Synthesis, Structure, and Spectroscopic Properties of Isotianil as a Bactericide

J. Zhang^a, J. Ji^a, B. Wang^a, A.-Q. Jia^a, and Q.-F. Zhang^{a,*}

^a Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Anhui, 243002 China *e-mail: zhangqf@ahut.edu.cn

Received May 31, 2020; revised June 9, 2020; accepted June 25, 2020

Abstract—Isotianil [*N*-(2-cyanophenyl)-3,4-dichloro-1,2-thiazole-5-carboxamide] has been synthesized in a good yield with high purity by reaction of the key intermediate product, *N*-(2-carbamoylphenyl)-3,4-dichloro-1,2-thiazole-5-carboxamide, with thionyl chloride in *N*,*N*-dimethylformamide at 60°C. The structure of isotianil was studied by X-ray analysis. It crystallized in triclinic space group $P\overline{1}$ with a = 11.459(3), b = 12.632(3), c = 22.528(5) Å, $\alpha = 78.897(3)$, $\beta = 81.730(3)$, $\gamma = 71.493(3)^\circ$, Z = 10.

Keywords: bactericide, isotianil, intermediate, organic synthesis, X-ray analysis

DOI: 10.1134/S107042802010022X

INTRODUCTION

Isotianil is an environmentally friendly bactericide that is used mainly for the prevention and control of rice blast by stimulating the natural defense mechanism of rice itself [1-4]. In 2002, Himmler reported a synthetic route to isotianil via a one-pot reaction starting from isatoic anhydride [5]. Treatment of isatoic anhydride with ammonia in the presence of N,N-dimethylformamide gave 2-aminobenzamide, which was directly reacted with 3,4-dichloro-1,2-thiazole-5-carbonyl chloride to obtain N-(2-carbamoylphenyl)-3,4dichloro-1,2-thiazole-5-carboxamide, and the latter was treated with thionyl chloride to afford the target isotianil. The reaction of 2-cyanobenzylamine with 3,4-dichloro-1,2-thiazole-5-carbonyl chloride in the presence of pyridine or 4-dimethylaminopyridine also afforded isotianil [3, 6]. However, the reported syntheses of isotianil have problems such as low yields along with low purity. Herein, we report a synthetic route to isotianil with high purity and high yield and its molecular structure according to single-crystal X-ray diffraction data.

RESULTS AND DISCUSSION

As shown in Scheme 1, the starting material was 3,4-dichloro-1,2-thiazole-5-carbonitrile which was converted to 3,4-dichloro-1,2-thiazole-5-carboxylic acid (1) in quantitative yield by hydrolysis in aqueous sodium hydroxide. Treatment of compound 1 with

thionyl chloride in DMF afforded intermediate 3,4-dichloro-1,2-thiazole-5-carbonyl chloride (2) which reacted with 2-aminobenzamide in DMF at 60°C to give the key intermediate product, N-(2-carbamoylphenyl)-3,4-dichloro-1,2-thiazole-5-carboxamide (3), in a good yield. The target isotianil (4) was readily obtained by treatment of 3 with thionyl chloride in DMF. In the ¹H NMR spectrum of **3**, the signal at δ 7.20–7.15 ppm was assigned to protons of the NH₂ group, and signals in the region δ 7.52–8.26 ppm were attributed to aromatic protons. The ¹³C NMR spectrum of isotianil showed two signals at δ_{C} 157.35 and 116.89 ppm due to C=O and C≡N carbons, respectively. In the ¹H NMR spectrum of **4**, the peaks in the range δ 7.49–7.92 ppm were attributed to aromatic protons, and the singlet at δ 11.04 ppm was assigned to the NH proton, similar to that in compound 3 (δ 10.56 ppm). The IR spectrum of 4 showed absorption bands at 3321 (N–H), 1650 (C=O), and 2224 cm⁻¹ $(C \equiv N)$. The UV–Vis absorption spectra of **3** and **4** in acetonitrile at room temperature showed strong bands at λ 210 (4) and ~270 nm (3) due to $\pi \rightarrow \pi^*$ transition and at λ 283 (4) and 382 nm (3) due to $n \rightarrow \pi^*$ transition (see Supplementary Materials).

