
∫
Ai

ϕ dµ :

∥∥∥∥∥ ∑
i

αiχAi

∥∥∥∥∥
p′q′

� 1

}

= sup

{∑
i

|αi||F |(Ai) :

∥∥∥∥∥∑
i

αiχAi

∥∥∥∥∥
p′q′

� 1

}

= sup

{∑
i

|αi|‖F(Ai)‖ :

∥∥∥∥∥ ∑
i

αiχAi

∥∥∥∥∥
p′q′

� 1

}
.

The equality of both suprema in the last step follows easily from the definition of
variation |F |(Ai). �

Corollary 2.14. Let 1 < p < ∞ and 1 � q � ∞. Then F ∈ Vp,q(X) if and only if

sup
π∈D

∥∥∥∥∥∑
A∈π

F(A)

µ(A)
χA

∥∥∥∥∥
pq

< ∞

where the supremum is taken over the set D of all finite partitions π of Ω.
In particular, Vp,p(X) = Vp(X) for all 1 < p � ∞.

Proof. Let π be a partition in D. Then∥∥∥∥∥ ∑
A∈π

F(A)

µ(A)
χA

∥∥∥∥∥
Lp,q(X)

=

∥∥∥∥∥∑
A∈π

‖F(A)‖
µ(A)

χA

∥∥∥∥∥
Lp,q

= sup

{ ∑
A∈π

‖F(A)‖
µ(A)

∫
A

ψ dµ : ‖ψ‖p′ ,q′ = 1

}

= sup

{ ∑
A∈π

αA‖F(A)‖ :

∥∥∥∥∥∑
A∈π

αAχA

∥∥∥∥∥
p′ ,q′

= 1

}
.

In the last equality we have used the fact that Eπ(ψ) =
∑

A∈π
∫
A
ψ dµ/µ(A)χA defines

a bounded operator of norm 1 in Lp
′ ,q′
. �



746 oscar blasco and pablo gregori

Now, using the convenient results for spaces of measurable functions, we obtain
the following embeddings.

Corollary 2.15. Let 1 < p < ∞, 1 � q1 � q2 � ∞, 1 < p1 � p2 < ∞ and 1 � q,
r � ∞. Then the following hold:

(a) Vp,q1 (X) ⊂ Vp,q2 (X), Ṽp,q1 (X) ⊂ Ṽp,q2 (X) and Vp,q1 (X) ⊂ Vp,q2 (X).
(b) Vp2 ,q(X) ⊂ Vp1 ,r(X), Ṽp2 ,q(X) ⊂ Ṽp1 ,r(X) and Vp2 ,q(X) ⊂ Vp1 ,r(X).

Our next step is the description of the dual of the vector-valued Lorentz function
spaces in terms of vector measure spaces.

Theorem 2.16. Let 1 < p < ∞ and 1 � q < ∞ or p = q = 1. Then Vp′ ,q′
(X∗) =

[Lp,q(X)]∗.

Proof. Let F ∈ Vp′ ,q′
(X∗) and φF be the functional over Lp,q(X) given as usual

by φF (
∑

i xiχAi ) =
∑

i〈xi, F(Ai)〉. We have∣∣∣∣∣φF
(∑

i

xiχAi

) ∣∣∣∣∣ �
∑
i

‖xi‖‖F(Ai)‖

for every simple function. Then Lemma 2.13 gives ‖φF‖ � C‖F‖p′ ,q′ for some
constant C > 0.

