Synthesis of Bisarylmethyl-Substituted Pyrimidines and Quinolines

A. A. Harutyunyan

Mndzhoyan Institute of Fine Organic Chemistry, Research Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Armenia, pr. Azatutyan 26, Yerevan, 0014 Armenia e-mail: harutyunyan.arthur@yahoo.com

Received December 12, 2012

Abstract—The condensation of 2-chloro-8-methylquinoline-3-carbaldehyde, 2-chloro- and 2-chloro-7,8,9,10-tetrahydrobenzo[*h*]quinoline-3-carbaldehydes, 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde, 6-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde, and 2-chloropyrido[1,2-*a*]pirimidine-3-carbaldehyde with N-substituted anilines gave the corresponding diaryl(hetaryl)methanes.

DOI: 10.1134/S1070428014010114

It is known that substituted triphenylmethanes (leuco bases of the corresponding triphenylmethane dyes) are potent chemotherapeutic and photodynamic agents [1]; they also exhibit nonlinear optical properties due to specific π -electron density distribution in their molecules [2].

Aryl and hetaryl triphenylmethane analogs containing five- and six-membered heterocycles and fused heterocyclic systems have recently been synthesized [3]. It should be noted that only a few examples of pyrimidine analogs of triphenylmethane and triphenylmethanol have been reported [4, 5]; some of them were tested as antiestrogens (aromatase inhibitors) [5].

In order to find new potential biologically active compounds in the series of diaryl(hetaryl)methanes, a number of heterocyclic aldehydes were brought into condensation with N-substituted anilines in the presence of various catalysts, in particular H_2SO_4 , polyphosphoric acid, HCl, and ZnCl₂. The best results were obtained when a suspension of aldehyde **I**–V and the corresponding aniline in 30% aqueous HCl was heated under reflux for 12 h (Scheme 1). As a result, diaryl-(hetaryl)methanes **VI–X** were isolated in good yields. However, 6-styryl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde [6] failed to react with *N*,*N*-dimethyl- and *N*,*N*-diethylanilines under the above conditions, and the initial aldehyde was recovered from the reaction mixture.

The structure of compounds VI-X was confirmed by elemental analyses and IR and ¹H NMR spectra.

III, $R^3 = H$ (a), Me (b); VI, VII, IX, $R^1 = R^2 = Me$ (a), Et (b); VIII, $R^3 = H$, $R^1 = R^2 = Me$ (a), Et (b); $R^1 = R^3 = H$, $R^2 = i$ -Bu (c); $R^3 = H$: $R^1 = R^2 = Me$ (d), Et (e); X, $R^1 = R^2 = Me$.

Diaryl(hetaryl)methanes VI–X were tested for antibacterial activity against *S. aureus* 209, p 1, *Sh. dysenteriae Flexneri* 6858, and *E. coli* 0-55. Compound VIIa turned out to be weakly active against Gram-negative bacteria, compounds VIIIb, VIIId, and VIIIe were weakly active against Gram-positive bacteria, and compound VIIIa displayed activity against all the examined bacterial strains. Pyrimidines VIIId and VIIIe at a dose of 150 mg/kg inhibited by 30–40% the growth of sarcoma 37 in mice.

EXPERIMENTAL

The IR spectra were recorded in mineral oil on a Nicolet Avatar 330 spectrometer. The ¹H NMR spectra were measured on a Varian Mercury-300 instrument at 300 MHz using tetramethylsilane as internal reference. Silufol UV-254 were used for thin-layer chromatography; spots were visualized by treatment with iodine vapor.

2-Chloro-7,8,9,10-tetrahydrobenzo[h]quinoline-**3-carbaldehvde** (I). Vilsmeier reagent prepared from 18.3 g (0.25 mol) of dimethylformamide and 107.5 g (0.7 mol) of phosphoryl chloride was cooled to -5 to 0° C, 18.9 g (0.1 mol) of N-(1,2,3,4-tetrahydronaphthalen-5-vl)acetamide [7] was added in portions, and the mixture was allowed to warm up to room temperature, heated for 2 h under reflux, and evaporated under reduced pressure. The residue was poured onto 0.5 kg of ice, the mixture was left to stand for 3 h in the cold. and the precipitate was filtered off and dried. Yield 15.6 g (64%), mp 160–162°C (from EtOH), $R_{\rm f}$ 0.70 (EtOH-dichloroethane, 1:10). IR spectrum, v, cm^{-1} : 1682 (C=O), 1608 s (C=C_{arom}). ¹H NMR spectrum (DMSO-*d*₆-CCl₄, 1:3), δ, ppm: 1.85-2.00 m (4H, CH₂CH₂CH₂CH₂), 2.96 br.t and 3.24 br.t (2H each, $CH_2CH_2CH_2CH_2$, J = 5.4 Hz), 7.34 d and 7.79 d (1H each, 5-H, 6-H, J = 8.4 Hz), 8.69 s (1H, 4-H), 10.45 s (1H, CHO). Found, %: N 5.86. C₁₄H₁₂ClNO. Calculated, %: N 5.70.

