

Available online at www.sciencedirect.com

European Journal of Medicinal Chemistry 38 (2003) 841-850

www.elsevier.com/locate/ejmech

EUROPEAN JOURNAL OF

MEDICINAL CHEMISTRY

Short communication

Synthesis and biological activity of 1β-methyl-2-[5-(2-*N*-substituted aminoethylcarbamoyl)pyrrolidin-3-ylthio]carbapenem derivatives

Chang-Hyun Oh^a, Su-Chul Lee^b, Jung-Hyuck Cho^{a,*}

^a Medicinal Chemistry Research Center, Korea Institute of Science and Technology, Seoul 130-650, South Korea ^b Hawon Pharm. Co., Seoul 135-080, South Korea

Received 27 February 2003; received in revised form 23 June 2003; accepted 23 June 2003

Abstract

The synthesis of a new series of 1β -methylcarbapenems having the substituted aminoethylcarbamoylpyrrolidine moiety is described. Their in vitro antibacterial activities against both Gram-positive including MRSA and Gram-negative bacteria were tested and the effect of substituent on the pyrrolidine ring was investigated. In particular, the compound **11g** having piperazinyl urea moiety showed the most potent antibacterial activity and **11k** exhibited excellent anti-MRSA. © 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords: 1β-Methylcarbapenem; Antibacterial activity; Substituent effect

1. Introduction

A number of carbapenem antibiotics, for example imipenem, panipenem and meropenem, are currently in clinical use due to their broad antibacterial spectra and potent bactericidal effects [1]. However, a number of problems still remain with these agents, in particular, activity against resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and the Gram-negative pathogen Pseudomonas aeruginosa, is relatively weak. During the past decade, extensive synthetic efforts have been made to confer anti-MRSA activity on β -lactams such as a cephalosporin [2] or a carbapenem [3]. As a result, some cephalosporin and carbapenem derivatives with potent in vitro anti-MRSA activity were identified by introducing hydrophobic functional groups into the C-3 or C-7 side chain of the cephalosporin nucleus or the C-2 side chain of the carbapenem nucleus.

From the literature of carbapenem antibiotics, especially the SAR related to meropenem [4,5] and panipenem [6], the importance of a pyrrolidine ring for potent activity and high PBP affinity were noted. Thus we

* Correspondence and reprints. E-mail address: choh@kist.re.kr (J.-H. Cho). postulated that a combination of these two factors in a single side chain might lead to agents with a broader spectrum of activity and anti-MRSA activity.

Previously, we reported that the carbapenem compounds which have a pyrrolidine-3-ylthio group at the C-2 position in the carbapenem skeleton are noted for their broad and potent antibacterial activity, and a large number of derivatives have been synthesised and investigated [7–13].

In this paper, we described the synthesis and structure–activity relationships of the 1 β -methylcarbapenems having a 5'-substituted aminoethylcarbamoyl pyrrolidine-3'-ylthio group as a C-2 side chain and our approach for improvement of anti-MRSA and antibacterial activity of the carbapenems is discussed.

2. Results and discussion

2.1. Chemistry

Our general synthetic route leading to new carbapenems involved the preparation of appropriately protected thiols containing pyrrolidine ring as a side chain and subsequent coupling reaction with the carbapenem diphenylphosphates, followed by deprotection of the resulting protected carbapenems in a usual manner. 2-

i) 4*N*-NaOH, MeOH, ii) 1) Ethyl chloroformate, TEA, CH₂Cl₂, 2) Ethanolamine, EtOH, iii) MsCl, TEA, CH₂Cl₂, iv) NaN₃, DMSO, v) PPh₃, H₂O, THF, vi) Corresponding chloride, TEA, CH₂Cl₂, vii) 1) *p*-Nitrophenyl chloroformate, TEA, CH₂Cl₂, 2) R₂NH, EtOH, viii) Trifluoroacetic acid, triethyl silane, CH₂Cl₂

Scheme 1. (i) 4 N NaOH–MeOH; (ii) (1) ethyl chloroformate, TEA, CH_2Cl_2 , (2) ethanolamine, EtOH; (iii) MsCl, TEA, CH_2Cl_2 ; (iv) NaN₃, DMSO; (v) PPh₃, H₂O, THF; (vi) corresponding chloride, TEA, CH_2Cl_2 ; (vii) (1) *p*-Nitrophenyl chloroformate, TEA, CH_2Cl_2 , (2) R₂NH, EtOH; (viii) trifluoroacetic acid, triethyl silane, CH_2Cl_2 .

(N-substituted aminoethylcarbamoyl)-Pyrrolidine derivatives (8a-m) were prepared by the sequence shown in Schemes 1–4. N-Protected proline methyl ester [13] was converted to the carboxylic acid 2 by treatment of 4 N NaOH and subsequently treated with ethyl chloroformate and ethanolamine to provide 3. Compound 3 was reacted with mesylchloride and subsequently treatment with sodium azide in DMSO gave the azide compound 5, which was successfully converted into amine 6 using triphenylphosphine. Treatment of 6 with allyl chloroformate, mesyl chloride and dimethylsulfamoyl chloride afforded the corresponding N-acylated products, 7a, 7b and 7c. Carbamoylation of amine was carried out by a conventional method using *p*-nitrophenyl chloroformate to give urea type compounds 7d-g (Scheme 1). Preparation of the thiourea type compound (7h) was accomplished by treatment of compound 6 with methylisothiocyanate reagent (Scheme 2). The imine derivatives (7i-k) were prepared by reaction of 6 with ethyl formidiate, ethyl acetimidate and 1*H*-pyrazole-1-carboxamidine hydrochloride (Scheme 3). Compounds 71– **m** were obtained by reaction of mesylate 4 with thiomorpholine and piperazine (Scheme 4). Deprotection of the trityl group to mercaptans (8a–m) were achieved by treatment of 7a–m with trifluoroacetic acid in the presence of triethylsilane.