The molecular structure of compound 4 was further confirmed by X-ray crystallography (Fig. 1). Selected bond lengths and angles are accordingly given in Table 1, and the hydrogen bond parameters are listed in Table 2. The C⁴–O¹ bond length [1.220(10) Å] indicates double-bond character of the carbon–oxygen

bond, in agreement with the data for structurally related *N*-arylbenzamides and 2-aminobenzophenones $\{1.226(2) \text{ Å } [7, 8]\}$. The C¹¹–N³ bond length is 1.180(12) Å, which indicates the triple-bond character, as in the structure of 2-acetamidobenzonitrile $\{1.138(3) \text{ Å } [9]\}$. The C¹–Cl¹ and C²–Cl² bond lengths are 1.720(10) and 1.708(9) Å, respectively. The C¹⁰C¹¹N³ bond angle is $177.3(13)^{\circ}$ which is typical of a C–C=N group. The dihedral angle between the benzene and isothiazole ring planes is $5.1(10)^{\circ}$, and the torsion angle C³C⁴N²C⁵ is $178.2(10)^{\circ}$, i.e., the isothiazole and benzene rings are nearly coplanar.

The packing view of compound 4 is shown in Fig. 2. The crystal packing of 4 is governed by weak intermolecular N–H···O and N–H···Cl hydrogenbonding interactions (Table 2). The H···O distances range from 2.28 to 2.38 Å, as in N-(4-chlorophenyl)-4-

Fig. 1. Structure of the molecule of N-(2-cyanophenyl)-3,4-dichloro-1,2-thiazole-5-carboxamide (4) according to the X-ray diffraction data. One molecule in the asymmetric unit is shown with non-hydrogen atoms represented as thermal displacement ellipsoids with a probability of 50%.

nitrobenzamide (2.29 Å) [10]. The bond angles N–H···O and N–H···Cl are in the range 127.2–134.0°. Furthermore, classical N–H···Cl (H···Cl ~2.61 Å) hydrogen bonds also contribute to stabilization of the crystal structure of **4**.

EXPERIMENTAL

All solvents were purified by routine procedures and distilled under dry nitrogen before use. Sodium hydroxide, thionyl chloride, and 2-aminobenzamide were purchased from Alfa Aesar and were used without

Fig. 2. Crystal packing of isotianil (4) viewed along the *a* axis. Dashed lines indicate $N-H\cdots O$ and $N-H\cdots Cl$ hydrogen bonds.

Bond	d, Å	Bond angle	ω, deg
S ¹ –N ¹	1.653(8)	N ¹ S ¹ C ³	95.7(4)
$S^{1}-C^{3}$	1.710(9)	$C^1N^1S^1$	108.1(7)
$O^{1}-C^{4}$	1.220(10)	$C^4N^2C^5$	127.6(8)
N ³ -C ¹¹	1.180(12)	$N^1C^1Cl^1$	118.2(8)
$N^2 - C^4$	1.350(10)	$C^{3}C^{2}Cl^{2}$	128.0(8)
$N^2 - C^5$	1.404(11)	$O^1C^4N^2$	125.2(9)
Cl^1-C^1	1.720(10)	$O^1C^4C^3$	118.8(9)
Cl ² –C ²	1.708(9)	$N^{3}C^{11}C^{10}$	177.3(13)

Table 1. Selected bond lengths (*d*) and bond angles (ω) for compound **4**

Table 2. Parameters of hydrogen bonds in the crystal structure of isotianil (4)

