CRYSTAL STRUCTURES OF AROYLHYDRAZONES DERIVED FROM 5-METHOXYSALICYLALDEHYDE

Q.-S. Zong^{1,2} and J.-Y. Wu¹

UDC 548.737:541.12:543.422

Two new aroylhydrazones 3-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide (1) and 4hydroxy-3-methoxy-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide (2), derived from 5methoxysalicylaldehyde, are prepared and determined by means of infrared and ¹H NMR spectroscopy and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space group $P2_1/n$ with a = 5.9406(7) Å, b = 31.833(3) Å, c = 7.6460(8) Å, $\beta = 94.522(4)^\circ$, V = 1441.4(3) Å³, Z = 4. Compound 2 crystallizes in the monoclinic space group $P2_1/c$ with a = 14.3471(9) Å, b = 11.3893(7) Å, c = 9.6853(6) Å, $\beta = 94.063(2)^\circ$, V = 1578.6(2) Å³, Z = 4. Both molecules have very similar bond lengths and angles. The crystal structures of both compounds are stabilized by N–H···O and O–H···O hydrogen bonds as well as $\pi \cdots \pi$ interactions.

DOI: 10.1134/S002247661306022X

Keywords: aroylhydrazone, Schiff base, synthesis, X-ray structure, hydrogen bonding.

Aroylhydrazones derived from salicylaldehyde and various benzohydrazides have attracted much attention for their structures [1-3], coordination ability [4-6], biological activities [7-9] as well as promising properties for analytical applications [10, 11]. Aroylhydrazones containing the typical -C(O)–NH–N=CH– functional groups are also regarded as Schiff base compounds. The detailed investigation of the structures of such compounds may supply important information about their properties. Although there is a number of crystal structures of aroylhydrazones, to the best of our knowledge, the compounds described here are the first examples derived from 5-methoxysalicylaldehyde. In this paper, we report the synthesis and structures of two new aroylhydrazones derived from 5-methoxysalicylaldehyde with 3-bromobenzohydrazide and 4-hydroxy-3-methoxybenzohydrazide (Scheme 1).

Experimental. Materials and methods. 5-Methoxysalicylaldehyde, 3-bromobenzohydrazide, and 4-hydroxy-3methoxybenzohydrazide were obtained from Fluka. IR spectra of KBr discs were recorded with a Perkin Elmer 783

Scheme 1. Aroylhydrazones

¹College of Biology and Chemical Engineering, Jiaxing University, Jiaxing Zhejiang, P. R. China; zongqianshou@163.com. ²School of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang, P. R. China. The text was submitted by the authors in English. *Zhurnal Strukturnoi Khimii*, Vol. 54, No. 6, pp. 1121-1126, November-December, 2013. Original article submitted May 19, 2012.

spectrometer. NMR spectra were recorded on a Varian XL gemini 300 spectrometer using tetramethylsilane as the internal standard. The electronic spectrum was recorded in a Cary 5000 spectrophotometer in the region 250-800 nm using DMF as a solvent (10^{-4} M) .

Preparation of 3-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide (1). 5-Methoxysalicylaldehyde (1.0 mmol, 0.15 g) and 3-bromobenzohydrazide (1.0 mmol, 0.22 g) were mixed and stirred in absolute ethanol (30 ml). The reaction mixture was refluxed for 1 h on a water bath, then cooled to room temperature. Colorless block-like single crystals of the compound were obtained by slow evaporation of the solution in air. Yield, 83%. Elemental analysis for $C_{15}H_{13}BrN_2O_3$, calculated: C 51.6%, H 3.8%, N 8.0%; found: C 51.4%, H 3.7%, N 8.1%. ¹H NMR (DMSO-*d*⁶): δ (ppm) 3.85 (s, 3H), 6.90 (m, 2H), 7.30–8.01 (m, 4H), 8.27 (s, 1H), 8.81 (s, 1H), 11.23 (s, 1H), 12.17 (s, 1H).

Preparation of *N'*-(2-hydroxy-5-methoxybenzylidene)-4-hydroxy-3-methoxybenzohydrazide (2). The same procedure as described for 1 was used for the preparation of 2, with 3-bromobenzohydrazide replaced by 4-hydroxy-3-methoxybenzohydrazide (1.0 mmol, 0.18 g). Yield, 72%. Elemental analysis for $C_{16}H_{16}N_2O_5$, calculated: C 60.8%, H 5.1%, N 8.9%; found: C 60.6%, H 5.1%, N 8.8%. ¹H NMR (DMSO-*d*⁶): δ (ppm) 3.85 (d, 6H), 6.90 (m, 2H), 7.20-7.59 (m, 4H), 8.81 (s, 1H), 11.15 (s, 1H), 12.22 (s, 1H), 12.53 (s, 1H).