Finally, the reaction of 9 [9] with thiols (8a-m) in the presence of diisopropylethylamine provided the corresponding 2-substituted carbapenems (10a-m), respectively. Derivatives 10l and 10m containing cyclic amine substituents were converted to quaternary salts by methyl iodide and deprotected to give 11lQ and 11mQ. Deprotection of these compounds by catalytic hydrogenation gave the crude products, which were purified by HP-20 column to give the pure carbapenems (11a-mQ) (Scheme 5).

i) Methyl isothiocyanate, TEA, CH₂Cl₂, ii) Trifluoroacetic acid, triethyl silane, CH₂Cl₂

Scheme 2. (i) Methyl isothiocyanate, TEA, CH₂Cl₂; (ii) trifluoroacetic acid, triethyl silane, CH₂Cl₂.

i) Ethyl acetimidate.HCl, EtOH, ii) Ethyl formidiate.HCl, EtOH, iii) 1H-pyrazole-1-carboxamidine .HCl, EtOH iv) Trifluoroacetic acid, triethyl silane, CH₂Cl₂, v) Allyl chloroformate, TEA, CH₂Cl₂

Scheme 3. (i) Ethyl acetimidate HCl, EtOH; (ii) ethyl formidiate HCl, EtOH; (iii) 1*H*-pyrazole-1-carboxamidine HCl, EtOH; (iv) trifluoroacetic acid, triethyl silane, CH_2Cl_2 ; (v) allyl chloroformate, TEA, CH_2Cl_2 .

2.2. Biological assay

2.2.1. Measurement of in vitro antibacterial activity

The MICs were determined by the agar dilution method using test agar. An overnight culture of bacteria in tryptosoy broth was diluted to about 10^6 cells per mL with the same broth and inoculated with an inoculating device onto agar containing serial twofold dilutions of the test compounds. Organisms were incubated at 37 °C for 18–20 h. The MICs of a compound were defined as the lowest concentration that visibly inhibited growth.

2.2.2. Determination of susceptibility to renal dehydropeptidase-I (DHP-I)

The relative hydrolysis rate of carbapenems by porcine renal DHP-I was determined, taking the initial hydrolysis rate of imipenem as 1.0. Partially purified porcine DHP-I (final concentration, 0.3 U mL⁻¹) was incubated with 50 μ M carbapenem at 35 °C in 50 mM MOPS buffer, pH 7.0. The initial hydrolysis rate was monitored by the spectrophotometric method. One unit of activity was defined as the amount of enzyme hydrolysing 1 μ M of glycyldehydrophenylalanine per min when the substrate, 50 μ M, was incubated at 35 °C in 50 mM MOPS buffer, pH 7.0.

2.2.3. Antibacterial activity studies

The in vitro antibacterial activities of the new carbapenems (11a-mQ) prepared above against Grampositive and negative bacteria including strains of MRSA are listed in Tables 1 and 2. For comparison, the MIC values of imipenem, meropenem and vancomycin are also listed. Among these compounds, 11c, 11g, 11k and 11i showed superior or similar antibacterial activity against Gram-positive bacteria to Meropenem, and exhibited improved antibacterial activity against Gram-negative bacteria than Imipenem.

As to the substituent of the aminoethylcarbamoyl side chain, the compounds 11f and 11g having cyclic urea moieties were generally more potent than the non urea compounds 11l and 11m. Comparing the compounds 11e-g having cyclic urea moieties showed slight differences in the antibacterial activities against Gram-positive and negative bacteria. As expected, the piperazine

i) Thiomorpholine or piperazine, CH₃CN, ii) Trifluoroacetic acid, triethyl silane, CH₂Cl₂

Scheme 4. (i) Thiomorpholine or piperazine, CH₃CN; (ii) trifluoroacetic acid, triethyl silane, CH₂Cl₂.

i) Diisopropylethyl amine, 8a-m, CH₃CN, ii) Methyl iodide, acetone iii) Pd(OH)₂/C, H₂

Scheme 5. (i) Diisopropylethyl amine, 8a-m, CH₃CN; (ii) methyl iodide, acetone; (iii) Pd(OH)₂-C, H₂.

urea compound **11g** exhibited the most potent and wellbalanced activity. Furthermore, we observed that the thiomorpholine urea **11f** is more potent than the morpholine urea **11e**. Introduction of sulphamoyl group (**11c**) led to significantly enhanced antibacterial activity against Gram-negative bacteria compared with carbamoyl group (**11d**). The quaternised compounds (**111Q**, **11mQ**) showed more improved activity against *P*. *aeruginosa* than the unquaternised compounds (**111**, **11m**).

The anti-MRSA activity was the best when the substituent is guanidine moiety (11k), whereas it possessed low activity against Gram-negative bacteria.

The stability to DHP-I of most compounds was tested and all the compounds were more stable than Meropenem. In particular, the quaternised compounds 111Q and 11mQ exhibited the most stability.

3. Experimental part

Melting point (m.p.): Thomas Hoover apparatus, uncorrected. UV spectra: Hewlett-Packard 8451A UV-vis spectrophotometer. IR spectra: Perkin-Elmer 16F-PC FTIR. NMR spectra: Varian Gemini 300 spectrometer, tetramethylsilane (TMS), as an internal standard. The HRMS spectra were obtained with JEOL Model JMS-700 High Resolution Mass Spectrometer.

3.1. (2S,4S)-4-tritylthio-1-(allyloxycarbonyl)Pyrrolidine-2-carboxylic acid (2)

To a solution of **1** (48.7 g, 0.10 mol) in MeOH (500 mL) was added slowly 4 N NaOH (38 mL, 0.15 mol) at 0 °C and was stirred for 5 h at room temperature (r.t.). The mixture was neutralised with 4 N HCl (38 mL) and concentrated, and the resulting residue was diluted with water (300 mL) and ethyl acetate (200 mL). The resulting precipitates were filtered and the solid was washed with water, and dried in air to give **2** (39.4 g, 83.2%) as a white solid. M.p. 202–203 °C (dec.). ¹H-NMR (CDCl₃) δ 1.98 (m, 1H), 2.75–2.82 (m, 1H), 3.01 (m, 1H), 3.55 (bs, 2H), 3.98 (m, 1H), 4.55 (d, 2H, *J* = 5.9 Hz), 5.25 (m, 2H), 5.90 (m, 1H), 7.27 (m, 9H), 7.47 (m, 6H), 12.7 (bs, 1H). ¹³C-NMR (CDCl₃): 36.7, 41.2, 53.3, 58.8, 65.7, 67.6, 118.2, 127.3, 128.5, 129.9, 132.7, 144.9, 153.8, 174.4 IR (KBr): 3440, 3060, 1745, 1670 cm⁻¹.

