This article was downloaded by: [New Mexico State University] On: 20 December 2014, At: 17:38 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

DICHLOROBIS[1,4-DIAZABICYCLO(2,2,2)OCTANE]-(TETRAHYDROBORATO)ZIRCONIUM, [Zr(BH₄)₂CL₂(dabco)₂] (ZrBDC), A NEW STABLE, EFFICIENT, AND SELECTIVE REDUCING AGENT

H. Firouzabadi^a, N. Iranpoor^b & H. Alinezhad^a

^a Chemistry Department , College of Sciences , Shiraz University , Shiraz, 71454, Iran ^b Chemistry Department , College of Sciences , Shiraz University , Shiraz, 71454, Iran Published online: 16 Aug 2006.

To cite this article: H. Firouzabadi , N. Iranpoor & H. Alinezhad (2002) DICHLOROBIS[1,4-DIAZABICYCLO(2,2,2)OCTANE]-(TETRAHYDROBORATO)ZIRCONIUM, [Zr(BH₄)₂CL₂(dabco)₂] (ZrBDC), A NEW STABLE, EFFICIENT, AND SELECTIVE REDUCING AGENT, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 32:23, 3575-3586, DOI: <u>10.1081/SCC-120014968</u>

To link to this article: http://dx.doi.org/10.1081/SCC-120014968

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SYNTHETIC COMMUNICATIONS Vol. 32, No. 23, pp. 3575–3586, 2002

DICHLOROBIS[1,4-DIAZABICYCLO(2,2,2)OCTANE]-(TETRAHYDROBORATO)ZIRCONIUM, [Zr(BH₄)₂Cl₂(dabco)₂] (ZrBDC), A NEW STABLE, EFFICIENT, AND SELECTIVE REDUCING AGENT

H. Firouzabadi,* N. Iranpoor,* and H. Alinezhad

Chemistry Department, College of Sciences, Shiraz University, Shiraz 71454, Iran

ABSTRACT

High yield preparation of a new stable zirconium borohydride, $[Zr(BH_4)_2Cl_2(dabco)_2]$ is described and its application for the selective and efficient reduction of aldehydes and ketones is presented.

After the discovery of NaBH₄, many research groups have put their efforts into preparation of modified borohydride agents in order to decrease the problems encountered with this reagent. Some of the drawbacks of NaBH₄ for the reduction of functional groups may be mentioned as follows; poor chemo- and regio-selective reduction, high rate of decomposition in

3575

DOI: 10.1081/SCC-120014968 Copyright © 2002 by Marcel Dekker, Inc. 0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Corresponding authors. E-mail: firouzabadi@chem.susc.ac.ir

YY A

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3576

FIROUZABADI, IRANPOOR, AND ALINEZHAD

solvents like H_2O and CH_3OH , inability to work in aprotic solvents and also a limited number of the functional groups that can be reduced by the reagent.^[1]

Transition metal borohydrides are mostly very reactive, volatile, unstable, difficult to handle and as such can not be used in organic synthesis as reducing agents without modification.^[2] Ligand–metal borohydride complexes $[L_XM(BH_4)_n]$ form a category of modified borohydride agents that some of them have been used effectively for the reductive transformation of functional groups in organic synthesis.^[2–6] The typical examples are; Cu(BH₄)(PPh₃)₂,^[3] Cu₂(BH₃CN)₂(PPh₃)₄,^[4] Zn(BH₄)₂ dabco,^[5] Zn(BH₄)₂PPh₃^[6] and Zn(BH₄)₂.crown ethers.^[7]

Zirconium borohydride, $Zr(BH_4)_4$, is a highly volatile colorless solid, inflames in air, hydrolyzes rapidly with explosion and not easy to handle.^[2,8,9] A practical, easy to handle reducing agent of borohydride bearing zirconium cation is rare. To the best of our knowledge, there are onyl two reagents, $[Cp_2Zr(Cl)BH_4]^{[10]}$ and [crosslinked PVP₄-Zr(BH₄)₄]^[11] are reported as hydride tranfering agents for the reduction of a limited number of carbonyl compounds.

