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INTRODUCTION

In the last two decades, considerable efforts have been 
devoted to the development of expanded porphyrins that 
consist of more than five pyrroles, which are ring extended 
porphyrin analogs, since they display intriguing optical, 
electronic, and structural properties that significantly 
differ from those of porphyrin [1]. In particular, expanded 
porphyrins have been demonstrated to realize Hückel and 
Möbius (anti)aromaticity [2, 3], anion receptors [4], various 
metal complexes [5], near-infrared (NIR) absorption dyes 
[6], and stable organic radicals [7]. In addition to these 
unique properties, the reactivity of expanded porphyrin 
has been studied and discovered sometimes in an 
unprecedented manner, such as skeleton rearrangement 
[8], cell division like splitting reaction [9], pericyclic 
reaction [10], electrophilicity [11], and nucleophilicity 
[12]. Previously, we have reported that nucleophilic 
addition of triphenylphosphine to [26]hexaphyrin free 
base 1 and palladium complex 3 gave the corresponding 
[28]hexaphyrin triphenylphosphine adducts 2 and 4, 
respectively [11] (Scheme 1). These reactions caused 

conformational changes from planar Hückel form to twisted 
Möbius-strip like form. Characteristically, triphenyl
phosphine moiety dominantly exists as a phosphorane 
form 2b in free base 2 while a phosphonium ylide form 
4a is more important in palladium complex 4. Inspired by 
these results, we herein tried the reaction of bis-Au(III) 
[26]hexaphyrin 5 [13] with triphenylphosphine. Addition 
of triphenylphosphine proceeded regioselectively to 
furnish bis-Au(III) [28]hexaphyrin triphenylphosphine 
adduct 6 in a good yield. The structural rigidity of 5 did 
not allow large conformational change observed for the 
free base [26]hexaphyrin and its Pd complex, and the 
adduct 6 displayed Hückel antiaromaticity. In addition, 
the triphenylphosphine moiety was found to exist as a 
phosphorane contribution in the solid state.

RESULTS AND DISCUSSION

The reaction of bis-Au(III) complex of [26]hexaphyrin 
5 with 1 equivalent of  triphenylphosphine in the presence 
of trifluoroacetic acid (TFA) gave [28]hexaphyrin 
triphenylphosphine adduct 6 in 62% yield along with 
formation of [28]hexaphyrin 7 in 29% yield (Scheme 2). 
The high-resolution electrospray-ionization time-of-
flight (HR-ESI-TOF) mass spectrum of 6 indicated the 
parent ion peak at m/z = 2109.0477 [M – H]- (calcd. for 
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2109.0490, C84H22N6F30PAu2). It is thought that there 
are two kinds of triphenylphosphine adducts since there 
are two reactive positions C(2) and C(3) in 5. However, 
only one isomer was obtained, indicating the reaction 
proceeded regioselectively.

The structure of 6 has been unambiguously determined 
by X-ray diffraction analysis, which revealed the addition 
of triphenylphosphine reacted at the C(3) position  
(Fig. 1). The bond length of P–C(3) is 1.77 Å (1.77 Å), 
which is shorter than a typical bond length of P–C 
(1.82 Å) observed in b-diphenylphosphine-substituted 
porphyrins [14]. The angle of C–N–C in the pyrrole C 
is 110.0° (109.0°), while that in the pyrrole F is 103.9° 
(104.3°), implying that the pyrrole C is amino-type 
pyrrole and the pyrrole F is imino-type pyrrole. While 

ylide form 6a and phosphorane form 6b are resonance 
hybrid contributors of 6, these observations indicated that 
6b is more important than 6a in the solid state.

The 1H NMR spectrum of 6 revealed that signals 
due to the outer b protons are observed in the range of 
2.62–3.43 ppm and the outer NH proton is observed 
at 2.45 ppm. These data indicate a strong paratropic 
ring current, and hence antiaromaticity for 6, similarly 
to [28]hexaphyrin 7. The nuclear independent 
chemical shift (NICS) values of 6 at the center of 
gravity exhibited positive values (NICS(+1) = +19.4 
ppm and NICS(-1) = +21.7 ppm), also suggesting the 
antiaromaticity [15].