3.2. (2S,4S)-2-(2-hydroxyethylcarbamoyl)-4-tritylthio-1-(allyloxycarbonyl)Pyrrolidine (3)

A solution of **2** (23.7 g, 0.05 mol) and triethylamine (7.4 mL, 0.055 mol) in dry CH_2Cl_2 (300 mL) was cooled

844

Strains	11a	11b	11c	11d	11e	11f	11g	11h	111	11j	11k	111	11m	111Q	11mQ	IMP ^a	MPM ^b
Streptococcus pyogenes 308A	0.05	0.01	0.03	0.01	0.03	0.03	0.01	0.05	0.10	0.10	0.01	0.03	0.01	0.01	0.01	< 0.01	0.01
S. pyogenes 77A	0.10	0.01	0.05	0.01	0.03	0.05	0.03	0.10	0.20	0.10	0.03	0.05	0.03	0.03	0.03	< 0.01	< 0.01
S. aureus SG511	0.10	0.40	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.03	0.10	0.05	0.10	0.05	0.01	0.10
S. aureus 285	0.20	0.40	0.20	0.40	0.10	0.20	0.20	0.20	0.20	0.10	0.01	0.20	0.20	0.20	0.05	0.01	0.10
Escherichia coli DC2	0.05	0.05	0.01	0.03	0.05	0.03	0.03	0.03	0.01	0.10	0.03	0.03	0.05	0.10	0.10	0.40	0.03
E. coli TEM	0.03	0.05	0.01	0.03	0.05	0.03	0.03	0.01	0.01	0.10	0.03	0.05	0.05	0.05	0.05	0.20	0.03
Pseudomonas aeruginosa 9027	12.5	3.10	1.56	3.10	3.10	3.10	0.80	0.80	0.80	0.80	0.40	6.20	0.80	1.56	0.40	0.80	0.20
Salmonella typhimurium	0.05	0.10	0.03	0.10	0.10	0.05	0.05	0.05	0.05	0.20	0.10	0.10	0.10	0.10	0.20	0.80	0.03
Klebsiella aerogenes 1522E	0.05	0.10	0.03	0.05	0.10	0.05	0.05	0.05	0.05	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.05
Enterobactor cloacae 1321E	0.03	0.05	0.01	0.03	0.03	0.01	0.03	0.03	0.01	0.10	0.03	0.03	0.03	0.05	0.10	0.10	0.03
DHP-I	1.44	1.56	1.12	1.24	1.26	1.25	1.25	1.57	1.08	0.94	0.99	1.12	1.27	1.42	1.65	0.18	1.00
IMP, imipenem.																	

MPM, meropenem

In vitro antibacterial activity (MIC, $\mu g m L^{-1}$) and DHP-I stability of the carbapenem derivatives

Table 1

Table 2 Anti-MRSA activities of **11g**, **11i** and **11k**

Methicillin resistant strains	11g	11i	11k	Vancomycin	
S. aureus LG001	1.563	1.563	0.391	1.563	
S. aureus LG002	0.391	0.195	0.098	0.781	
S. aureus Y8012954	0.195	0.195	0.049	0.781	
S. aureus QRS179	0.391	0.391	0.195	0.781	
S. aureus QRS241	0.391	0.391	0.195	0.781	
S. aureus Hoechst208E	0.195	0.195	0.098	0.781	
S. aureus KIST2	6.25	6.25	1.56	0.781	
S. aureus KIST5	0.781	0.781	0.195	0.781	

to 0 °C under nitrogen and treated with ethyl chloroformate (5.25 mL, 0.055 mol). The mixture was stirred at 0 °C for 30 min, added with ethanolamine (3.3 mL, 0.055 mol) and stirred at 0 °C for 1 h. The mixture was washed with 10% NaHCO3 and brine, and was dried over anhydrous Na₂SO₄. Evaporation of the solvent in vacuo gave a crude residue, which was purified by silica gel column chromatography to give 3 (23.1 g, 89.5%) as a pale yellow oil. $R_{\rm f}$ 0.3 (ethyl acetate:*n*-Hex, 2:1). ¹H-NMR (CDCl₃) δ 1.95 (bs, 1H), 2.20 (bs, 1H), 2.75–2.86 (bs, 1H), 2.96 (bs, 1H), 3.55 (t, 2H, J = 5.6 Hz), 4.01 (m, 1H), 4.11 (t, 2H, J = 5.6 Hz), 4.50–4.62 (bs, 3H), 5.28 (m, 2H), 5.87 (m, 1H), 7.27 (m, 9H), 7.48 (m, 6H). ¹³C-NMR (CDCl₃): 36.7, 41.9, 42.7, 53.3, 60.6, 61.8, 66.7, 67.9, 118.2, 127.3, 128.5, 129.9, 132.7, 144.9, 156.8, 172.4. IR (KBr): 3330, 2940, 1710, 1670 cm⁻¹.