We here report the high yield (97%) easy preparation of a new stable ligand-metal zirconium borohydride $[Zr(BH_4)_2Cl_2(dabco)_2]$ (ZrBDC) as a white, stable, non-hygroscopic powder. This compound can be stored at room temperature for months without significant change in its reducing ability. This zirconium borohydride is much more stable than NaBH₄ in H₂O, CH₃OH and also in mild aqueous acidic conditions. Chemical formula of the compound has been established by quantitative chemical analysis and also by IR, ¹H NMR and ¹³C NMR spectroscopy.^[12]

The results of the reduction of carbonyl compounds in our study with $[Zr(BH_4)_2Cl_2(dabco)_2]$ (ZrBDC) are summarized in Table 1. High yield reduction of aldehydes and ketones were conducted by this reagent in isopropyl alcohol under reflux conditions. We have observed that functional groups like -NO₂, -CN and -CO₂R remained intact during the progress of the reaction by this reagent. The effect of the nature of the substituted groups on the aromatic rings of the carbonyl compounds is quite clear. In comparison with benzaldehyde, electron-withdrawing groups facilitate the reduction reactions and electrons-donating groups retard the rate of the reactions. Selective and high yield reduction of benzaldehydes with different substituted groups was performed smoothly in the presence of this reducing agent. We have shown the selectivity between benzaldehyde derivatives in Table 2.

Selective reduction of aldehydes in the presence of ketones is of synthetic value. Therefore, we have presented the ability of the reagent for this kind of reaction. We have observed that ZrBDC reduces aldehydes in ©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PRF	PARA	TION OF ZIRCONIUM BOROHYDRIDE		3577
Conditions	% Yield (Isolated)	80 92 95 85 87 87 87 87 87 87 87 87 87 87 87 97 97 97 97 97 97 97 97 97 97 97 97 97	91	83 (continued)
nder Reflux (Time (h)	3.5 0.8 0.8 0.8 0.8 0.8 3.0 3.4 3.0 3.5 3.5 3.0 3.5 3.5 3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	1.5	1.5
ı İsopropyl Alcohol Uı	Molar Ratio of Reagent/Subs.	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1	0.5	0.5
Table 1. Reduction of Carbonyl Functional Groups with (ZrBDC) in Isopropyl Alcohol Under Reflux Conditions	Product ^a	Benzyl alcohol <i>p</i> -Nitrobenzyl alcohol <i>m</i> -Nitrobenzyl alcohol <i>m</i> -Nitrobenzyl alcohol <i>p</i> -Chlorobenzyl alcohol <i>p</i> -Bromobenzyl alcohol <i>p</i> -Methoxybenzyl alcohol <i>p</i> -Methylbenzyl alcohol <i>m</i> -Methylbenzyl alcohol Salicyl alcohol Herfuryl alcohol $P_{\rm rh}^{\rm CH_2OH}$	H2 CH	CH2OH
Reduction of Carbonyl Fun	Substrate(s)	Benzaldehyde <i>p</i> -Nitrobenzaldehyde <i>m</i> -Nitrobenzaldehyde <i>o</i> -Nitrobenzaldehyde <i>p</i> -Chlorobenzaldehyde <i>p</i> -Cyanobenzaldehyde <i>p</i> -Cyanobenzaldehyde <i>p</i> -Methoxybenzaldehyde <i>m</i> -Methylbenzaldehyde <i>m</i> -Methylbenzaldehyde	Ho Ho	a ↓
Table 1.	Entry	- 0 c 4 v 9 r 8 6 0 - 0 c r	14	15

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3578				FIRC	DUZABA	ADI, IRAN	POOR,	AND A	LINEZH	łAD
	% Yield (Isolated)	86	88	98	67	76	97	93	16	
	Time (h)	2.8	6.0	2.5	5.0	5.0	0.8	1.5	0.8	
ntinued	Molar Ratio of Reagent/Subs.	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	d on NMR analysis.
Table 1. Continued	Product ^a	₽	₽_{	Ho	HO	H-	O2N-O-N2O	HO-O-D	Ho Ho	^a All compounds gave satisfactory spectral analysis; ^b Yield based on NMR analysis.
	Substrate(s)	~	Å		Ph Ph	J_Q²	02N-O-R	-O-2	Q ²	ounds gave satisfactory spe
	Entry	16	17	18	19	20	21	22	23	^a All compc

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

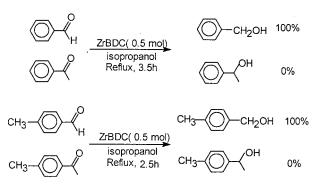
PREPARATION OF ZIRCONIUM BOROHYDRIDE

3579

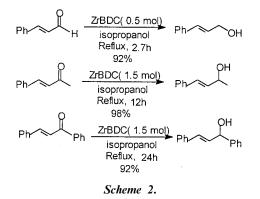
Table 2. Selective Reduction of Benzaldehyde Derivatives with (ZrBDC) in Isopropyl Alcohol Under Reflux Conditions^a

