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of KR to MT-catalyzed products consistent with the natural pro-
gramming rules of LovB.  Most of the KR products were found to 
contain the m/z 215 ion and split into two major peaks.  The earlier 

peak at TR~4 min is the -hydroxyl compound (parent m/z 233 
also observed) and has undergone dehydration during ionization.  

A standard of the -hydroxyl compound gave an identical ioniza-
tion pattern.  The second peak at TR~6 min is the actual dehydrated 
dienyl-SNAC, which forms readily in aqueous solution.  When the 
natural tetraketide 2 was used in the competition assay, only the 
methylated product 14 was observed.  Selected ion monitoring 
revealed that no reduced products can be found in the assay, there-
by confirming the much higher catalytic efficiency of the MT do-
main towards 2 compared to that of KR.  Interestingly, no further 

-ketoreduction of 14 can be detected in the assay.  Directly using 
14 in a KR-only assay also did not yield any ketoreduced products.  
This observation is unexpected as the acyl portion of 14 is the natu-
ral substrate of KR in the predicted programmed steps of LovB 
(Figure 1).  Although the exact reason for this result is unresolved, 
one possible explanation may be recognition of the acyl portion of 

14 (in the -keto form) requires interactions with the ACP as ob-
served in other PKS systems by NMR studies .23     

Our assays using both natural and model substrates provide an 
explanation for the programmed methylation step observed in the 
iterative cycles of LovB.  We suggest the MT and KR domains 

compete for each of the -ketoacyl substrates released by the KS 
domain, and the relative rates determine the outcome of the imme-
diate tailoring domain choice.  The MT domain of LovB has been 
precisely tuned to be highly selective for the natural tetraketide 2 
and to outcompete the KR at this particular step only.  Both chain 
length and functional variation in the acyl substrate can lead to 
substantial penalties in catalytic efficiency for the MT domain.  In 
contrast, the KR domain appears to be less substrate dependent in 
terms of catalytic efficiency.  As a reflection of the competition 
between MT and KR, a 30-fold drop in the catalytic efficiency of 
MT towards 10 (as compared to 2) can lead to ~20% of the sub-
strate being ketoreduced without being first methylated. As the 
correct methyl substitution is essential for recognition in some (but 
not all) downstream steps,4 this may pose a significant barrier to 
some precursor-directed biosyntheses of polyketides using HR-
PKSs. Particular structural variations in precursors can derail the 
programmed steps of the domains and lead to production of shunt 
products instead.  However, it is clear from previous work that late 
steps catalyzed by LovB can proceed without methylation to make 
a des-methyl dihydromonacolin L.4 

Our findings with the LovB MT domain poses intriguing ques-
tions as to how substrate specificity is achieved at the molecular 
level, how other MT domains in HRPKSs have alternative substrate 
specificities and the possible influence of the HRPKS quaternary 
structure in the intrinsic biosynthetic programming rules of these 
megasynthases.  For example, in the fusarielin HRPKS,24 the MT 
domain is functional on the di-, tri- and pentaketide intermediates, 
while inactive on the tetraketide.  This is a complete reversal of 
specificity compared to LovB, and structural comparisons between 
the two MT domains will provide insights into their differences.    
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Figure 3  
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