In the absorption spectrum of 6, an intense absorption 
band was observed at 572 nm and weak absorption 
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Scheme 1. Synthesis of [28]hexaphyrin triphenylphosphine adducts 2 and 4 and possible resonance between phosphonium ylide a 
and phosphorane b in 2 and 4. Ar = pentafluorophenyl. The bold line represents a conjugated circuit
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bands at 665 and 743 nm. The broad and quite weak 
absorption band that reached around 2000 nm was also 
detected because of the transition to the dark state, 
which was characteristic of antiaromatic porphyrinoids 
[16] (Fig. 2).

A plausible reaction mechanism was shown in 
Scheme 3. Addition of triphenylphosphine to 5 
proceeded smoothly in the presence of TFA but did not 
occur in the absence of TFA, indicating that protonated 
[26]hexaphyrin would be a key intermediate. Thus, 
we took doubly protonated species 5H as a reaction 
intermediate and calculated its molecular orbitals by 
the density functional theory (DFT) method. Curiously, 
the lowest unoccupied molecular orbital (LUMO) of 
5H shown in Scheme 3b nicely explains the observed 
highly regioselective addition of triphenylphosphine at 
the C(3) position. Rearomatization of 5P and subsequent 
deprotonation of 6H furnished the final adduct 6. The 
doubly protonated hexaphyrin could be easily reduced 
to afford 7, and thus it is conceivable that the reduction 
of the protonated [26]hexaphyrin 5H competes with the 
nucleophilic attack of triphenylphosphine.

EXPERIMENTAL

General

All reagents were of the commercial reagent grade 
and were used without further purification except 
where noted. Silica gel column chromatography was 
performed on Wakogel C-300. UV-vis/NIR absorption 
spectra were recorded on a Shimadzu UV-3600PC 
spectrometer. 1H, 19F, and 31P NMR spectra were 
recorded on a JEOL ECA-600 spectrometer 
(operating as 600.17 MHz for 1H, 564.73 MHz for 19F, 
and 242.95 MHz for 31P) using the residual solvent 
as the internal reference for 1H (d = 7.26 ppm in 

CDCl3), hexafluorobenzene as the external reference for 
19F (d = -162.9 ppm), and 85% phosphoric acid as the 
external reference for 31P (d = 0.00 ppm). NMR signals 
were assigned from the 1H–1H COSY spectrum, and 
the comparison with the spectra in the presence of D2O 
(signals assigned for NH protons disappear in the presence 
of D2O). High-resolution electrospray-ionization time-
of-flight mass spectroscopy (HR-ESI-TOF-MS) was 
recorded on a BRUKER micrOTOF model using negative 
mode for acetonitrile solutions of samples. 

Crystal data

X-ray crystallographic data were collected on a Rigaku 
XtaLAB P200 apparatus at -180 °C using graphite-
monochromated CuKa radiation (l = 1.54187 Å). 
The structures were solved by direct method SIR-97 and 
refined by SHELXL-97 program.

6. 2(C84H23N6F30Au2P)·3.5(C8H18)·1.69(C7H8), Mw = 
4776.88, monoclinic, space group C2/c (no. 15), a = 
41.025(7) Å, b = 27.969(3) Å, c = 36.794(8) Å, b = 
120.951(5)°, V = 36207(11) Å3, T = 93 K, rcalcd = 1.753 

Fig. 1. X-ray crystal structure of 6. (a) Top view. (b) Side view. The thermal ellipsoids are scaled to 50% probability level. Solvent 
molecules and hydrogen atoms except for NH are omitted for clarity. One of two independent structures in the lattice is shown

Fig. 2. UV-vis/NIR absorption spectrum of 6 in CH2Cl2
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g.cm-3, Z = 8, R1 = 0.0635 (I > 2s (I)), Rw = 0.1780 (all 
data), GOF = 1.055.

Synthesis

Bis-Au(III) [26]hexaphyrin(1.1.1.1.1.1) 5. The titled 
compound was synthesized according to the literature 
[13c].