Now let φ ∈ [Lp,q(X)]∗. For each A ∈ Σ, Fφ(A) is the element of X∗ such that
Fφ(A)(x) = φ(xχA). Observe that F is well-defined and a countably additive measure
(by continuity of φ). It is plain that φ = φFφ . Then, we can conclude, since

‖Fφ‖p′ ,q′ � C ′ sup

{∑
i

|αi| ‖F(Ai)‖:

∥∥∥∥∥∑
i

αiχAi

∥∥∥∥∥
p,q

� 1

}

= C ′ sup

{∑
i

|αi| |〈xi, F(Ai)〉
∣∣∣∣∣ :

∥∥∥∥∥ ∑
i

αiχAi

∥∥∥∥∥
p,q

� 1, ‖xi‖ � 1 ∀ i
}

= C ′ sup

{∣∣∣∣∣ ∑
i

〈xi, F(Ai)〉
∣∣∣∣∣ : f =

∑
i

xiχAi ∈ Lp,q(X), ‖f‖p,q � 1

}

= C ′ sup

{∣∣∣∣∣φF
( ∑

i

xiχAi

)∣∣∣∣∣ : f =
∑
i

xiχAi ∈ Lp,q(X), ‖f‖pq � 1

}
= C ′‖φ‖.

�

Corollary 2.17. Let 1 < p, q < ∞. Then [Lp,q(X)]∗ = Lp
′ ,q′

(X∗) if and only if X∗

has the Radon–Nikodym property.

3. Vector measures and operators

We comment that a vector measure F provides us with a linear operator TF acting
on characteristic functions as TF (χA) = F(A), and it can be obviously extended by
linearity to the set of step functions.
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In this way we clearly identify

V∞(X) = V∞(X) = L(L1, X).

In this section we analyse the cases Vp,q(X) and Vp,q(X).
To describe the spaces Vp,q(X) in terms of operators, we need the following

lemma.

Lemma 3.1. Let 1 < p < ∞ and 1 � q � ∞. If F ∈ Vp,q(X) then

‖F‖Vp,q(X) ≈ sup

{∥∥∥∥∥∑
i

αiF(Ai)

∥∥∥∥∥ :

∥∥∥∥∥∑
i

αiχAi

∥∥∥∥∥
p′q′

� 1

}
.

Proof. Using Lemma 2.13 for the particular case X = � we have

‖F‖Vp,q(X) = sup
‖x∗‖�1

‖x∗F‖Vp,q

� sup

{∑
i

|αi||x∗F(Ai)|:
∥∥∥∥∥ ∑

i

αiχAi

∥∥∥∥∥
p′q′

� 1, ‖x∗‖ � 1

}

= sup

{∣∣∣∣∣
〈∑

i

αiF(Ai), x
∗

〉∣∣∣∣∣ :

∥∥∥∥∥∑
i

αiχAi

∥∥∥∥∥
p′q′

� 1, ‖x∗‖ � 1

}

= sup

{∥∥∥∥∥∑
i

αiF(Ai)

∥∥∥∥∥ :

∥∥∥∥∥∑
i

αiχAi

∥∥∥∥∥
p′q′

� 1

}
.

�

The following results are straightforward corollaries.

Theorem 3.2. Let 1 < p < ∞ and 1 � q < ∞. Then

Vp′ ,q′
(X) = L(Lp,q, X).

Corollary 3.3. Let 1 < p < ∞ and 1 � q < ∞. Then

Vp′ ,q′
(X∗) = (Lp,q⊗̂πX)∗.

From Theorem 3.2, Vp′ ,q′
(X) is a subspace of the space of operators from Lp,q to

X. If we want to understand the corresponding class of operators we need to recall
the following notion.

Definition 3.4 (see [15, p. 244]). Let E be a Banach lattice and B a Banach
space. A linear operator from E to B is said to be cone absolutely summing if there
is a constant C > 0 such that for every k ∈ � and every family e1, e2, . . . , ek ∈ E of
positive elements we have

k∑
i=1

‖T (ek)‖B � C sup
‖e∗‖E∗ �1

k∑
i=1

|〈ei, e∗〉|.

We denote by Π1
+(E,B) the set of such operators and its norm is given by the

infimum of the constants C satisfying the previous inequality.
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Remark 3.5. It is rather easy to give an equivalent defintion (see [15, p. 244]) by
using that if e1, e2, . . . , ek are positive elements in E then

sup
‖e∗‖E∗ �1

k∑
i=1

|〈ei, e∗〉| =

∥∥∥∥∥
k∑
i=1

ei

∥∥∥∥∥. (3)

Let us mention here that Lp,q are, clearly, Banach lattices and the next theorem
allows us to identify the space Π1

+(Lp,q, X).