D–H···A	D–H, Å	H…A, Å	D…A, Å	Angle DHA, deg
N^2 - H^2 ···O ⁵	0.86	2.38	2.983(11)	127.2
N^2 - H^2 ··· Cl^5	0.86	2.59	3.238(8)	133.3
N^5 – H^5 ···O ¹	0.86	2.28	2.938(11)	134.0
$N^5-H^5\cdots Cl^4$	0.86	2.63	3.236(8)	128.0
N^8 – H^8 ···O ⁴ a	0.86	2.33	2.964(12)	130.9
N^8 – H^8 ··· Cl^6	0.86	2.61	3.240(8)	130.5
$N^{11}\!\!-\!\!H^{11}\!\cdots\!O^{3\ b}$	0.86	2.31	2.948(12)	131.5
$N^{11}\!\!-\!\!H^{11}\!\cdots\!Cl^8$	0.86	2.62	3.235(8)	129.7
N^{14} – H^{14} ···O ⁴	0.86	2.36	2.961(11)	127.7
N^{14} - H^{14} Cl^{10}	0.86	2.59	3.225(8)	131.3

Symmetry operation: ^a x, y, z + 1; ^b x - 1, y, z.

Table 3. Crystallographic data for isotianil (4) and details of X-ray diffraction experiment

Formula	C ₁₁ H ₅ Cl ₂ N ₃ OS	$d_{\rm calc}, {\rm g/cm^3}$	1.638
Molecular weight	298.14	Temperature, K	296(2)
Crystal system	Triclinic	<i>F</i> (000)	1500
Space group	ΡĪ	μ (Mo K_a), mm ⁻¹	0.698
<i>a</i> , Å	11.459(3)	Total number of reflections	19220
b, Å	12.632(3)	Number of independent reflections	13313
<i>c</i> , Å	22.528(5)	R _{int}	0.0301
α	78.897(3)	Number of parameters	812
β	81.730(3)	$R_{1}^{a} w R_{2}^{b} [I > 2\sigma(I)]$	0.0556, 0.1472
γ	71.493(3)	R_1, wR_2 (all reflections)	0.2555, 0.2795
<i>V</i> , Å ³	3022.4(12)	GoF ^c	0.852
Ζ	10		

 $\begin{array}{c} \hline a & R_1 = ||F_0| - |F_c|| / |F_0|. \\ b & wR_2 = [w(|F_0^2| - |F_c^2|)^2 / w |F_0^2|^2]^{1/2}. \\ c & \text{GoF} = [w(|F_0| - |F_c|)^2 / (N_{\text{obs}} - N_{\text{param}})]^2. \end{array}$

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 56 No. 10 2020

further purification. 3,4-Dichloro-1,2-thiazole-5-carbonitrile was purchased from Jiangsu Furun Chem. Co. Ltd. and used after recrystallization. The melting points were determined in capillaries using an X4 digital melting-point apparatus and are uncorrected. The NMR spectra were recorded on a Bruker ALX 400 spectrometer operating at 400 and 101 MHz for ¹H and ¹³C, respectively; the chemical shifts are given with reference to tetramethylsilane. The infrared spectra were recorded on a Perkin-Elmer 16 PC FT-IR spectrophotometer. Elemental analyses were carried out using a Perkin Elmer 2400 CHN analyzer. Electronic absorption spectra were obtained on a Shimadzu UV-2600 spectrophotometer.

3,4-Dichloro-1,2-thiazole-5-carboxylic acid (1). 3,4-Dichloro-1,2-thiazole-5-carbonitrile (5.0 g, 0.028 mol) was added to a solution of sodium hydroxide (2.8 g, 0.070 mol) in distilled water (10 mL). The mixture was stirred under reflux, and the progress of reaction was monitored by TLC. After 6 h, the mixture was acidified with dilute aqueous HCl (2 M) to pH ~3. The product (a creamy-white solid) was filtered off, thoroughly washed with distilled water, and dried under reduced pressure in a desiccator. Yield 5.25 g (95%), mp 177–179°C. ¹³C NMR spectrum (DMSO-*d*₆), $\delta_{\rm C}$, ppm: 165.32 s, 160.07 s, 148.95 s, 113.88 s. Found, %: C 26.57; H 0.63; N 15.57. C₄HCl₂N₂O₂S. Calculated, %: C 26.81; H 0.56; N 15.64.

