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1. Introduction

If u is a superharmonic function on R2, then

u(x, y) = lim inf
t→y u(x, t)

for all (x, y) ∈ R2. This follows from the fact that a line segment in R2 is non-thin
at each of its constituent points. (See Doob [1, 1.XI] or Helms [7, Chapter 10] for
an account of thin sets and the fine topology.) The situation is different in higher
dimensions. For example, if u is the Newtonian potential on R3 defined by

u(x, y, z) =

∫ 1

−1

{x2 + y2 + (z − t)2}−1/2|t| dt,
then

u(0, 0, z) =

{
+∞ (0 < |z| 6 1)
2 (z = 0).

Corollary 2 below will show that, nevertheless, for nearly every vertical line L, the
value of a superharmonic function at any point X of L is determined by its lower
limit along L at X.

Throughout this paper, we let n > 3. A typical point of Rn will be denoted by
X or (X ′, x), where X ′ ∈ Rn−1 and x ∈ R. Given any function f : Rn → [−∞,+∞]
and any point X, we define the vertical cluster set of f at X by

CV (f;X) = {` ∈ [−∞,+∞] : there is a sequence (tm) in R \ {x}
such that tm → x and f(X ′, tm)→ `},

and the fine cluster set of f at X by

CF (f;X) = {` ∈ [−∞,+∞] : for each neighbourhood N of ` in [−∞,+∞],
the set f−1(N) is non-thin at X}.

Theorem. If f : Rn → [−∞,+∞], then there is a polar subset E ′ of Rn−1 such
that CV (f;X) ∩ CF (f;X) 6= ? whenever X ′ ∈ Rn−1 \ E ′.
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In [2, Theorem 1], it was shown that there is a subset E′ of Rn−1 such that
E ′ × {0} is a polar subset of Rn (whence E ′ has Hausdorff dimension at most n− 2)
and CV (f;X) ⊆ CF (f;X) whenever X ′ ∈ Rn−1 \ E ′. In contrast, the exceptional set
E ′ in our Theorem is polar in Rn−1, and hence has Hausdorff dimension at most
n− 3.

A function f which is continuous at a point with respect to the fine topology
will be called finely continuous at that point.

Corollary 1. If A ⊆ Rn and f : Rn → [−∞,+∞] is finely continuous at each
point of A, then there is a polar subset E ′ of Rn−1 such that f(X) ∈ CV (f;X) whenever
X ∈ A \ (E ′ ×R).

Corollary 2. Let u be a superharmonic function on an open subset Ω of Rn.
Then there is a polar subset E ′ of Rn−1 such that

u(X) = lim inf
t→x u(X ′, t) (X ∈ Ω \ (E ′ ×R)).

Corollary 3. If Ω is a finely open subset of Rn, then there is a polar subset E ′
of Rn−1 such that the set SΩ

X ′ = {t ∈ R : (X ′, t) ∈ Ω} has no isolated points whenever
X ′ ∈ Rn−1 \ E ′.

The following example shows that the above results are sharp with regard to the
size of the exceptional set.

Example. Let E ′ be any polar subset of Rn−1. Then there is a bounded
Newtonian potential u on Rn such that

u(X) < lim inf
t→x u(X ′, t),

and hence

u(X) 6∈ CV (u;X),

whenever X ∈ E ′×Q. Also, there is a finely open set Ω such that SΩ
X ′ = {0} whenever

X ′ ∈ E ′.
The proof of the Theorem and Corollaries 1–3 will be given in Section 2, and

the details of the Example in Section 3.

2. Proof of the Theorem

We shall require the following.

Lemma 1. Let A′ ⊆ Rn−1 and (X ′, x) ∈ Rn−1 ×R, and let ε > 0. The following
are equivalent.

(a) A′ ×R is thin at (X ′, x) in Rn.
(b) A′ × (x, x+ ε) is thin at (X ′, x) in Rn.
(c) A′ × (x− ε, x) is thin at (X ′, x) in Rn.
(d) A′ is thin at X ′ in Rn−1.