Diaryl(hetaryl)methanes VI–X (general procedure). A mixture of 0.01 mol of aldehyde I–V, 2.4 g (0.02 mol) of 30% aqueous HCl, and 0.03 mol of the corresponding N-substituted aniline was stirred and heated for 12 h under reflux. The resulting suspension was made alkaline by treatment with aqueous ammonia, excess N-substituted aniline was removed by steam distillation, and the precipitate was filtered off, washed with water, and dried.

4,4'-[(2-Chloro-7,8,9,10-tetrahydrobenzo[*h*]quinolin-3-yl)methylene]bis(*N*,*N*-dimethylaniline) (VIa) was synthesized from aldehyde I and *N*,*N*-dimethylaniline. Yield 68%, mp 255–256°C (from 2-ethoxyethanol), R_f 0.80 (*i*-BuOH–H₂O–AcOH, 2:2:1). IR spectrum: v 1611 cm⁻¹, s (C=C_{arom}). ¹H NMR spectrum (DMSO-*d*₆–CCl₄, 1:3), δ , ppm: 1.84–1.96 m (4H, 8-H, 9-H), 2.90 m (2H, 7-H or 10-H), 2.93 s (12H, NCH₃), 3.21 m (2H, 10-H or 7-H), 5.71 s (1H, CH), 6.56– 6.67 m and 6.83–6.89 m (4H each, C₆H₄), 7.17 d and 7.40 d (1H each, 5-H, 6-H, *J* = 8.4 Hz), 7.51 s (1H, 4-H). Found, %: N 8.74. C₃₀H₃₂ClN₃. Calculated, %: N 8.94.

4,4'-[(2-Chloro-7,8,9,10-tetrahydrobenzo[*h*]quinolin-3-yl)methylene]bis(*N*,*N*-diethylaniline) (VIb) was synthesized from aldehyde I and *N*,*N*-diethylaniline. Yield 72%, mp 201–202°C (from DMF–2-ethoxyethanol), R_f 0.73 (*i*-BuOH–H₂O–AcOH, 2:2:1). IR spectrum: v 1610 cm⁻¹, s (C=C_{arom}). ¹H NMR spectrum (DMSO-*d*₆–CCl₄, 1:3), δ , ppm: 1.15 t (12H, CH₂CH₃, *J* = 7.0 Hz), 1.84–1.96 m (4H, 8-H, 9-H), 2.90 m and 3.21 m (2H each, 7-H, 10-H), 3.33 q (8H, CH₂CH₃, *J* = 7.0 Hz), 5.66 s (1H, CH), 6.49–6.56 m and 6.78–6.85 m (4H each, C₆H₄), 7.16 d and 7.42 d (1H each, 5-H, 6-H, *J* = 8.4 Hz), 7.55 s (1H, 4-H). Found, %: N 7.82. C₃₄H₄₀CIN₃. Calculated, %: N 7.99.

4,4'-[(2-Chlorobenzo[*h*]quinolin-3-yl)methylene]bis(*N*,*N*-dimethylaniline) (VIIa) was synthesized from aldehyde II [8] and *N*,*N*-dimethylaniline. Yield 60%, mp 221–222°C (from 2-ethoxyethanol), R_f 0.64 (*i*-BuOH–H₂O–AcOH, 2:2:1). IR spectrum: v 1610 cm⁻¹, s (C=C_{arom}). ¹H NMR spectrum (DMSO-d₆–CCl₄, 1:3), δ , ppm: 2.94 s (12H, CH₃), 5.79 s (1H, CH), 6.63 m and 6.90 m (4H each, C₆H₄), 7.62 d and 7.80 d (1H each, 5-H, 6-H, *J* = 8.8 Hz), 7.63–7.72 m (2H, 8-H, 9-H), 7.71 s (1H, 4-H), 7.90 m (1H, 7-H), 9.10 m (1H, 10-H). Found, %: N 8.86. C₃₀H₂₈ClN₃. Calculated, %: N 9.02.

