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A novel palladium(ll)-catalyzed stereoselective synthesis of o- and B-N-glycosyl trichloroacetamides has been developed. The  a- and S-selectivity
at the anomeric carbon depends on the nature of the palladium  —ligand catalyst. While the cationic palladium(ll) promotes the a-selectivity, the
neutral palladium(ll) favors the  f-selectivity.

The stereoselective synthesiswfor 5-N-glycosyl amides produced by treatment of isothiocyanates with the appropriate
has recently received considerable attention since the rec-acids? In recent years, glycosyl amides have also been made
ognition of glycoproteins is important in a variety of via Staudinger reduction of glycosyl azidealthough this
biochemical processes such as-eetll recognition, cellular ~ approach gives the desired glycosyl amides in good yields,
transport, adhesion for the binding of pathogens to cells, andthe a/s-selectivity at the anomeric carbon is poor. DeShong
metastasi$.Early work on the synthesis of glycosyl amides and several research groups, who recognized the challenge
employed the reaction of glycosyl amines with activated of this approach, developed a stereoselective synthesis of
carboxylic acid derivative$.Although this method is still o-N-glycosyl amides from glycosyl azides using isoxazoline
frequently used, drawbacks of this methodology include intermediate$. We report herein a novel method for the
hydrolysis of the starting glycosyl amines as well as stereoselective synthesis of and -N-glycosyl amides
anomerization of the protected glycosyl azides upon reduc-involving Pd(ll)-catalyzed glycal imidate rearrangement. In
tion2 In an alternative strategy, the glycosyl amides can be our approach, the nature of the palladivliyand complex
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controls the anomeric selectivity (Scheme 1). The cationic
Pd(ll), which promotes ionization of the glycal imidate
by coordinating to the imidate nitrogénresults in the
formation ofa-N-glycosyl trichloroacetamid®. In contrast,

use of neutral Pd(ll) promotes a concerted-type mechanism

to providef-N-glycosyl trichloroacetamidd.? Although the
allylic imidate rearrangement is pioneered by Overrhan,
there is no report on utilizing this method in carbohydrate
synthesis to control the- andj-selectivity of the glycosyl
amide at the anomeric carbon.

Treatment of glucal imidate4 with 2.5 mol % of
Pd(PhCN)CI; in CH,CI, at 25°C for 2 h provided a 1:1
mixture ofa- andS-N-glycosyl trichloroacetamid®in 60%
yield (Table 1, entry 1). It was anticipated that the anomeric
selectivity would depend on the ligand on palladium.
Accordingly, glucal imidatel was treated with a preformed
solution of Pd(PhCNJLI, and PRP, and5 was isolated in
83% vyield with a:f = 1:2 (entry 2). With the use of
RUPHOS and DTTBP as the phosphine ligattdshe
anomeric selectivity was slightly improved, favoring the
p-anomer (entries 3 and 4). Employing TTMPP as the
phosphine ligand led to an improvement of both the yield
and thef-selectivity (entry 5). However, it took 16 h for
the reaction to go to completion. Gratifyingly, it was found
that addition of 10 mol % of salicylaldehyde significantly
shortened the reaction time # h (entries 6 and 7), and the
desired\-glycosyl trichloroacetamidg was obtained in good
yield with excellents-selectivity. Thus, the combination of
the bulky phosphine ligand and salicylaldehyde increased
both the yield and thg-selectivity as well as shortened the
reaction time. We also examined whether temperature
affected the selectivity; increasing or decreasing the reaction
temperature only decreased fhselectivity. This is the first

example wherein a bulky phosphine ligand is employed to c

control the stereoselectivity at the anomeric carbon in the
allylic imidate rearrangement.
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Table 1. Pd(Il)-Catalyzed Formation g8-N-Glycosyl
Trichloroacetamide
Me