Bis-Au(III) [28]hexaphyrin(1.1.1.1.1.1) triphenyl
phosphine adduct 6. Bis-Au(III) [26]hexaphyrin 5  
(20 mg, 11 mmol) and PPh3 (2.5 mg, 1 equiv.) were 
dissolved in CH2Cl2 (1.0 mL) under inert atmosphere. One 
drop of TFA was added to the solution and the color of the 
solution immediately changed from green to purple. After 
stirred for 30 min, the resulting mixture was quenched by 
addition of aqueous NaHCO3 solution. Then, the mixture 
was washed with water, extracted with CH2Cl2, and dried 
over Na2SO4. The residual solvent was removed under 
reduced pressure. Silica gel column chromatography 
using CH2Cl2/AcOEt (20/1) as an eluent afforded bis-
Au(III) [28]hexaphyrin 7 (5.8 mg, 29%) [13a] as the first 
red fraction and the titled compound 6 (14 mg, 62%) as a 
purple fraction. 1H NMR (600.17 MHz; CDCl3): dH, ppm 
7.63 (t, J = 7.4 Hz, 3H; phenyl), 7.52 (m, 6H; phenyl), 
7.18 (m, 6H; phenyl), 3.43 (d, J = 5.0 Hz, 1H; b), 3.36 (d, 
J = 5.5 Hz, 1H; b), 3.31 (d, J = 5.5 Hz, 2H; b), 3.20 (d,  
J = 5.9 Hz, 1H; b), 3.13 (d, J = 5.5 Hz, 1H; b), 2.62 (d,  
JH–P = 8.3 Hz, 1H; b) and 2.45 (s, 1H; NH). 19F NMR 
(564.73 MHz; CDCl3; hexafluorobenzene): dF, ppm 
-131.6 (d, J = 18.6 Hz, 2F; ortho-C6F5), -137.3 (m, 4F; 
ortho-C6F5), -138.3 (m, 4F; ortho-C6F5), -138.6 (m, 2F; 
ortho-C6F5), -151.5 (t, J = 22.0 Hz, 1F; para-C6F5), -152.2 
(t, J = 23.4 Hz, 1F; para-C6F5), -153.4 (t, J = 23.4 Hz, 1F; 
para-C6F5), -154.1 (t, J = 21.4 Hz, 1F; para-C6F5), -157.3 

(m, 2F; para-C6F5), -158.7 (t, J = 22.0 Hz, 2F; meta-
C6F5), -159.4 (t, J = 17.5 Hz, 2F; meta-C6F5), -159.9 (t, 
J = 22.0 Hz, 2F; meta-C6F5), -160.4 (m, 2F; meta-C6F5), 
-164.3 (t, J = 22.0 Hz, 2F; meta-C6F5), and -164.5 (t, J = 
21.5 Hz, 2F; meta-C6F5). 

31P NMR (242.95 MHz; CDCl3; 

85% phosphoric acid): dP, ppm 14.0 (s, 1P; decoupled with 
13C). MS (ESI-TOF-MS): m/z 2109.0477 [M–H]- (calcd. 
for 2109.0490. C84H23N6F30PAu2). UV-vis (CH2Cl2): l, 
nm (e) 354 (26100), 572 (134400), 665 (13700), 743 
(9100), and 1405 (1200).

CONCLUSION

In conclusion, the reaction of bis-Au(III) [26]
hexaphyrin 5 with triphenylphosphine in the presence of 
TFA afforded [28]hexaphyrin triphenylphosphine adduct 
6, which was fully characterized by NMR and UV-vis/
NIR absorption spectroscopy and X-ray diffraction 
analysis. Judging from the 1H NMR and absorption 
spectroscopies, adduct 6 has been assigned as a distinct 
Hückel antiaromatic macrocycle. It was found that the 
phosphorane form 6b is more important in the solid state. 
A plausible reaction mechanism via a doubly protonated 
species was suggested for the regioselective addtion of 
triphenylphosphine to 5.
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Supporting information

The chart of NMR and MS spectra, crystallographic 
details, and theoretical calculations (Figs S1–S4, Tables 
S1–S2) are given in the supplementary material. This 
material is available free of charge via the Internet at 
http://www.worldscinet.com/jpp/jpp.shtml.

Crystallographic data for compound 6 have been 
deposited at the Cambridge Crystallographic Data 
Center (CCDC) under number CCDC-1437331. Copies 
can be obtained on request, free of charge, via www.
ccdc.cam.ac.uk/data_request/cif or from the Cambridge 
Crystallographic Data Center, 12 Union Road, 
Cambridge CB2 1EZ, UK (fax: +44 1223-336-033 or 
email: data_request@ccdc.cam.ac.uk). 
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