	1	2
Empirical formula	$C_{15}H_{13}BrN_2O_3$	$C_{16}H_{16}N_2O_5$
Formula weight	349.2	316.3
Temperature, K	298(2)	298(2)
Wavelength, Å	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_{1}/c$
Unit cell dimensions <i>a</i> , <i>b</i> , <i>c</i> , Å; β, deg	5.9406(7), 31.833(3), 7.6460(8); 94.522(4)	14.3471(9), 11.3893(7), 9.6853(6); 94.063(2)
Volume, Å ³	1441.4(3)	1578.6(2)
Ζ	4	4
Calculated density, mg/m ³	1.609	1.331
Absorption coefficient, mm ⁻¹	2.863	0.100
F(000)	704	664
Crystal size, mm	0.17×0.15×0.15	0.21×0.18×0.18
θ range for data collection, deg	2.5-28.3	2.8-28.5
T_{\min} and T_{\max}	0.6418 and 0.6733	0.9793 and 0.9822
Index ranges	$-7 \le h \le 7; -38 \le k \le 36;$	$-17 \le h \le 17; -13 \le k \le 13;$
	$-8 \le l \le 9$	$-11 \le l \le 11$
Reflections collected	10442	16471
Unique reflections	2498	2920
Observed reflections $[I > 2\sigma(I)]$	2062	2312
Parameters	195	215
Restraints	1	1
$R_{ m int}$	0.0588	0.0252
$GOOF$ on F^2	1.118	1.048
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0671, wR_2 = 0.1845$	$R_1 = 0.0391, wR_2 = 0.0996$
R indices (all data)	$R_1 = 0.0818, wR_2 = 0.2075$	$R_1 = 0.0536, wR_2 = 0.1082$
Largest difference peak and hole, $e/Å^{-3}$)	0.939, -0.762	0.171, -0.131

TABLE 1. Crystal Data and Structure Refinement for the Compounds

Fig. 1. Anisotropic ellipsoid representation of compound **1** together with the atom labeling scheme. The ellipsoids are drawn at the 30% probability level; hydrogen atoms are shown as spheres of arbitrary radii.

Fig. 2. Anisotropic ellipsoid representation of compound **2** together with the atom labeling scheme. The ellipsoids are drawn at the 30% probability level; hydrogen atoms are shown as spheres of arbitrary radii.

X-ray diffraction. Single crystal X-ray diffraction experiments were performed on a Bruker SMART APEX CCD diffractometer using graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) at 298(2) K. Crystals with the dimensions of 0.17×0.15×0.15 mm for **1** and 0.21×0.18×0.18 mm for **2** were used. The structures were solved by direct methods with the program SHELXS-97 and refined by full matrix least squares on F^2 with SHELXL-97 [12]. All non-hydrogen atoms were refined anisotropically. The amino hydrogen atoms were located from difference Fourier maps. The remaining hydrogen atoms were placed geometrically in idealized positions (C–H distances of 0.93-0.96 Å, O–H distances of 0.82 Å) and refined as rigid groups with their U_{iso} 's as 1.2 or 1.5 times U_{eq} of the appropriate carrier atoms. The crystallographic data are listed in Table 1.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, supplementary publication Nos. CCDC — 879963 (1) and 879964 (2). Copies of the data may be obtained free of charge on application to CSD, 12 Union Road, Cambridge CB2 1EZ, UK (fax: 1441223/336033, e-mail: deposit@ccdc.cam.ac.uk).