3.3. (2S,4S)-2-(2-mesyloxyethylcarbamoyl)-4tritylthio-1-(allyloxycarbonyl)Pyrrolidine (4)

A solution of 3 (20.6 g, 0.04 mol) and triethylamine (5.9 mL, 0.044 mol) in dry CH₂Cl₂ (200 mL) was cooled to 0 °C under nitrogen and treated with methanesulfonyl chloride (5.01 g, 0.044 mol). The mixture was stirred at 0 °C for 1 h, diluted with CH₂Cl₂ (200 mL), and washed with 10% NaHCO₃ and brine. The organic layer was dried over anhydrous Na₂SO₄. Evaporation of the solvent in vacuo gave a crude residue, which was purified by silica gel column chromatography to give 4 (21.8 g, 91.7%) as a pale yellow oil. $R_{\rm f}$ 0.4 (ethyl acetate:*n*-Hex, 2:1). ¹H-NMR (CDCl₃) δ 1.99 (bs, 1H), 2.21 (bs, 1H), 2.75–2.82 (bs, 1H), 2.96–3.08 (bs, 4H), 3.55 (t, 2H, J = 5.6 Hz), 4.01 (m, 1H), 4.25 (t, 2H, J = 5.6 Hz), 4.50–4.59 (bs, 3H), 5.28 (m, 2H), 5.88 (m, 1H), 7.27 (m, 9H), 7.48 (m, 6H). ¹³C-NMR (CDCl₃): 30.7, 36.7, 39.7, 41.9, 52.5, 60.8, 61.6, 66.8, 67.8, 118.0, 127.3, 128.5, 129.9, 132.7, 144.9, 156.0, 171.8. IR (KBr): $3430, 2920, 1740, 1700, 1440 \text{ cm}^{-1}$.

3.4. (2S,4S)-2-(2-azidoethylcarbamoyl)-4-tritylthio-1-(allyloxycarbonyl)Pyrrolidine (5)

A mixture of 4 (31.5 g, 0.053 mol) and sodium azide (13.8 g, 0.21 mol) in DMSO (300 mL) was heated at

70 °C for 5 h. The reaction mixture was poured into ice water and extracted with ethyl acetate (300 mL × 2). The organic layer was successively washed with water (200 mL × 2), brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent in vacuo gave a crude residue, which was purified by silica gel column chromatography to give **5** (24.5 g, 85.4%) as a pale yellow oil. $R_{\rm f}$ 0.6 (ethyl acetate:*n*-Hex, 1:1). ¹H-NMR (CDCl₃) δ 2.13 (m, 1H), 2.82 (m, 1H), 2.95–3.08 (m, 1H), 3.39–3.48 (m, 5H), 4.05 (bs, 1H), 4.14 (m, 1H), 4.55 (m, 2H), 5.29 (m, 2H), 5.88 (m, 1H), 7.27 (m, 9H), 7.46 (m, 6H). ¹³C-NMR (CDCl₃): 35.7, 39.3, 41.9, 51.1, 53.5, 60.4, 66.8, 67.9, 118.2, 127.3, 128.5, 129.9, 132.7, 144.9, 155.6, 171.7. IR (KBr): 3320, 2100, 1720, 1670 cm⁻¹.

3.5. (2S,4S)-2-(2-aminoethylcarbamoyl)-4-tritylthio-1-(allyloxycarbonyl)Pyrrolidine (6)

A mixture of 5 (1.29 g, 2.4 mmol), triphenylphosphine (0.70 g, 2.6 mmol) and H₂O (0.44 mL, 24.0 mmol) in THF (10 mL) was heated at 40 °C for 4 h. After cooling, the reaction mixture was diluted with H₂O (20 mL) and ethyl acetate (30 mL). The organic layer was successively washed with water, brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent in vacuo gave a crude residue, which was purified by silica gel column chromatography to give 6 (1.07 g, 86.4%) as a pale yellow oil. $R_{\rm f}$ 0.2 (ethyl acetate:MeOH, 2:1). ¹H-NMR $(CDCl_3) \delta$ 1.88 (m, 1H), 2.19 (m, 1H), 2.82–2.94 (bs, 2H), 2.95-3.08 (bs, 1H), 3.30-3.48 (bs, 4H), 4.02 (bs, 1H), 4.55 (bs, 2H), 5.22 (m, 2H), 5.84 (m, 1H), 7.27 (m, 9H), 7.46 (m, 6H). ¹³C-NMR (CDCl₃): 37.2, 40.6, 41.7, 53.2, 53.8, 60.1, 66.6, 67.7, 117.7, 127.3, 128.5, 129.9, 132.7, 144.9, 155.7, 172.9. IR (KBr): 3430, 3060, 1720, 1670 cm^{-1} .

3.6. (2S,4S)-2-(2allyloxycarbonylaminoethylcarbamoyl)-4-tritylthio-1-(allyloxycarbonyl)Pyrrolidine (7a)

To a solution of **6** (1.3 g, 2.5 mmol) and triethylamine (0.37 mL, 2.75 mmol) in dry CH₂Cl₂ (20 mL) was added slowly allyl chloroformate (0.34 g, 2.75 mmol) at 0 °C and was stirred for 1 h at same temperature. The mixture was diluted with H₂O (100 mL), CH₂Cl₂ (100 mL) and washed with brine. The organic layer was dried over anhydrous Na₂SO₄, concentrated, and the resulting residue was purified by silica gel column chromatography to give **7a** (1.30 g, 87.1%) as a pale yellow oil. R_f 0.7 (ethyl acetate:*n*-Hex, 2:1). ¹H-NMR (CDCl₃) δ 1.85 (bs, 1H), 2.22 (m, 1H), 2.63–2.80 (bs, 1H), 3.28–3.55 (bs, 5H), 3.59 (bs, 1H), 4.04 (m, 1H), 4.50–4.62 (bs, 4H), 5.20–5.44 (m, 4H), 5.80–5.98 (m, 2H), 6.24 (bs, 1H), 7.23 (m, 9H), 7.47 (m, 6H).

Compounds **7b** and **7c** were also prepared as described for the preparation of **7a** using the corresponding sulfonyl chlorides.

3.6.1. Compound 7b

Yield 82.5%. R_f 0.6 (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.91 (bs, 1H), 2.13 (m, 1H), 2.83–3.12 (bs, 6H), 3.25– 3.48 (bs, 4H), 3.93 (m, 1H), 4.55 (bs, 2H), 5.25 (m, 2H), 5.88 (m, 1H), 6.44 (bs, 1H), 7.23 (m, 9H), 7.47 (m, 6H).