4,4'-[(2-Chlorobenzo[*h*]**quinolin-3-yl)methylene]bis**(*N*,*N*-**diethylaniline)** (VIIb) was synthesized from aldehyde II and *N*,*N*-diethylaniline. Yield 66%, mp 224–225°C (from 2-ethoxyethanol), R_f 0.61 (*i*-BuOH–H₂O–AcOH, 2:2:1). IR spectrum: v 1610 cm⁻¹, s (C=C_{arom}). ¹H NMR spectrum (DMSO-d₆–CCl₄, 1:3), δ , ppm: 1.16 t (12H, CH₂CH₃, *J* = 7.0 Hz), 3.34 q (8H, CH₂CH₃, *J* = 7.0 Hz), 5.74 s (1H, CH), 6.54 m and 6.87 m (4H each, C₆H₄), 7.63 d and 7.80 d (1H each, 5-H, 6-H, *J* = 8.9 Hz), 7.64– 7.72 m (2H, 8-H, 9-H), 7.75 s (1H, 4-H), 7.89 m (1H, 7-H), 9.11 m (1H, 10-H). Found, %: N 8.26. C₃₄H₃₆ClN₃. Calculated, %: N 8.05.

5-{Bis[4-(dimethylamino)phenyl]methyl}pyrimidine-2,4(1H,3H)-dione (VIIIa) was synthesized from aldehyde **IIIa** [9] and *N*,*N*-dimethylaniline. Yield 76%, mp 299–301°C (from EtOH), $R_f 0.53$ (*i*-BuOH–H₂O– AcOH, 2:2:1). IR spectrum, v, cm⁻¹: 3343 br (OH), 1707, 1672 (C=O), 1607 (C=C_{arom}). ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 2.84 s (12H, CH₃), 5.05 s (1H, CH), 6.48 d (1H, 6-H, *J* = 5.8 Hz), 6.64 m and 6.89 m (4H each, C₆H₄), 10.52 d.d (1H, 1-H, *J* = 5.8, 1.5 Hz), 11.02 d (1H, 3-H, *J* = 1.5 Hz). Found, %: N 15.26. C₂₁H₂₄N₄O₂. Calculated, %: N 15.37.

5-{Bis[4-(diethylamino)phenyl]methyl}pyrimidine-2,4(1*H***,3***H***)-dione (VIIIb) was synthesized from aldehyde IIIa and** *N***,***N***-diethylaniline. Yield 85%, mp 280–281°C (from EtOH), R_f 0.43 (***i***-BuOH–H₂O– AcOH, 2:2:1). IR spectrum, v, cm⁻¹: 3232 br, 3155 br (NH), 1713, 1665 (C=O), 1607 (C=C_{arom}). ¹H NMR spectrum (DMSO-***d***₆), \delta, ppm: 1.13 t (12H, CH₂CH₃,** *J* **= 7.0 Hz), 3.31 q (8H, CH₂CH₃,** *J* **= 7.0 Hz), 5.04 s (1H, CH), 6.46–6.58 m (5H, 6-H,** *m***-H), 6.85 m (4H,** *o***-H), 10.11 br.d (1H, 1-H,** *J* **= 5.7 Hz), 10.74 br.s (1H, 3-H). Found, %: N 12.97. C₂₅H₃₂N₄O₂. Calculated, %: N 13.32.**

5-{Bis[4-(isobutylamino)phenyl]methyl}pyrimidine-2,4(1*H***,3***H***)-dione (VIIIc) was synthesized from aldehyde IIIa and** *N***-isobutylaniline. Yield 65%, mp 237–238°C (from EtOH), R_f 0.58 (***i***-BuOH–H₂O– AcOH, 2:2:1). IR spectrum, v, cm⁻¹: 3287, 3170, 3140 (NH), 1709, 1653 (C=O), 1607 (C=C_{arom}). ¹H NMR spectrum (DMSO-***d***₆), \delta, ppm: 0.96 d (12H, CH₃,** *J* **= 6.6 Hz), 1.86 non (2H, CHCH₂,** *J* **= 6.6 Hz), 2.80 d (4H, CH₂,** *J* **= 6.6 Hz), 4.96 br.s (2H, NHCH₂), 4.99 s (1H, 5-CH), 6.43 m (4H,** *m***-H), 6.44 d (1H, 6-H,** *J* **= 5.6 Hz), 10.72 d (1H, 3-H,** *J* **= 1.8 Hz). Found, %: N 13.48. C₂₅H₃₂N₄O₂. Calculated, %: N 13.32.**