3,4-Dichloro-1,2-thiazole-5-carbonyl chloride (2). 3,4-Dichloro-1,2-thiazole-5-carboxylic acid (1, 5.0 g, 0.025 mol) was slowly added in portions with stirring to thionyl chloride (5.1 mL, 0.070 mol). *N,N*-Dimethylformamide was then added, and the mixture was refluxed with stirring for 2 h. After completion of the reaction (TLC), the mixture was cooled to room temperature and evaporated under reduced pressure to afford light yellow powder. Found, %: C 20.83; N 12.12. C₄Cl₃N₂OS. Calculated, %: C 20.85; N 12.16.

N-(2-Carbamoylphenyl)-3,4-dichloro-1,2-thiazole-5-carboxamide (3). A solution of 2-aminobenzamide (3.4 g, 0.025 mol) in triethylamine (5 mL) was added dropwise to a solution of 2 (2.8 g, 0.070 mol) in DMF (2 mL). The mixture was stirred at 60°C for 3 h (TLC), ethyl acetate and distilled water were added, and the organic phase was separated, dried with anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was recrystallized from dichloromethane. Yield: 6.03 g (83%). yellow powder. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 7.20–7.15 m (2H, NH₂), 7.52 d (1H, H_{arom}, *J* = 7.5 Hz), 7.75 d (2H, H_{arom}, *J* = 11.5 Hz), 8.26 s (1H, H_{arom}), 10.56 s (1H, NH). IR spectrum (KBr), v, cm⁻¹: 3428 (N–H), 1725 (C=O), 1387 (C=N). Found, %: C 41.77; H 2.24; N 13.26. $C_{11}H_7Cl_2N_3O_2S$. Calculated, %: C 41.79; H 2.23; N 13.29.

N-(2-Cyanophenyl)-3,4-dichloro-1,2-thiazole-5carboxamide (4, isotianil). Thionyl chloride (3 mL) was added dropwise with vigorous stirring to a solution of 3 (5.0 g, 0.015 mol) in DMF (5 mL). The mixture was stirred at 60°C for 2 h (TLC), and distilled water (20 mL) was added with stirring over a period of 1 h. The gray solid was filtered off and washed with distilled water (3×15 mL) and petroleum ether (3× 15 mL). An additional amount of the product was isolated from the filtrate by extraction with ethyl acetate (15 mL). The extract was washed with brine (2×15 mL), dried with anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Yield 6.03 g (83%). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 7.49 t $(1H, H_{arom}, J = 7.6 \text{ Hz}), 7.71 \text{ d} (1H, H_{arom}, J = 8.0 \text{ Hz}),$ 7.82–7.75 m (1H, H_{arom}), 7.92 d (1H, H_{arom} , J = 7.8 Hz), 11.04 s (1H, NH). ¹³C NMR spectrum (DMSO-*d*₆), δ_C, ppm: 157.35 s, 156.16 s, 148.10 s, 139.06 s, 134.59 s, 133.91 s, 127.67 s, 126.72 s, 121.50 s, 116.89 s, 108.87 s. IR spectrum (KBr), v, cm^{-1} : 3321 (N-H), 2224 (C=N), 1650 (C=O). Found, %: C 44.33; H 1.67; N 14.12. C₁₁H₅Cl₂N₃OS. Calculated, %: C 44.31; H 1.69; N 14.09.