3.6.2. Compound 7c

Yield 81.8%. $R_f 0.7$ (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.94 (bs, 1H), 2.22 (m, 1H), 2.78 (s, 6H), 2.90–3.22 (bs, 2H), 3.20–3.32 (bs, 3H), 3.36–3.51 (bs, 2H), 3.93 (m, 1H), 4.55 (bs, 2H), 5.25 (m, 2H), 5.88 (m, 1H), 6.74 (bs, 1H), 7.23 (m, 9H), 7.47 (m, 6H).

3.7. (2S,4S)-2-[2-(3,3-

dimethylureido)ethylcarbamoyl]-4-tritylthio-1-(*allyloxycarbonyl)Pyrrolidine* (7*d*)

To a solution of 6 (1.03 g, 2.0 mmol) and triethylamine (0.30 mL, 2.2 mmol) in dry CH₂Cl₂ (30 mL) was added slowly p-nitrophenyl chloroformate (0.44 g, 2.2 mmol) at 0 °C and was stirred for 1 h at same temperature. The mixture was diluted with H₂O (30 mL), CH₂Cl₂ (50 mL) and washed with brine. The organic layer was concentrated in vacuo to give a residue, which was used without further purification. To the solution of residue in ethanol (20 mL) was added N,N-dimethylamine (2 mL) and stirred for 1 h at r.t. The reaction mixture was neutralised with 6 N HCl, diluted with ethyl acetate (100 mL), and washed with brine. The organic layer was dried over anhydrous Na₂SO₄, which was purified by silica gel column chromatography to give 7d (0.99 g, 81.6%) as a pale yellow oil. $R_{\rm f}$ 0.8 (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.92 (bs, 1H), 2.19 (m, 1H), 2.83–2.89 (bs, 1H), 2.96 (2s, 6H), 3.04 (bs, 1H), 3.29-3.56 (bs, 5H), 4.01 (m, 1H), 4.55 (bs, 2H), 5.26 (bs, 2H), 5.85 (m, 1H), 6.86 (bs, 1H), 7.24 (m, 9H), 7.45 (m, 6H).

The compounds 7e-g were also prepared as described for the preparation of 7d using the corresponding amines.

3.7.1. Compound 7e

Yield 76.2%. R_f 0.3 (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.90 (bs, 1H), 2.22 (m, 1H), 2.73–2.80 (m, 1H), 2.93– 3.03 (bs, 2H), 3.21–3.52 (bs, 8H), 3.65 (bs, 4H), 3.96 (m, 1H), 4.49 (bs, 2H), 5.26 (m, 2H), 5.88 (m, 1H), 6.84 (bs, 1H), 7.27 (m, 9H), 7.47 (m, 6H).

3.7.2. Compound 7f

Yield 75.1%. $R_{\rm f}$ 0.2 (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.92 (bs, 1H), 2.20 (m, 1H), 2.52 (bs, 4H), 2.73–2.82 (m, 1H), 2.95–3.05 (bs, 2H), 3.29–3.50 (bs, 4H), 3.62 (bs, 4H), 3.95 (m, 1H), 4.49 (bs, 2H), 5.26 (m, 2H), 5.67 (bs, 1H), 5.88 (m, 1H), 6.80 (bs, 1H), 7.27 (m, 9H), 7.47 (m, 6H).

3.7.3. Compound 7g

Yield 74.9%. $R_f 0.5$ (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.92 (bs, 1H), 2.23 (m, 1H), 2.73–2.82 (bs, 1H), 2.93– 3.05 (bs, 2H), 3.21–3.65 (bs, 12H), 3.96 (m, 1H), 4.49 (bs, 2H), 5.26 (m, 2H), 5.70 (bs, 1H), 5.84 (m, 1H), 6.77 (bs, 1H), 7.27 (m, 9H), 7.47 (m, 6H).

3.8. (2S,4S)-2-[2-(3-

methylthioureido)ethylcarbamoyl]-4-tritylthio-1-(allyloxycarbonyl)Pyrrolidine (7h)

A mixture of **6** (0.80 g, 1.60 mmol), triethylamine (0.43 mL, 3.20 mmol), methyl isothiocyanate (0.23 mL, 3.20 mmol) in CH₂Cl₂ (20 mL) was stirred at r.t. for 5 h. The reaction mixture was diluted with H₂O (20 mL) and CH₂Cl₂ (30 mL). The organic layer was successively washed with water and dried over anhydrous Na₂SO₄. Evaporation of the solvent in vacuo gave a crude residue, which was purified by silica gel column chromatography to give **7h** (0.81 g, 88.1%) as a pale yellow oil. $R_{\rm f}$ 0.6 (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.92 (bs, 1H), 2.15 (m, 1H), 2.71–3.06 (5H), 3.16–3.30 (bs, 3H), 3.74 (bs, 2H), 3.97 (m, 1H), 4.42 (m, 1H), 5.26 (m, 2H), 5.98 (m, 1H), 6.79 (bs, 1H), 7.23 (m, 9H), 7.48 (m, 6H).

3.9. (2S,4S)-2-[(2allyloxycarbonylformimidoyl)aminoethylcarbamoyl]-4tritylthio-1-(allyloxy-carbonyl)Pyrrolidine (7i)

To a solution of 6 (1.03 g, 2.0 mmol) in EtOH was added dropwise ethyl formidiate hydrochloride (0.24 g, 2.2 mmol) and was heated at reflux for 3 h. Evaporation of the solvent in vacuo gave a crude residue, which was used without further purification. To the above solution and triethylamine (0.30 mL, 2.2 mmol) in dry CH₂Cl₂ (20 mL) was added slowly allyl chloroformate (0.27 g, 2.2 mmol) at 0 °C and was stirred for 1 h at same temperature. The mixture was diluted with CH₂Cl₂ (100 mL) and washed with 10% NaHCO₃, brine. The organic layer was dried over anhydrous Na₂SO₄, concentrated, and the resulting residue was purified by silica gel column chromatography to give 7i (1.00 g, 79.8%) as a pale yellow oil. $R_{\rm f}$ 0.7 (ethyl acetate:*n*-Hex, 2:1). ¹H-NMR (CDCl₃) δ 1.82 (bs, 1H), 2.19 (m, 1H), 2.80–2.92 (bs, 1H), 3.02-3.17 (bs, 1H), 3.33-3.56 (bs, 3H), 3.78 (bs, 2H), 3.96 (m, 1H), 4.55 (bs, 2H), 4.72 (d, 2H, J = 5.9 (bs, 2H)Hz), 5.20-5.44 (m, 4H), 5.85-5.98 (m, 2H), 7.23 (m, 9H), 7.47 (m, 6H), 8.92 (s, 1H).