Theorem 3.6. Let 1 < p < ∞ and 1 � q < ∞ or p = q = 1. Then Vp′ ,q′
(X) =

Π1
+(Lp,q, X).

Proof. Let F ∈ Vp′ ,q′
(X) and TF : Lp,q → X be defined as explained at the

beginning of this section. Let us see that T ∈ Π1
+(Lp,q, X). If N ∈ � and f1, f2, . . . , fN

are non-negative functions in Lp,q , then Lemma 2.11 gives the existence of ϕ ∈ Lp
′ ,q′

such that for all f ∈ Lp,q

‖TF (f)‖ �

∫
Ω

|f|ϕdµ.

Therefore

N∑
n=1

‖TF (fn)‖ �
N∑
n=1

(∫
Ω

fnϕ dµ

)
=

∫
Ω

(
N∑
n=1

fn

)
ϕdµ �

∥∥∥∥∥
N∑
n=1

fn

∥∥∥∥∥
p,q

‖F‖p′ ,q′ .

Hence, from (3), one obtains ‖TF‖Π1
+

� ‖F‖p′ ,q′ .

Now if T ∈ Π1
+(Lp,q, X) and FT : Σ → X is defined by FT (A) = T (χA), it is

obvious that T = TFT and FT is countably additive. Let f =
∑
αiχAi ∈ Lp,q with

‖f‖p,q � 1, then∑
i

|αi| ‖FT (Ai)‖ =
∑
i

‖T
(
|αi|χAi

)
‖ � ‖T‖Π1

+

∥∥∥∥∥ ∑
i

|αi|χAi

∥∥∥∥∥
p,q

� ‖T‖Π1
+
.

Therefore ‖FT‖p′ ,q′ � C‖T‖Π1
+
, and the proof is complete. �

4. Lorentz spaces and interpolation

We refer the reader to [1] or [2], where a wide study of interpolation spaces is
developed.

Definition 4.1 (the K-functional). Let (X0, X1) be a compatible couple of
Banach spaces. The K-functional can be defined for every f ∈ X0 +X1 and t > 0 by

K(f, t;X0, X1) = inf
{

‖f0‖X0
+ t‖f1‖X1

: f = f0 + f1

}
,

where the infimum is taken from all the possible representations f = f0 + f1 of f
with f0 ∈ X0 and f1 ∈ X1.

Theorem 4.2 [1, p. 298]. Let (Ω,Σ, µ) be a totally σ-finite measure space, then

K(f, t;L1, L∞) =

∫ t
0

f∗(s) ds = tf∗∗(t).
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Definition 4.3 [1, p. 299]. Let (X0, X1) be a compatible couple and suppose that
0 < θ < 1, 1 � q < ∞ or 0 � θ � 1, q = ∞. The space (X0, X1)θ,q consists of all f in
X0 +X1 for which the functional

‖f‖θ,q =


{∫∞

0

[t−θK(f, t)]q
dt

t

}1/q

0 < θ < 1, 1 � q < ∞,

sup
t>0

t−θK(f, t) 0 � θ � 1, q = ∞

is finite (here K(f, t) :=K(f, t;X0, X1)).

Let us denote by V 1(X) the space of µ-continuous vector measures of bounded
variation and write ‖F‖V 1(X) = |F |(Ω).

Of course, V∞(X) ⊂ V 1(X) and Vp,q(X) ⊂V 1(X) for all 1 < p < ∞ and 1 � q � ∞.

Theorem 4.4. Let F ∈ V 1(X) and t > 0. Then

ωF (t) � K(F, t;V 1(X), V∞(X)) � 2ωF (t).