Entry	Substrate (1, 2)	Product (1, 2)	Time (h)	% Yield ^b
1	NC-CHO	NC		100
	но-О-сно	HO-O-CH2OH	1.0	0
2	NC	NC-O-CH2OH	1.0	100
	сн30-О-сно	сн ₃ 0-Сн ₂ ОН	1.0	12
3	№2 Сно	№2		94
	CH3	CH ₃	0.8	7
	(О)—сно	СН2ОН		1
4	О ₂ №—Сно	O2N-O-CH2OH	1.0	100
	но-О-сно	ноСН ₂ ОН	1.2	15
5	O2N-CHO	O2N-O-CH2OH		100
	СН3О-СНО	СН ₃ -О-СН ₂ ОН	1.2	20
6	O₂N→(CHO)→CHO	O₂N→O→−CH₂OH		100
	сн ₃ 0Сно	сн ₃ о{	1.2	25

^aThe molar ratio of the reagents/subs.1/subs.2 is 0.5/1.0/1.0; ^bYields based on NMR analysis.


the presence of ketones with absolute chemoselectivity that has been determined by ¹H NMR spectroscopy (Sch. 1).

High yield and selective production of allyl alcohols via 1,2-reduction of α,β -unsaturated carbonyl compounds is an important reaction. Reduction of α,β -unsaturated carbonyl compounds by ZrBDC was performed smoothly and the corresponding allyl alcohols were produced in high yields (Sch. 2).


©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3580

FIROUZABADI, IRANPOOR, AND ALINEZHAD

Scheme 1.

Recently, much attention has been paid to the reactions conducted in water in which the vast majority of biochemical processes take place.^[13] We have found that ZrBDC is quite stable in aqueous media therefore, we have presented the potential of this reagent in aqueous media for the reduction of carbonyl compounds. Our studies showed that the rate of the reactions in water were faster than those performed in isopropyl alcohol under similar reaction conditions. The yields of the products were more or less similar to that observed for the reductions in isopropyl alcohol (Table 3).

In order to show the advantages and the drawbacks of ZrBDC for the reduction of carbonyl groups, we have compared the results with some of those reported with other modified borohydride reagents in Table 4.

In conclusion, (ZrBDC) as a white powder, unlike its mother compound $Zr(BH_4)_4$, is thermally stable and could be stored for months without appreciable loss of its reducing ability at room temperature. \triangleleft

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

-	OF ZIRCONIUM BOROHYDI	RIDE
% Yield (Isolated)	79 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	85 85
Time (h)	2 0.8 0.7 0.5 1.0 2.0 2.0 1.7 0.8	0.5
Molar Ratio of Reagent/Subs.	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.75 0.75
Product ^a	Benzyl alcohol <i>p</i> -Nitrobenzyl alcohol <i>m</i> -Nitrobenzyl alcohol <i>o</i> -Nitrobenzyl alcohol <i>o</i> -Chlorobenzyl alcohol <i>p</i> -Cyanobenzyl alcohol <i>p</i> -Methylbenzyl alcohol <i>p</i> -Methylbenzyl alcohol Salicyl alcohol Furfuryl alcohol PhCH=CH-CH ₂ OH	
Substrate	Benzaldehyde <i>p</i> -Nitrobenzaldehyde <i>m</i> -Nitrobenzaldehyde <i>o</i> -Nitrobenzaldehyde <i>o</i> -Chlorobenzaldehyde <i>p</i> -Cyanobenzaldehyde <i>p</i> -Methylbenzaldehyde Salicylaldehyde Furfural PhCH=CH-CHO Q	
Entry	- 0 c 4 v 9 r 8 6 0 1 <u>c</u>	13 13

Downloaded by [New Mexico State University] at 17:38 20 December 2014

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3582

FIROUZABADI, IRANPOOR, AND ALINEZHAD

		lable 3. Continued	unnea		
Entry	Substrate	Product ^a	Molar Ratio of Reagent/Subs.	Time (h)	% Yield (Isolated)
15	₀=◯	5-C)	0.75	3.0	87
16	YO	HO HO	0.75	8.0	6
17	02N-0-R	O2N-O-VO	0.75	2.0	96
18	cH3-O-	cH3-O-CH	0.75	24	89
a 4 11					

Table 3. Continued

^aAll compounds gave satisfactory spectral analysis.