Compound **7j** was also prepared as described for the preparation of **7i** using the ethyl acetimidate hydrochloride.

3.9.1. Compound 7j

Yield 70.2%. $R_{\rm f}$ 0.5 (ethyl acetate:*n*-Hex, 2:1). ¹H-NMR (CDCl₃) δ 1.85 (bs, 1H), 2.19 (m, 1H), 2.24 (s, 3H), 2.80–2.92 (bs, 1H), 3.02–3.17 (bs, 2H), 3.30–3.56 (bs, 4H), 3.96 (m, 1H), 4.45 (bs, 2H), 4.70 (d, 2H, J = 5.9 Hz), 5.20–5.44 (m, 4H), 5.85–6.04 (m, 2H), 6.66 (bs, 1H), 7.23 (m, 9H), 7.47 (m, 6H).

Compound 7k was also prepared as described for the preparation of 7i using the 1*H*-pyrazole-1-carboxamidine hydrochloride.

3.9.2. Compound 7k

Yield 75.1%. R_f 0.7 (ethyl acetate:*n*-Hex, 2:1). ¹H-NMR (CDCl₃) δ 1.89 (bs, 1H), 2.19 (m, 1H), 2.80–2.92 (bs, 1H), 2.95–3.07 (bs, 2H), 3.30–3.59 (bs, 4H), 3.96 (m, 1H), 4.25–4.58 (bs, 4H), 4.72 (d, 2H, J = 5.9 Hz), 5.20–5.57 (m, 6H), 5.75–5.98 (m, 3H), 7.23 (m, 9H), 7.47 (m, 6H), 8.92 (bs, 1H), 8.96 (bs, 1H).

3.10. (2S,4S)-2-[2-(thiomorpholin-4yl)ethylcarbamoyl]-4-tritylthio-1-(allyloxycarbonyl)Pyrrolidine (7l)

A mixture of **4** (1.2 g, 2.0 mmol) and thiomorpholine (0.41 g, 4.0 mmol) in CH₃CN (20 mL) was stirred at r.t. for 20 h. The mixture was diluted with 1 N HCl (30 mL), ethyl acetate (50 mL) and washed with brine. Evaporation of the solvent in vacuo gave a crude residue, which was purified by silica gel column chromatography to give **7l** (1.03 g, 85.9%) as a pale yellow oil. R_f 0.2 (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.88 (m, 1H), 2.19 (m, 1H), 2.52 (bs, 1H), 2.55–2.98 (bs, 7H), 3.08 (bs, 2H), 3.25–3.44 (bs, 4H), 3.95 (m, 1H), 4.15 (m, 1H), 4.45 (m, 2H), 5.29 (m, 2H), 5.88 (m, 1H), 6.74 (bs, 1H), 7.27 (m, 9H), 7.47 (m, 6H).

Compound **7m** was also prepared as described for the preparation of **7l** using the piperazine.

3.10.1. Compound 7m

Yield 72.4%. R_f 0.2 (ethyl acetate). ¹H-NMR (CDCl₃) δ 1.87 (bs, 1H), 2.18 (m, 1H), 2.37–2.55 (bs, 6H), 2.77– 2.89 (bs, 1H), 2.94–3.01 (bs, 2H), 3.22 (bs, 2H), 3.55 (bs, 4H), 4.01 (bs, 1H), 4.43 (bs, 2H), 5.04, 5.26 (m, 2H), 5.85 (m, 1H), 6.68 (bs, 1H), 7.24 (m, 9H), 7.45 (m, 6H).

3.11. Allyl(1R,5S,6S)-6-[(1R)-hydroxyethyl]-2-[5-(2-allyloxycarbonylaminoethylcarbamoyl)]-1-(allyloxycarbonyl)pyrrolidin-3-ylthio]-1methylcarbapen-2-em-3-carboxylate (10a)

To a solution of **7a** (0.60 g, 1.0 mmol) in CH_2Cl_2 (2 mL) was added dropwise triethylsilane (0.13 g, 1.1 mmol) at 5 °C, and then TFA (2 mL). After stirring for 30 min at r.t., the mixture was evaporated under reduced pressure. The residue was dissolved with ethyl acetate and washed with 10% NaHCO₃, brine. The

organic layer was concentrated in vacuo to give a residue (8a), which was used without further purification. A solution of allyl (1R, 5S, 6S)-2-(diphenylphosphoryloxy)-6-[(R)-1-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (9, 0.50 g, 1.0 mmol) in CH₃CN (10 mL) was cooled to 0 °C under N₂. To this solution was added diisopropylethylamine (0.13 g, 1.0 mmol) and a solution of the mercapto compound 8a in CH₃CN (5 mL). After stirring for 2 h, the mixture was diluted with ethyl acetate, washed with 10% NaHCO₃, brine, and dried over anhydrous MgSO₄. Evaporation in vacuo gave a foam, which was purified by silica gel chromatography to give 10a (0.45 g, 71.1%) as a yellow amorphous solid. R_f 0.3 (ethyl acetate:acetone, 4:1). ¹H-NMR (CDCl₃) δ 1.25 (d, 3H, J = 7.1 Hz), 1.36 (d, 3H, J = 6.4 Hz), 2.21 (bs, 1H), 2.46 (bs, 1H), 2.95 (dd, 1H, J = 3.3 and 3.3 Hz), 3.06–3.55 (bs, 7H), 3.90 (bs, 2H), 4.15 (bs, 1H), 4.19 (bs, 1H), 4.45-4.69 (bs, 6H), 5.26-5.55 (m, 6H), 5.75-6.01 (bs, 3H).