Proof. Assume that F = G + H with G ∈ V 1(X) and H ∈ V∞(X). It follows
from |F | � |G| + |H | that ωF (t) � ωG(t) + ωH (t).

Note that

ωG(t) = sup
µ(E)�t

|G|(E) � |G|(Ω) = ‖G‖V 1(X)

and

ωH (t) = sup
µ(E)�t

|H |(E) � t sup
µ(E)�t

|H |(E)

µ(E)
= t‖H‖V∞(X).

Then we get the first estimate by taking the infimum over all decompositions.
Assume now that ωF (t) is finite. Since |F | is a µ-continuous measure, we can find

a function ϕ � 0 such that |F |(A) =
∫
A
ϕ dµ for every measurable set A.

We take E= {w ∈ Ω :ϕ(w)>ϕ∗(t)}. Since µϕ and ϕ∗ are mutually right-continuous
inverse functions, then µ(E) � t.

Let us define G(A) = F(E ∩A) for A ∈ Σ. In this case |G|(A) =
∫
A
ϕG dµ for all A,

where ϕG = ϕχE . It is easy to check that

ϕ∗
G(s) =

{
ϕ∗(s) 0 < s < µ(E),

0 s � µ(E)

and from this we can deduce that ‖G‖V 1(X) = ‖ϕG‖L1 =
∫µ(E)

0 ϕ∗(s) ds.
Defining H(A) = F(A) − G(A) = F((Ω\E) ∩ A) for all A ∈ Σ, we have |H |(A) =∫

A
ϕH dµ for every A, where ϕH = ϕχΩ\E . It is clear that

µϕH (λ) =

{
µϕ(λ) − µϕ(ϕ

∗(t)) 0 < λ � ϕ∗(t),

0 λ > ϕ∗(t).

Therefore

ϕ∗
H (s) = ϕ∗(s+ µϕ(ϕ

∗(t))).
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Hence

sup
A

|H |(A)

µ(A)
� sup

s>0

∫s
0
ϕ∗
H (θ) dθ

s
� lim

s→0
ϕ∗
H (s) = ϕ∗(µϕ(ϕ

∗(t))) � ϕ∗(t)

and consequently t‖H‖V∞(X) � tϕ∗(t).
Now, using the decomposition of F and the properties of ϕ∗, we obtain

‖G‖V 1(X) + t‖H‖V∞(X) �

∫µ(E)

0

ϕ∗(s) ds+ tϕ∗(t) � 2

∫ t
0

ϕ∗(s) ds = 2ωF (t).

�

Theorem 4.5. If 1 < p < ∞ and 1 � q � ∞, then

Vp,q(X) = (V 1(X), V∞(X))θ,q,

where 1/p = 1 − θ.

Using the reiteration theorem (see [1, p. 311]) and Corollary 2.14 we obtain the
following.

Theorem 4.6. If 1 < p1, p2 < ∞ and 1 � q � ∞, then

Vp,q(X) = (Vp1 (X), V p2 (X))θ,q,

where 1/p = (1 − θ)/p1 + θ/p2.

Let us mention something about the interpolation when we also change the spaces
in which the measures take values. For the difference between (Vp1 (X1), V

p2 (X2))θ,q
and Vp,q((X1, X2)θ,q) we recall that Vp(X) = Lp(X) if X has the Radon–Nikodym
property and simply refer the reader to the paper by M. Cwikel [7] where it is shown
that for spaces of vector-valued functions the equality may happen only for q = p

where 1/p = 1 − θ/p1 + θ/p2.
Even in the case q= p the expected interpolation result does not hold for

vector-valued measures. The reader is referred to [5] for the difference between
(Vp1 (X1), V

p2 (X2))θ,p and Vp,q((X1, X2)θ,p). Although there the authors deal with
interpolation between spaces of vector-valued harmonic functions, instead of vector-
valued measures, they can be identified according to the results in [4] or [3].

Acknowledgements. We would like to thank the referee for suggestions for
improving the paper.
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