X-Ray diffraction data. The crystallographic data for isotianil (4) and experimental details are summarized in Table 3. The X-ray reflection intensities were measured on a Bruker SMART APEX 2000 CCD diffractometer at 293(2) K (Mo K_{α} radiation, graphite monochromator, λ 0.71073 Å). The collected frames were processed with SAINT software [11]. The data were corrected for absorption using SADABS [12]. The structure was solved by the direct method and was refined against F^2 by the full-matrix least-squares method using SHELXTL software package [13, 14]. All non-hydrogen atoms were refined anisotropically. The positions of all hydrogen atoms were generated geometrically (C_{sp3}—H 0.96, C_{sp2}–H 0.93 Å), assigned isotropic thermal parameters, and allowed to ride on their respective parent carbon atoms before the final cycle of least-squares refinement. The crystallographic data were deposited to the Cambridge Crystallographic Data Centre (CCDC entry no. 1973435) and are available at https://www.ccdc.cam.ac.uk/.

FUNDING

This project was supported by the National Natural Science Foundation of China (project no. 21372007).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

SUPPLEMENTARY MATERIALS

Supplementary materials are available for this article at https://doi.org/10.1134/S107042802010022X and are accessible for authorized users.

REFERENCES

- Maienfisch, P. and Edmunds, A.J.F. Adv. Heterocycl. Chem., 2012, vol. 121, p. 35. https://doi.org/10.1016/bs.aihch.2016.04.010
- Vicini, P., Incerti, M., Colla, P.L., and Loddo, R., *Eur. J. Med. Chem.*, 2009, vol. 44, p. 1801. https://doi.org/10.1016/j.ejmech.2008.05.03
- Assmann, L., Kuhnt, D., Elbe, H.-L., Erdelen, C., Dutzmann, S., Hänssler, G., Stenzel, K., Mauler-Machnik, A., Kitagawa, Y., Sawada, H., and Sakuma, H., Int. Patent Appl. no. WO99/24413.
- Arkai, K., Sato, Y., Shirakura, Sh., Endo, K., Nakamura, Sh., Ukawa, S., and Ueno, Ch., Int. Patent Appl. Pub. no. WO2009/024251.
- 5. Himmler, T., Int. Patent Appl. no. WO2004/002969.

- Chen, X.-Y., Liu, X.-P., Fan, Z.-J., Liang, X.-W., Li, Y.-D., Mao, W.-T., Li, J.-J., Wan, D., Wang, S.-H., Zhou, L.-F, Ji, X.-T., Hua, X.-W., and Huang, L.-W., CN Patent no. 102942565.
- Zhu, J., Li, M., Wei, H., Wang, J., and Guo, C., Acta Crystallogr, Sect. E, 2012, vol. 68, p. 0843. https://doi.org/10.1107/S1600536812007556
- Cortez-Maya, S., Cortes, E.C., Hernández-Ortega, S., Apan, T.R., and Martínez-García, M., *Synth. Commun.*, 2012, vol. 42, p. 46. https://doi.org/10.1080/00397911.2010.521435
- 9. Arslan, B., Kazak, C., Kirilmis, C., Koca, M., and Büyükgüngör, O., *Acta. Crystallogr., Sect. E*, 2005, vol. 61, p. o1652.

https://doi.org/10.1107/S1600536805013152

- Waris, G., Siddiqi, H.M., Flörke, U., Butt, M.S., and Hussain, R., *Acta Crystallogr., Sect. E*, 2012, vol. 68, p. o2768. https://doi.org/10.1107/S1600536812036082
- 11. SMART and SAINT+ for Windows NT Version 6.02a, Bruker Analytical X-ray Instruments, Madison, Wisconsin, USA, 1998.
- 12. Sheldrick, G.M., SADABS, University of Göttingen: Göttingen, Germany, 1996.
- 13. Sheldrick, G.M., SHELXTL Software Reference Manual (Version 5.1), Bruker AXS, Madison, WI, 1997.
- Sheldrick, G.M., Acta Crystallogr., Sect. A, 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930