Downloaded by [New Mexico State University] at 17:38 20 December 2014

nes to Their

Cuttespr	COLLESPOLITIE AICOLLOIS					
		ZrBDC	DC		Other Borohydride Reagnet	dride Reagnet
Entry	Substrate(s)	Time (h)	Time (h) % Yield	Time (h)	Time (h) % Yield Time (h)	Time (h)
1	Cinammaldehyde	2.7	92	7	87^{a}	I
2	<i>p</i> -Nitrobenzaldehyde	1.2	92	7	85^{a}	I
3	Cyclohexanone	2.8	86	24	$77^{\rm c}$	-1
4	2-Heptanone	9	88	72	35°	4
5	Benzaldehyde	3.5	76	24	78°	4
9	Ph-CH=CH-CO-CH ₃	12	98	0.5	15 ^e	0.25

$\begin{smallmatrix}&&&&\\&&&&\\&&&&&\\&&&&&\\&&&&&\\0.25\end{smallmatrix}$ Silica gel supported Zn(BH₄)₂,^{[14] b}Cp₂Zr(Cl)BH₄,^{[10] c}LiBH₃CN;^{[15] d}NaBH₃CN;^{[16] c}Zn(BH₄)₂.^[17] 87^a 85^a 77^c 78^c 15^e 7 72 72 0.5 *p*-Nitrobenzaldehyde Cyclohexanone 2-Heptanone Benzaldehyde Ph-CH=CH-CO-CH₃

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

% Yield 49^b -88^d 87^d 87^d

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

r the Reduction of Aldehydes and Keton	Other Borohydride Reagnet
Table 4. Comparison of (ZrBDC) with Other Borohydride Reagents for the Reduction of Aldehydes and Keton Corresponding Alcohols	ZrBDC
Table 4. Comparison of (ZrB Corresponding Alcohols	

PREPARATION OF ZIRCONIUM BOROHYDRIDE

3583

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3584

FIROUZABADI, IRANPOOR, AND ALINEZHAD

The preparation of the reagent is easy (in 97% yield) and unlike its polymer supported analogue [cross-linked PVP4-Zr(BH₄)₄] is quite reproducible by different hands.^[18] This reagent has been applied successfully for the reduction of structurally different carbonyl compounds in organic media and water as well. Moreover, the mildness, easy reaction work up, efficiency, selectivity, high reaction yields, lack of requirement of an inert atmosphere make this new stabilized transition-metal borohydride a practical bench top modified zirconium borohydride reagent and a useful addition to borohydride chemistry.

Reduction of imines, enamines, acid chlorides, azides, reductive amination of aldehydes and ketones, and also methylation of amines are under investigation in our laboratories.

EXPERIMENTAL

All yields refer to isolated products. The products were purified by column chromatography and the purity determination of the products were accomplished by GLC on a Shimadzu model GC-8A instrument or by TLC on Silica-gel polygram SIL G/UV254 plates, mass spectra were run on a Shimadzu GC MS-QP 1000EX at 20 eV. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. The NMR spectra were recorded on a Bruker Avance DPX 250 MHz instrument.

Reduction of cinnamaldehyde, a typical procedure for the reduction of α , β -unsaturated carbonyl compounds in *iso*-PrOH or in H₂O: To a solution of cinnamaldehyde (2.0 mmol) in *iso*-PrOH (5–10 mL), the reducing agent (1.0 mmol) was added and refluxed with stirring (2.7 h). The mixture was cooled to room temperature, silica gel (2 g) was added and the solvent was evaporated. The resulting solid was applied on a silica gel column and eluted with petroleum benzene (60–80°C)/Et₂O (2/1). Evaporation of the solvent afforded pure cinnamyl alcohol in 92% yield (Sch. 2). In the case of the reaction in H₂O, after 1.7 h, the reaction was quenched by the addition of 10% HCl (aq.) and extracted with EtOAc or Et₂O (3 × 30 mL). The organic layer was washed with H₂O, brine, dired over anhydrous MgSO₄, and was evaporated to afford cinnamyl alcohol in 90% yield (Table 3).

ACKNOWLEDGMENTS

We are thankful to professor M. Rashidi for useful discussions and also to the Shiraz University Research Council and The Ministry of Science, Research and Technology of Iran for a grant in support of this work. \mathbb{N}^{2}

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PREPARATION OF ZIRCONIUM BOROHYDRIDE