The synthesis of compounds **10b**-**m** were carried out by the same procedure as described for the preparation of **10a**.

3.11.1. Compound 10b

Yield 63.9%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 7.1 Hz), 1.37 (d, 3H, J = 6.2 Hz), 1.91 (m, 1H), 2.39 (bs, 1H), 2.86 (m, 1H), 2.99 (s, 3H), 3.21–3.42 (bs, 4H), 3.54 (m, 2H), 3.82 (bs, 1H), 3.99 (bs, 1H), 4.18 (m, 2H), 4.42 (m, 1H) 4.49–4.68 (bs, 4H), 5.25–5.53 (m, 4H), 5.75–6.01 (bs, 2H).

3.11.2. Compound 10c

Yield 64.3%. ¹H-NMR(CDCl₃) δ 1.25 (d, 3H, J = 7.1 Hz), 1.35 (d, 3H, J = 6.2 Hz), 2.06 (m, 1H), 2.39 (bs, 1H), 2.80 (m, 1H), 2.89 (s, 6H), 3.21–3.33 (bs, 2H), 3.38–3.54 (bs, 3H), 3.58 (m, 1H), 3.82 (bs, 1H), 3.99 (bs, 1H), 4.18 (m, 2H), 4.40 (m, 1H), 4.49–4.68 (bs, 4H), 5.25–5.53 (m, 4H), 5.70–5.99 (bs, 2H).

3.11.3. Compound 10d

Yield 72.5%. ¹H-NMR(CDCl₃) δ 1.28 (d, 3H, J = 7.0 Hz), 1.37 (d, 3H, J = 6.1 Hz), 1.98 (m, 1H), 2.30 (bs, 1H), 2.86 (m, 1H), 2.87 (s, 6H), 3.21–3.36 (bs, 2H), 3.40–3.55 (m, 3H), 3.60 (m, 1H), 3.82 (bs, 1H), 3.99 (bs, 1H), 4.18 (m, 2H), 4.42 (m, 1H), 4.49–4.68 (bs, 4H), 5.25–5.53 (m, 4H), 5.70–5.96 (bs, 2H).

3.11.4. Compound 10e

Yield 69.9%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 7.0 Hz), 1.38 (d, 3H, J = 6.0 Hz), 1.91 (m, 1H), 2.39 (bs, 1H), 3.21–3.52 (bs, 9H), 3.54–3.62 (bs, 6H), 3.82 (bs, 1H), 4.03 (bs, 1H), 4.18 (m, 2H), 4.42 (m, 1H), 4.49–4.68 (bs, 4H), 5.25–5.53 (m, 4H), 5.75–5.97 (bs, 2H).

3.11.5. Compound 10f

Yield 65.9%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 7.0 Hz), 1.38 (d, 3H, J = 6.0 Hz), 2.46 (m, 1H), 2.51 (bs, 4H), 2.79–2.85 (m, 1H), 3.03–3.16 (bs, 4H), 3.28–3.44 (bs, 3H), 3.54–3.65 (bs, 4H), 3.69 (m, 1H), 3.85 (bs, 1H), 3.99 (bs, 1H), 4.16 (bs, 1H), 4.45 (m, 1H), 4.45–4.67 (bs, 4H), 5.29–5.53 (m, 4H), 5.75–6.01 (bs, 2H).

3.11.6. Compound 10g

Yield 68.4%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 6.7 Hz), 1.35 (d, 3H, J = 6.2 Hz), 1.97 (m, 1H), 2.34 (m, 1H), 2.70 (m, 1H), 3.10 (bs, 1H), 3.15–3.26 (bs, 5H), 3.30–3.49 (bs, 6H), 3.59 (bs, 2H), 3.94 (m, 1H), 4.12 (bs, 2H), 4.19 (m, 1H), 4.29 (m, 1H), 4.45–4.69 (bs, 6H), 5.26–5.55 (m, 6H), 5.75–6.01 (bs, 3H).

3.11.7. Compound 10h

Yield 65.5%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 6.9 Hz), 1.35 (d, 3H, J = 6.3 Hz), 1.99 (m, 1H), 2.45 (m, 1H), 2.89 (bs, 3H), 3.11–3.39 (bs, 4H), 3.44–3.69 (bs, 3H), 3.80 (m, 1H), 3.91 (m, 1H), 4.06 (m, 1H), 4.16 (m, 1H), 4.33 (m, 1H), 4.47–4.69 (bs, 4H), 5.26–5.55 (m, 4H), 5.71–5.98 (bs, 2H).

3.11.8. Compound 10i

Yield 66.4%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 6.9 Hz), 1.35 (d, 3H, J = 6.1 Hz), 1.90 (m, 1H), 2.50–2.69 (m, 2H), 3.05–3.33 (bs, 5H), 3.42 (m, 1H), 3.55–3.66 (bs, 2H), 3.70 (bs, 1H), 4.01 (m, 1H), 4.31 (m, 1H), 4.45–4.69 (bs, 4H), 5.26–5.55 (m, 4H), 5.75–5.99 (bs, 2H), 7.88 (d, 1H, J = 6.2 Hz).

3.11.9. Compound 10j

Yield 62.4%. ¹H-NMR(CDCl₃) δ 1.27 (d, 3H, J = 6.9 Hz), 1.36 (d, 3H, J = 6.1 Hz), 1.99 (m, 1H), 2.15 (s, 3H), 2.59–2.67 (m, 1H), 3.03 (m, 1H), 3.08–3.39 (bs, 5H), 3.53 (m, 1H), 3.69 (bs, 1H), 3.80 (m, 1H), 4.01–4.15 (bs, 2H), 4.35 (m, 1H), 4.45–4.69 (bs, 6H), 5.16–5.55 (m, 6H), 5.70–5.99 (bs, 3H).