Results and discussion. Crystal structures of the compounds. The molecular structures showing 30% displacement ellipsoids with atomic numbering schemes of compounds **1** and **2** are shown in Figs. 1 and 2 respectively. Selected bond lengths and angles are listed in Table 2. The structures of the compounds reveal quasi-coplanarity of the whole molecular skeleton with double bonds located in the central -C=N-NH-C(O)- group. They have *E*-configuration with respect to the double bonds of hydrazone bridges. The dihedral angles between the two benzene rings are 6.7(3)° for **1** and 22.0(3)° for **2**. In each molecule of the compounds, the C1–C6 benzene ring is nearly coplanar with the plane defined by the C7–N1–N2 moiety, with the dihedral angles being 8.1(3)° for **1** and 1.5(3)° for **2**. This planarity is assisted by the formation of an intramolecular O–H···N hydrogen bond (Table 3), which makes an *S*(6) ring motif [13]. The C7–N1 and C8–O2 bonds in the compounds have a double bond character, whereas the C8–N2 bonds are typical of single bonds. All the bond lengths in the compounds are in agreement with the values found in analogous compounds [1-3].

]			
Br1–C11	1.894(6)	N1-C7	1.280(7)	N1-N2	1.383(6)
N2-C8	1.342(7)	O1–C2	1.343(8)	O2–C8	1.226(7)
O3–C5	1.371(8)	O3–C15	1.421(10)	C8–C9	1.492(8)
C7-N1-N2	116.5(5)	C8-N2-N1	118.3(5)	C5-O3-C15	118.3(5)
C6-C1-C7	118.7(5)	C2C1C7	121.8(5)	O1–C2–C3	118.2(6)
O1C2C1	123.7(5)	C6–C5–O3	125.5(7)	O3–C5–C4	115.0(6)
N1-C7-C1	119.3(5)	O2C8N2	122.4(5)	O2–C8–C9	121.8(5)
N2-C8-C9	115.7(5)	C14–C9–C10	119.7(5)	С14С9С8	123.7(5)
С10-С9-С8	116.5(5)	C12C11Br1	120.4(5)	C10C11Br1	118.1(5)
		2	2		
N1-C7	1.282(2)	N1-N2	1.379(2)	N2-C8	1.351(2)
O1–C2	1.355(2)	O2–C8	1.232(2)	O3–C5	1.377(2)
O3–C15	1.412(2)	O4–C12	1.359(2)	O5C11	1.364(2)
O5-C16	1.416(2)	C1–C7	1.450(2)	C8–C9	1.485(2)
C7-N1-N2	116.9(1)	C8-N2-N1	118.6(1)	C5-O3-C15	118.2(1)
C11–O5–C16	118.2(1)	C2C1C7	122.1(1)	C6C1C7	118.6(1)
O1–C2–C3	118.2(2)	O1-C2-C1	122.8(1)	C6–C5–O3	124.3(2)
O3–C5–C4	115.8(1)	N1-C7-C1	120.3(1)	O2C8N2	121.6(1)
O2–C8–C9	122.6(1)	N2C8C9	115.8(1)	C14C9C8	122.5(1)
С10-С9-С8	118.2(1)	O5-C11-C10	126.0(1)	O5C11C12	114.0(1)
O4-C12-C13	118.9(1)	O4C12C11	121.5(1)		

TABLE 2. Selected Bond Lengths (Å) and Bond Angles (deg) for the Compounds

TABLE 3. Hydrogen Bonding Information

D–H··· A	<i>D</i> –H, Å	H… <i>A</i> , Å	$D \cdots A$, Å	D–H··· A , Å	
1					
$N2-H2\cdots O2^{i}$	0.900(10)	2.03(4)	2.877(6)	157(8)	
01–H1…N1	0.82	1.91	2.619(6)	144	
	2				
01–H1…N1	0.82	1.90	2.6143(17)	145	
O4−H4···O3 ⁱⁱ	0.82	2.11	2.7984(16)	142	
O4−H4…O5	0.82	2.23	2.6678(16)	114	
$N2-H2\cdots O2^{iii}$	0.902(9)	1.897(10)	2.7952(15)	174(2)	

Symmetry codes: ⁱ-1/2+*x*, 1/2-*y*, -1/2+*z*; ⁱⁱ-1+*x*, 1/2-*y*, -1/2+*z*; ⁱⁱⁱ*x*, 1/2-*y*, 1/2+*z*.

In the crystal packing of compound 1, the molecules are linked through intermolecular N–H···O hydrogen bonds to form chains running along the *c* axis (Fig. 3). In the crystal packing of compound 2, the molecules are linked through intermolecular O–H···O hydrogen bonds to form chains running along the *a* axis. The adjacent two chains are further connected through N–H···O hydrogen bonds to form a twin chain (Fig. 4). In both compounds, the infinite chains are subjected to π ··· π interactions (Table 4) acting between the aromatic rings.