3585

REFERENCES

- Firouzabadi, H.; Zeynizadeh, B. For a Recent Review on the Modified Borohydride Agents See. Iranian J. Sci. tech. Trans A 1995, 19(2), 103.
- 2. Marks, T.J.; Kolb, J.R. Chem. Rev. 1977, 77, 263.
- (a) Fleet, G.W.J.; Harding, P.J.C. Tetrahedron Lett. 1981, 22, 675; (b) Sorrell, T.N.; Spillane, R.J. ibid 1978, 28, 2473.
- 4. Hutchins, R.O.; Markowitz, M. Tetrahedron Lett. 1980, 813.
- 5. Firouzabadi, H.; Zeynizadeh, B. Bull. Chem. Soc. Jpn. 1997, 70, 155.
- Firouzabadi, H.; Adibi, M.; Ghadami, M. Phosphorous, Sulfur and Silicon 1998, 142, 191.
- Maltseva, N.N.; Kedrova, N.S.; Gorobinskii, L.V.; Kuznetzof, N.T. Russian Journal of Coordination Chemistry 2000, 26, 232.
- 8. Reiod, E.R.; Bish, J.M.; Brenner, A. J. Electrochem. Soc. 1957, 104(1), 21.
- (a) James, B.D.; Nando, R.K.; Wallbridge, M.G.H. J. Chem. Soc. (A) 1996, 182; (b) Marks, T.J.; Shimp, L.A. J. Am. Chem. Soc. 1972, 94, 1542.
- 10. Sorrel, T.N. Tetrahedron Lett. 1978, 50, 4985.
- 11. Tamami, B.; Goudarzian, N. J. Chem. Soc. Chem. Commun. 1994, 1079.
- 12. Preparation and identification of [Zr(BH₄)₂Cl₂(dabco)₂] (ZrBDC): A slurry was produced by the addition of an ethereal solution of LiBH₄ (0.344 mol) to anhydrous ZrCl₄ (0.069 mol) under inert atmosphere and the resulting mixture^[19] was stirred for 12 h. Then an ethereal solution of dabco (0.138 mol) was added dropwise to the slurry and stirring was continued for 10 h to produce a dark brown solid. The resulting solid was filtered and washed with Et₂O and dried under vacuum to afford a white powder. For further purification, the resulting powder was washed with dry THF and dry Et₂O respectively and was left under vacuum overnight. ZrBDC was isolated as a white, stable, non-hygroscopic powder in 97% yield. This reducing agent could be stored at room temperature for months without significant change in its reducing ability. The chemical formula of the reagent was established by IR and NMR studies.^[9] IR (KBr, dabco species), ν (cm⁻¹): 2974s, 2963s, 2897s, 1623m, 1458s, 1324s, 1056s, 993s, 846s, 702b, and for BH_4^- species, ν (cm⁻¹): 2383s, 2373s, 2306s, 2268s, 1155s. ¹H NMR (CDCl₃, 250 MHz): δ (ppm) 1.42 (broad band, 8H, two BH₄), that its coupling constant and pattern are similar to $Zr(BH_4)_4^{(9b)}$ 2.9 (AA'BB' pattern,^[20] 24H of CH₂ groups). ¹³C NMR (CDCl₃, 63 MHz): δ (ppm) 51.7, 52.1 (two different CH₂ groups). Determination of BH_4^- content was conducted by iodometric titration method,^[21] quantitative measurement of chloride content was proceeded by potentiometric titration technique,^[22] and quantitative

STA.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3586

FIROUZABADI, IRANPOOR, AND ALINEZHAD

measurement of Zr was conducted by UV/Vis. spectrophotometric method. $^{\left[23\right] }$

- 13. Grieco, P.A. Organic Synthesis in Water. 1st Ed.; Chapman and Hall: London, 1998.
- 14. Ranu, B.C.; Das, A.R. J. Org. Chem. 1991, 56, 4796.
- 15. Borch, R.F.; Durst, H.D. J. Am. Chem. Soc. 1969, 91, 3996.
- (a) Borch, R.F.; Bernstein, M.D.; Drust, H.D. ibid 1971, 93, 2897; (b) Borch, R.F.; Hassid, A.I. J. Org. Chem. 1972, 37, 1673.
- 17. Ranu, B.C. Synlet 1993, 885.
- 18. Our personal observation.
- 19. James, B.D.; Smith, B.E. Syn. React. Inorg. Metal—Org. Chem. 1974, 4(5), 461.
- 20. Silverstein, R.M.; Bassler, C.G.; Morrill, T.C. Spectrometric Identification of Organic Compounds, 3rd Ed.; John & Wiley and Sons, Inc.: New York, 1974; 184.
- 21. Lattle, D.A.; Jensen, E.H.; Struck, W.A. Anal. Chem. 1952, 24(11), 1843.
- 22. Vogel, A.I. A Text-book of Quantitative Inorganic Analysis, 3rd Ed.; Woolwich Polytechnic: London, 1961; 950.
- 23. Marczenko, Z. Separation and Spectrophotometric Determination of Elements, 1st Ed.; Ellis Horwood Limited: England, 1986, 649.

Received in the UK October 8, 2001