5-{Bis[4-(dimethylamino)phenyl]methyl}-6-methylpyrimidine-2,4(1*H***,3***H***)-dione (VIIId) was synthesized from aldehyde IIIb [10] and** *N***,***N***-dimethylaniline. Yield 74%, mp 184–186°C (from EtOH), R_f 0.30 (***i***-BuOH–H₂O–AcOH, 2:2:1). IR spectrum, v, cm⁻¹: 1718 s (C=O), 1615 s (C=C_{arom}). ¹H NMR spectrum (DMSO-***d***₆), \delta, ppm: 1.79 s (3H, 6-CH₃), 2.85 s (12H, NCH₃), 5.42 s (1H, CH), 6.64 m (4H,** *m***-H), 6.91 m (4H,** *o***-H), 10.55 br.s (1H, 1-H), 10.90 br.s (1H, 3-H). Found, %: N 14.58. C₂₂H₂₆N₄O₂. Calculated, %: N 14.80.**

5-{Bis[4-(diethylamino)phenyl]methyl}-6-methylpyrimidine-2,4(1*H*,3*H*)-dione (VIIIe) was synthesized from aldehyde IIIb and *N*,*N*-diethylaniline. Yield 79%, mp 286–287°C (from EtOH), $R_{\rm f}$ 0.57 (*i*-BuOH– H₂O–AcOH, 2:2:1). IR spectrum, v, cm⁻¹: 1715 s (C=O), 1612 s (C=C_{arom}). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 1.06 t (12H, CH₂CH₃, J = 7.0 Hz), 1.79 s (3H, CH₃), 3.28 q (8H, CH₂CH₃, J = 7.0 Hz), 5.37 s (1H, CH), 6.56 m and 6.88 m (4H each, C₆H₄), 10.54 d (1H, 1-H, J = 1.5 Hz), 10.90 d (1H, 3-H, J = 1.5 Hz). Found, %: N 12.68. C₂₆H₃₄N₄O₂. Calculated, %: N 12.89.

4,4'-[(2-Chloro-8-methylquinolin-3-yl)methylene]bis(*N*,*N*-dimethylaniline) (**IXa**) was synthesized from aldehyde **IV** [11] and *N*,*N*-dimethylaniline. Yield 65%, mp 205–206°C (from EtOH), $R_{\rm f}$ 0.44 (*i*-BuOH– H₂O–AcOH, 2:2:1). IR spectrum: v 1612 cm⁻¹, s (C=C_{arom}). ¹H NMR spectrum (DMSO-*d*₆–CCl₄, 1:3), δ , ppm: 2.75 s (3H, 8-CH₃), 2.93 s (12H, NCH₃), 5.72 s (1H, CH), 6.60 m and 6.87 m (4H each, C₆H₄), 7.36 d.d (1H, *J* = 7.9, 7.3 Hz) and 7.48–7.55 m (2H) (5-H, 6-H, 7-H), 7.59 s (1H, 4-H). Found, %: N 9.50. C₂₇H₂₈ClN₃. Calculated, %: N 9.77.

4,4'-[(2-Chloro-8-methylquinolin-3-yl)methylene]bis(*N*,*N*-**diethylaniline**) (**IXb**) was synthesized from aldehyde **IV** and *N*,*N*-diethylaniline. Yield 73%, mp 177–178°C (from EtOH), R_f 0.48 (*i*-BuOH–H₂O– AcOH, 2:2:1). IR spectrum: v 1612 cm⁻¹, s (C=C_{arom}). ¹H NMR spectrum (DMSO-*d*₆–CCl₄, 1:3), δ , ppm: 1.15 t (12H, CH₃CH₂, *J* = 7.0 Hz), 2.71 s (3H, 8-CH₃), 3.33 q (8H, CH₂CH₃, *J* = 7.0 Hz), 5.68 s (1H, CH), 6.53 m and 6.83 m (4H each, C₆H₄); 7.36 d.d (1H, *J* = 8.0, 7.1 Hz), 7.49 m (1H), and 7.55 m (1H) (5-H, 6-H, 7-H), 7.63 s (1H, 4-H). Found, %: N 8.50. C₃₁H₃₆ClN₃. Calculated, %: N 8.64.