Me
2.5 mol %
Me G2 o Pd(PhCN),Cl, Me/%o o 0O
N 0T 2.5 mol % Ligand, < ey
NH CH,Cly, rt H
4 5B
phosphine
entry ligand additive time yield® o:f¢
1 none none 2h  60% 1:1
2  PhgP none 16h 83% 1:2
3  RUPHOS none 16h 77% 1.3
4 DTTBP none 25h 73% 14
5 TTMPP none 16h 89% 1.7
6 DTTBP 10 mol % of salicylaldehyde 4h  70% 1:7
7 TTMPP 10 mol % of salicylaldehyde 4h  86% 1:9
8 none 10 mol % of salicylaldehyde 1h 71% 1:2
OiPr R(Cyc), Pr R(t-Bu), OMe
iPr MeO P
B0 w5
OiPr iPr OMe

RUPHOS DTTBP TTMPP

a All reactions were carried out in G&lI, (0.2 M) with 2.5 mol % of
Pd(I1)/ phosphine liganc? Isolated yield ¢ 'H NMR ratio.

When cationic palladiuntt Pd(CHCN)4(BF4)2, was em-
ployed in the reaction, the desir@edN-glycosyl trichloro-
acetamidé was obtained in 73% yield as the major anomer
(Table 2, entry 1). Addition of 10 mol % of salicylaldehyde

Table 2. Pd(ll)-Catalyzed Formation ai-N-Glycosyl
Trichloroacetamide

Me Me
Me GO o PACHCNIBF),  Me O\ 0
Clhe. O — Salicylaldehyde, \ o)
T o A
4 3
ntry palladium salicylaldehyde time yield®  o:p¢
1 2.5 mol % none 45min  73% 9:1
2 2.5 mol % 10 mol % 1h 80%  14:1
3 0.1 mol % 0.4 mol % 2h 78% 9:1
4 0.5 mol % 2 mol % 1h 82%  13:1

a All reactions were carried out in Gigl, with Pd(CHCN)4(BF4), and
salicylaldehyde (1:4) except for entry Aisolated yield* *H NMR ratio.

significantly increased the-selectivity (entry 2)2 Decreas-
ing the catalyst loading still maintained the yield and the
selectivity (entries 3 and 4). Thus, switching to the cationic
palladium reverses the anomeric selectivity, favoring the
o-anomert?

(11) Mikami, K.; Hatano, M.; Akiyama, KTop. Organomet. Cher2005
14, 279-321 and references therein.
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To assess the feasibility of this palladium reaction for the ||| EGTGTGNGNN

synthesis ofs-N-glycosyl trichloroacetamides, glycal imi-

dates incorporating cyclic ketal protecting groups were (R0>no—_‘\</2\ 0.5mol % PA(CHCN)(BF )y (RO),—S—O\_H

investigated (Figure 1). The desired produ6ts10 were Cle—( 2 mol % Salicylaldehyde, \/‘/ o
NH

CH,Cly, tt, 1h

H
Ph/lgo
RO 2.5 mol % Pd(PhCN),Cl,, RO oo &){ /b
Ro% 2.5 mol % TTMPP %2\/

HN
Yield®(c:p)° CCly

s RO N
cl C_<O 10 mol % salicylaldehyde, Y CCl; CCI3 7 CCI3 CCI3
° NH CHyClp, 1t,4-6 h Yield®(c:B)° 75% (11:1) 81% (12:1) 89% (10.1)
tBu Cyc
S"O _Si-
Ovo Cye” o 0y
O&,\/N /%,\/ _/< 0
CCls CCI3 CCly 10 HN
6 H 8 81% ( 11 1) C°'3 70% (9:1) CCly
tB
95% (1:10) 9%( 5) 90% (1:8) Si ’
tBu Cye PivO Tro tBUTJO
_Si~ o] _Si~ H 9 PivO O PivO O H
t-Bu 09%3/“% Cyc O%/N—q — HO — o \O H
= CCly CCly HN—{ HN— o
o H 10 M M cely 12 cCly 13 HN~<CCI
0, .
83% (1:4) 74% (1:5) 91% (8:1) 96% (23:1) 82% (ct only) 5
PivO (o] TrO (o] . . . .
pivoﬂ/H% pivo%g\/ﬂ4 Figure 2. Stereoselective formation af-N-glycosyl trichloro-
= CCls = CCly acetamides. All reactions were performed with 0.5 mol % of
M H 12 H Pd(CHCN)4(BF4)2 and 2 mol % of salicylaldehydélsolated yield.
96% (1:2) 84% (1:1) ¢ 1H NMR ratio.