IR spectra. In the IR spectra of the compounds, the OH stretching vibrations are centered at 3387 cm⁻¹ for **1** and 3365 cm⁻¹ for **2**. The peaks at 3172 cm⁻¹ for **1** and 3156 cm⁻¹ for **2** could be attributed to N–H symmetric stretching. The aromatic C–H stretching vibrations are located at 3030-3060 cm⁻¹. The aliphatic C–H stretching vibrations are observed at 2860-2980 cm⁻¹. Both compounds exhibit stretching vibration frequencies of imino bonds at about 1610 cm⁻¹. Intense bands

Fig. 3. Molecular packing diagram of **1** as seen along the *a* direction. Hydrogen bonds are shown as dashed lines.

Fig. 4. Molecular packing diagram of 2 as seen along the *c* direction. Hydrogen bonds are shown as dashed lines.

TABLE 4. $\pi \cdots \pi$ Interactions (Å)

1		2		
$Cg1\cdots Cg2^{iv}$	4.320(2)	$Cg3\cdots Cg3^{ m vi}$	4.206(2)	
$Cg1\cdots Cg2^{v}$	4.024(2)			
Cg1 and $Cg2$ are the centroids of the C1–C6 (benzene) and		Cg3 is the centroid of the C1–C6 (benzene) ring.		
C9–C14 (benzene) rings, respectively.				

Symmetry codes: ^{iv}1/2+*x*, 1/2-*y*, -1/2+*z*; ^v1/2+*x*, 1/2-*y*, 1/2+*z*; ^{vi}-*x*, 1-*y*, -*z*.

originating from the stretching vibrations of C=O groups are located at 1649 cm⁻¹ for **1** and 1647 cm⁻¹ for **2**. The C–O stretching vibration frequencies of hydroxy and methoxy groups substituted on benzene rings are in the region 1220-1230 cm⁻¹. The peaks at about 780 cm⁻¹ are due to N–H out-of-plane bending.

Electronic spectra. In the electronic spectra of the compounds, two strong bands in the region 250-280 nm were observed with ε_{max} values of 7500-8200 respectively. These two bands may be due to $\pi \to \pi^*$ absorption of the substituted benzene rings and the azomethine bonds. Weak and broad bands in the region 270-280 nm with ε_{max} values of 23 (1) and 25 (2) were also observed. This absorption is assigned to the $n \to \pi^*$ transition of the carbonyl groups [14].

We thank the Natural Science Foundation of China (No. 21302063), the Excellent Yong Teachers Program (No. 00511024) and China Postdoctoral Science Foundation (No. 2011M500989) for the financial support.

REFERENCES

- 1. Y.-J. Wei and F.-W. Wang, J. Struct. Chem., 52, 755-759 (2011).
- 2. Y. Lei, T.-Z. Li, C. Fu, et al., J. Chem. Crystallogr., 41, 1707-1711 (2011).
- 3. H.-Y. Zhu, Asian J. Chem., 24, 558-560 (2012).
- 4. H. H. Monfared, S. Alavi, R. Bikas, et al., Polyhedron, 29, 3355-3362 (2010).
- 5. D. Matoga, J. Szklarzewicz, K. Stadnicka, et al., Inorg. Chem., 46, 9042-9044 (2007).
- 6. M. Kuriakose, M. R. P. Kurup, and E. Suresh, Struct. Chem., 18, 579-584 (2007).
- 7. P. V. Bernhardt, P. Chin, and D. R. Richardson, J. Biol. Inorg. Chem., 6, 801-809 (2001).
- 8. A. Walcourt, M. Loyevsky, D. B. Lovejoy, et al., Int. J. Biochem. Cell Biol., 36, 401-407 (2004).
- 9. K. K. V. Raj, B. Narayana, B. V. Ashalatha, et al., Eur. J. Med. Chem., 42, 425-429 (2007).
- 10. X. H. Peng, X. L. Tang, W. W. Qin, et al., Dalton Trans., 40, 5271-5277 (2011).
- 11. A. A. Tameem, B. Saad, A. Makahleh, et al., *Talanta*, 82, 1385-1391 (2010).
- 12. G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement, Univ. Göttingen, Germany (1997).
- 13. J. Bernstein, R. E. Davis, L. Shimoni, et al., Angew. Chem. Int. Ed. Eng., 34, 1555-1573 (1995).
- 14. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier Science Publishers B.V., The Netherlands (1984).