A proof of the equivalence of (a) and (d) above may be found in [5, Lemma 2]
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(see [6] for a general abstract result of this type). Clearly, (a) implies both (b) and (c).
Since superharmonicity is preserved by reflection, (b) is equivalent to (c). Hence it
remains to check that (b) and (c) together imply (a). Since the set

{Y ∈ A′ × {x} : 2−j 6 |Y −X| < 21−j}
is contained in the image of

{Y ∈ A′ × (x, x+ ε) : 2−j 6 |Y −X| < 21−j}
under the canonical projection from Rn to Rn−1 × {x}, and Newtonian capacity
decreases under this projection, it follows from Wiener’s criterion (see [7, Theorem
10.21]) that A′ × {x} is thin at X = (X ′, x). Hence A′ × (x− ε, x+ ε) is thin at (X ′, x),
being the union of three such sets, and (a) follows since thinness is a local property.

The following lemma is an easy consequence of the definition of the fine cluster
set CF (f;X).

Lemma 2. Let A ⊆ Rn and X ∈ Rn. If A is non-thin at X in Rn, then

CF (f;X) ∩ f(A) 6= ?,

where f(A) denotes the closure of f(A) in [−∞,+∞].

For the proof of the Theorem, we shall modify an argument of Hayman (see [8,
pp. 472–473]). Let L denote the collection of open intervals of R with endpoints
in Q, and let I denote the collection of finite unions of closed intervals of [−∞,+∞]
with endpoints in Q ∪ {−∞,+∞}. Also, we define

E ′ = {X ′ ∈ Rn−1 : CV (f; (X ′, x)) ∩ CF (f; (X ′, x)) = ? for some x ∈ R}.
Let Y ′ ∈ E ′. Then there exists y in R such that CV (f;Y )∩CF (f;Y ) = ?, where

Y = (Y ′, y). Since CV (f;Y ) and CF (f;Y ) are compact subsets of [−∞,+∞], we can
find I, J ∈ I and L ∈ L such that

CF (f; (Y ′, x)) ⊆ I for some value of x in L, (1)

f(Y ′, x) ∈ J for all but at most one value of x in L, (2)

I ∩ J = ?. (3)

Given any I, J ∈ I and L ∈ L, we now define a subset E′(I, J, L) of Rn−1

by writing Y ′ ∈ E ′(I, J, L) if Y ′ ∈ E ′ and (1) and (2) both hold. The preceding
paragraph shows that

E ′ =
⋃
E ′(I, J, L), (4)

where the union is over all choices of I , J and L which satisfy (3).
Now suppose (with the aim of obtaining a contradiction) that there is a con-

stituent member F ′ = E ′(I0, J0, L0) of the above union, and a point Z ′ of F ′, such
that F ′ is non-thin at Z ′. In view of (1), we can choose z in the open interval L0

such that CF (f;Z) ⊆ I0, where Z = (Z ′, z). We choose a positive number ε such
that (z − ε, z + ε) ⊆ L0. Also, we define

F ′1 = {Y ′ ∈ F ′ : f(Y ′, x) ∈ J0 whenever x ∈ (z, z + ε)}
and

F ′2 = {Y ′ ∈ F ′ : f(Y ′, x) ∈ J0 whenever x ∈ (z − ε, z)}.
In view of (2), at least one of the sets F ′1, F ′2 must be non-thin at Z ′.
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We consider first the case where F ′1 is non-thin at Z ′. By Lemma 1, the set
F ′1 × (z, z + ε) is non-thin at Z in Rn. Hence CF (f;Z) ∩ J0 6= ?, by Lemma 2. This
yields a contradiction, since CF (f;Z) ⊆ I0 and I0 ∩ J0 = ? by (3).

If, instead, F ′2 is non-thin at Z ′, then we note from Lemma 1 that F ′2 × (z − ε, z)
is non-thin at Z , and argue similarly.