2-Chloro-3-{bis[4-(dimethylamino)phenyl]methyl}-4H-pyrido[1,2-*a***]pyrimidin-4-one (X) was synthesized from aldehyde V [12] and** *N***,***N***-dimethylaniline. Yield 68%, mp 199–200°C (from EtOH), R_{\rm f} 0.47 (***i***-BuOH–H₂O–AcOH, 2:2:1). IR spectrum, v, cm⁻¹: 1782 (C=O), 1608 s (C=C_{arom}). ¹H NMR spectrum (DMSO-***d***₆–CCl₄, 1:3), \delta, ppm: 2.90 s (12H, CH₃), 5.74 s (1H, CH), 6.57 m and 7.09 m (4H each, C₆H₄), 7.27 d.d.d (1H, 7-H,** *J* **= 7.3, 6.7, 1.3 Hz), 7.57 d.d.d (1H, 9-H,** *J* **= 8.8, 1.3, 0.8 Hz), 7.88 d.d.d (1H, 8-H,** *J* **= 8.8, 6.7, 1.6 Hz), 8.89 d.d.d (1H, 6-H,** *J***=7.3, 1.6, 0.8 Hz). Found, %: N 12.65. C₂₅H₂₅ClN₄O. Calculated, %: N 12.94.**

The author is grateful to G.M. Stepanyan for performing biological tests.

REFERENCES

 Mibu, N., Yokomizo, K., Uyeda, M., and Sumoto, K., *Chem. Pharm. Bull.*, 2003, vol. 51, p. 1325; Al-Qawasmeh, R.A., Lee, Y., Cao, M.Y., Gu, X., Vassilakos, A., Wright, J.A., and Young, A., *Bioorg. Med. Chem. Lett.*, 2004, vol. 14, p. 347; Wainwright, M., *Photosensitizers in* *Biomedicine*, Chichester: Wiley, 2009, p. 81; Mibu, N., Yokomizo, K., Miyata, T., and Sumoto, K., *J. Heterocycl. Chem.*, 2010, vol. 47, p. 1434; Lavrenov, S.N., Luzikov, Y.N., Bykov, E.E., Reznikova, M.I., Stepanova, E.V., Glazunova, V.A., Volodina, Y.L., Tatarsky, V.V., Jr., Shtil, A.A., and Preobrazhenskaya, M.N., *Bioorg. Med. Chem.*, 2010, vol. 18, p. 6905.

- 2. Noack, A., Schroder, A., and Hartmann, H., *Angew. Chem., Int. Ed.*, 2001, vol. 40, p. 3008.
- Nair, V., Thomas, S., Mathew, S.C., and Abhilash, K.G., *Tetrahedron*, 2006, vol. 62, p. 6731; Mibu, N., Yokomizo, K., Uyeda, M., and Sumoto, K., *Chem. Pharm. Bull.*, 2005, vol. 53, p. 1171; Parai, M.K., Panda, G., Chaturvedi, V., Manju, Y.K., and Sinha, S., *Bioorg. Med. Chem. Lett.*, 2008, vol. 18, p. 289.
- Johnson, T.B., J. Am. Chem. Soc., 1929, vol. 51, p. 1274; Budesinsky, Z., Vavrina, J., Longsadl, L., and Holubek, J., Collect. Czech. Chem. Commun., 1980, vol. 45, p. 539.
- 5. Taylor, H., Jones, C.D., Davenport, J.D., Hirsh, K.S., Kress, T.J., and Weaver, D., J. Med. Chem., 1987,

vol. 30, p. 1359; Jones, C.D., Winter, M.A., Hirsh, K.S., Stamm, N., Taylor, H.M., Holden, H.E., Davenport, J.D., Krumkalns, E.V., and Suhr, R.G., *J. Med. Chem.*, 1990, vol. 33, p. 416.

- Arutyunyan, A.A., Saakyan, A.G., Mamyan, S.S., and Melik-Ogandzhanyan, R.G., *Khim. Zh. Arm.*, 2008, vol. 61, p. 104.
- Beilsteins Handbuch der organischen Chemie, vol. H12, p. 1197.
- Roopan, S.M., Nawaz Khan, F., Subashini, R., Hathwar, V.R., and Ng, S.W., *Acta Crystallogr., Sect. E*, 2009, vol. 65, p. 2711.
- Wiley, R.H. and Yamamoto, Y., J. Org. Chem., 1960, vol. 25, p. 1906.
- Wiley, P.F. and MacKellar, F.A., J. Org. Chem., 1976, vol. 41, p. 1858.
- 11. Meth-Cohn, O., Narine, B., and Tarnowski, B., J. Chem. Soc., Perkin Trans. 1, 1981, p. 1520.
- Abass, M., Ismail, M.M., Abdel-Monem, W.R., and Mayas, A.S., *Chem. Pap.*, 2010, vol. 64, p. 72.