Figure 1. Stereoselective formation g¢f-N-glycosyl trichloro-
acetamides. All reactions were performed with 2.5 mol % of

i - 7b _
PA(PhCN)CL/TTMPP and 10 mol % of salicylaldehydelsolated  ProVidesa-anomeis.™ In contrast, use of the Pd(PhGiS),—~
yield. ¢ H NMR ratio. TTMPP—salicylaldehyde complex promotes a cyclization-

induced rearrangemehtin this pathway, the palladium
catalyst coordinates to the double bond #fto form

obtained with googB-selectivity. The deactivating effect of s-complex16, which is activated toward nucleophilic attack
4,6-acetal protecting groups on these glycal imidates restrictsby the imidate nitrogen. Subsequent cyclization 16
them in thetag conformations, thus limiting ionization to  Provideso-complex17. Grob-like fragmentation followed
favor f-anomerg? In contrast, glycal imidates incorporating by dissociation releasgsanomers.

acyclic protecting groups gave a mixture @f and A-N- The glycosyl urea is found in nature as a structural unit
glycosyl trichloroacetamides such &% and 12. of glycocinnamoylspermidine antibiotié3.There are sev-

In the formation ofa-N-glycosy! trichloroacetamides, a eral methods reported f_o_r the construction of glycosyl dfea.
number of glycal imidates incorporating a variety of cyclic 10 demonstrate the utility of the 2,3-unsaturated glycosyl
and acyclic protecting groups were examined (Figure 2). The
desired glycosyl amide®—13 were obtained with excellent
a-selectivity. These results suggest that the cationic pal-

ladium—salicylaldehyde complex was responsible for the /t e Pd(igﬁg‘yﬁza‘f;gh‘y'ggpp- "
observed a-selectivity at the anomeric center and the Me 09&% M0y ) Y—ceiy
protecting groups on the glycal imidates had little effect on C'Sc\fo ” “ iy
the selectivity. NS oL y Me o
. n e

The proposed mechanism for Pd(ll)-catalyzed forma- 1 o l
. . . . M
tion of a- and 3-N-glycosyl trichloroacetamides is out- l C|£: oo
lined in Figure 3. In the case of the cationic palladium, the Me T . R+ con
Pd(CHCN)4(BF4).—salicylaldehyde complex coordinates to Me)EO o rmeo:m g/

. . . . -3
the imidate nitrogen off to form 14 which subsequently g 0O “c;le%o H paL
undergoes ionization to generate allylic catil Regiose- 15 DL CCla 17
lective addition of trichloroamide to ther-face of 15 "
. . . Me
followed by displacement of the amide from palladium e -0 o o
H Me 0/%3/,\'4(
O -

(13) We also investigated whether the glycal imidate rearrangement could HN H CCla
be catalyzed by a Lewis acid. Accordingly, treatmen#afith 0.5 mol % CCl3
of TMSOTF in CH,Cl at 0°C only resulted in decomposition. 5o 5B
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2004 126, 9205-9213. (b) Crich, D.; Chandrasekera, NA&igew. Chem., Figure 3. Proposed mechanism for tle/s-selectivity.
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Scheme 2
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Me

Tro—, OAc

HO
AcO o

22 AN—<
O
TrO

HO
AcO

OAc
(o]

o]
23 ACN%

O

amide products, both the- and s-N-glycosy! trichloro-
acetamides were transformed into the corresponding glycosyl
ureas18—23 by dihydroxylation ofN-glycosyl trichloro-

4234

acetamides and subsequent treatment withCOs and
amines in DMF (Scheme 2J.The diol and triol intermedi-
ates of certain glycosyl ureas were acylated to ease the
purification process.

In summary, a novel method for palladium(ll)-catalyzed
stereoselective formation of- and5-N-glycosyl trichloro-
acetamides has been developed. @handf-selectivity at
the anomeric carbon depends on the nature of the palladium
ligand catalyst. While the cationic palladiurealicylaldehyde
complex promotes the-selectivity, the neutral palladium
ligand catalyst favors thes-selectivity. Because of its
substrate tolerance and mild conditions, this palladium
method is applicable to a wide range of glycal imidates. The
resultingN-glycosyl trichloroacetamides were further trans-
formed into glycosyl ureas.
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