From the above contradiction we conclude that F ′ must be thin at each of its
points and hence is polar (see [1, 1.XI.6]). Since this is true for each constituent set
of the union in (4), and since this is a countable union, the set E ′ is polar.

This concludes the proof of the Theorem.
If f is finely continuous at a point X, then CF (f;X) = f(X). Thus Corollary 1

is an immediate consequence of the Theorem.
Corollary 2 is deduced as follows. We extend u to be defined on all of Rn by

assigning arbitrary values on Rn \ Ω. Since u is finely continuous at all points of Ω,
it follows from Corollary 1 that there is a polar subset E ′ of Rn−1 such that

u(X) ∈ CV (u;X) whenever X ∈ Ω \ (E ′ ×R).

However, by the lower semicontinuity of u,

u(X) 6 ` for all ` ∈ CV (u;X) (X ∈ Ω).

Thus u(X) ∈ CV (u,X) if and only if

u(X) = lim inf
t→x u(X ′, t),

and the result follows.
Corollary 3 is obtained from Corollary 1 by defining f to be the characteristic

function valued 1 on Ω and 0 elsewhere.

3. Details of the Example

The Example was suggested by a construction in [3, Example 4] (or see [4,
Example 1.13]). Let E ′ be any non-empty polar subset of Rn−1. Then there is a
superharmonic function v on Rn−1 such that v = +∞ on E ′. Let A be the open
subset of Rn defined by

A = {(X ′, x) : v(X ′) > |x|2−n},
and let µ be the Riesz measure associated with the superharmonic function defined
on Rn by

(X ′, x) 7−→ v(X ′).

In view of the invariance of the above function under vertical translation, µ cannot
charge any point of Rn. Since

lim inf
X → (Y ′ , 0)
X ∈ A

v(X ′)
|X − (Y ′, 0)|2−n > lim inf

X → (Y ′ , 0)
X ∈ A

v(X ′)
|x|2−n > 1 > 0 = µ({(Y ′, 0)}) (Y ′ ∈ Rn−1),

the set A is thin at each point of Rn−1 × {0} (see [1, 1.XI.4 (c)]).
Now let w be a bounded continuous potential on Rn which determines thinness

(see [1, 1.XI.10]); that is, w has the property that for any set F ⊂ Rn,

R̂Fw (X) < w(X) if and only if F is thin at X,
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where R̂Fw is the regularized reduction of w on F relative to superharmonic functions

on Rn. Let u0 = R̂Aw . Then u0 is a bounded potential on Rn, and u0 < w on
Rn−1 × {0}. However, since v = +∞ on E ′, it is clear that E ′ × (R \ {0}) ⊆ A, so
u0 = w on E ′ × (R \ {0}). It follows that

u0(X ′, x) = w(X ′, x)→ w(X ′, 0) > u0(X ′, 0) (x→ 0, X ′ ∈ E ′). (5)

Finally, let (qm) be an enumeration of Q, and let

u(X ′, x) =
∑
m

2−mu0(X ′, x− qm) ((X ′, x) ∈ Rn).

It follows from the dominated convergence theorem that for any k ∈ N and X ′ ∈ E ′,∑
m 6=k

2−mu0(X ′, x− qm)→∑
m 6=k

2−mu0(X ′, qk − qm)

as x→ qk . Hence

lim inf
x→qk

u(X ′, x) = 2−k lim inf
x→0

u0(X ′, x) +
∑
m 6=k

2−mu0(X ′, qk − qm)

> 2−ku0(X ′, 0) +
∑
m 6=k

2−mu0(X ′, qk − qm) = u(X ′, qk), (6)

by (5). Since (6) holds for every k and every X ′ ∈ E ′, the first assertion of the
Example is established. Also, if we define Ω to be the fine interior of Rn \A, then it
is clear that SΩ

X ′ = {0} whenever X ′ ∈ E ′.
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