3.11.10. Compound 10k

Yield 66.0%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 6.9 Hz), 1.35 (d, 3H, J = 6.1 Hz), 1.98 (m, 1H), 2.59–2.69 (m, 1H), 3.03 (m, 1H), 3.08–3.62 (bs, 7H), 4.01–4.31 (bs, 3H), 4.35 (m, 1H), 4.45–4.89 (bs, 8H), 5.08–5.55 (m, 8H), 5.75–6.03 (bs, 4H).

3.11.11. Compound 101

Yield 65.1%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 7.0 Hz), 1.38 (d, 3H, J = 6.0 Hz), 2.36 (m, 1H), 2.51–2.85 (m, 10H), 3.18–3.24 (bs, 2H), 3.30–3.44 (bs, 4H), 3.69 (m, 1H), 3.85 (bs, 1H), 3.99 (bs, 1H), 4.19 (bs, 1H), 4.40 (m, 1H), 4.45–4.67 (bs, 4H), 5.25–5.53 (m, 4H), 5.75–6.00 (bs, 2H).

3.11.12. Compound 10m

Yield 68.0%. ¹H-NMR(CDCl₃) δ 1.26 (d, 3H, J = 6.9 Hz), 1.35 (d, 3H, J = 6.2 Hz), 1.97 (m, 1H), 2.54–2.80 (bs, 5H), 3.11 (m, 1H), 3.15–3.26 (bs, 4H), 3.30–3.46 (bs, 5H), 3.59 (bs, 1H), 3.94 (m, 1H), 4.12 (bs, 2H), 4.19 (m, 1H), 4.29 (m, 1H), 4.45–4.69 (bs, 6H), 5.26–5.55 (m, 6H), 5.75–6.01 (bs, 3H).

3.12. (1R,5S,6S)-6-[(1R)-hydroxyethyl]-2-[5-(2aminoethylcarbamoyl)pyrrolidin-3-ylthio]-1methylcarbapen-2-em-3-Carboxylic acid (11a)

Compound 10a (0.31 g, 0.50 mmol) and 0.1 g of Pd(OH)₂ (10%) were dissolved in THF-phosphate buffer (pH 7) (1:1, 10 mL each). The mixture was hydrogenated at 50 psi for 1 h. The solution was filtered through celite and washed with water $(2 \times 10 \text{ mL})$. The combined filtrates were washed with ethyl ether (2×20) mL) and lyophilised to give a yellow powder which was purified on a Diaion HP-20 column, eluting with 2% THF in water. Fractions having UV absorption at 298 nm were collected and lyophilised again to give the title compound 11a as an amorphous solid. Yield 21.8%. M.p. 150–165 °C (dec.). UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.11 (d, 3H, J = 6.8 Hz), 1.17 (d, 3H, J = 5.9 Hz), 1.78 (bs, 1H), 2.63 (m, 1H), 2.94 (m, 1H), 3.01-3.48 (bs, 5H), 3.53–3.65 (bs, 2H), 3.70 (bs, 2H), 4.01 (m, 1H), 4.51 (bs, 1H). IR (KBr): 3480, 1745, 1666 cm⁻¹. HRMS(FAB) Calc. for C₁₇H₂₇N₄O₅S: 399.1702. Found: $399.1705 [M+H]^+$.

The synthesis of compounds **11b**-**m** were carried out by the same procedure as described for the preparation of **11a**.

3.12.1. Compound 11b

Yield 24.4%. M.p. 163–175 °C (dec.). UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.10 (d, 3H, J = 7.1 Hz), 1.16 (d, 3H, J = 6.2 Hz), 1.90 (m, 1H), 2.13 (bs, 1H), 2.86 (m, 1H), 2.97 (s, 3H), 3.03 (bs, 2H), 3.18–3.40 (bs, 4H), 3.54 (dd, 1H, J = 5.2 and 5.6 Hz), 3.89 (bs, 1H), 4.04 (bs, 2H), 4.42 (m, 1H). IR (KBr): 3390 (NH), 1710, 1680, 1410, 1166 cm⁻¹. HRMS(FAB) Calc. for C₁₈H₂₉N₄O₇S₂: 477.1478. Found: 477.1488 [M+H]⁺.

3.12.2. Compound 11c

Yield 29.4%. M.p. 145–168 °C (dec.). UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.10 (d, 3H, J = 7.0 Hz), 1.16 (d, 3H, J = 6.3 Hz), 1.93 (m, 1H), 2.13 (bs, 1H), 2.65 (s, 6H), 2.86 (m, 1H), 3.02 (bs, 2H), 3.21–3.44 (bs, 4H), 3.59 (dd, 1H, J = 5.4 and 5.8 Hz), 3.87 (bs, 1H), 4.11 (bs, 2H), 4.42 (m, 1H). IR (KBr): 3390 (NH), 1715, 1690, 1400, 1166 cm⁻¹. HRMS(FAB) Calc. for C₁₉H₃₂N₅O₇S₂: 506.1743. Found: 506.1738 [M+H]⁺.

3.12.3. Compound 11d

Yield 25.2%. M.p. 155–171 °C (dec.). UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.14 (d, 3H, J = 7.0 Hz), 1.25 (d, 3H, J = 6.2 Hz), 1.73 (m, 1H), 2.57 (bs, 1H), 2.68 (s, 6H), 2.96–3.18 (bs. 4H), 3.21–3.44 (bs, 3H), 3.60 (bs, 1H), 3.83 (bs, 1H), 4.14 (bs, 2H), 4.49 (m, 1H). IR (KBr): 3400, 1755, 1700, 1670, 1415 cm⁻¹. HRMS(FAB) Calc. for C₂₀H₃₂N₅O₆S: 470.2073. Found: 470.2079 [M+H]⁺.

3.12.4. Compound 11e

Yield 20.2%. UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.06 (d, 3H, J = 6.9 Hz), 1.13 (d, 3H, J = 6.2 Hz), 1.93 (m, 1H), 2.46 (m, 1H), 3.03–3.30 (bs, 8H), 3.34–3.50 (bs, 2H), 3.54–3.69 (bs, 5H), 3.85 (bs, 2H), 3.99 (bs, 1H), 4.16 (bs, 1H), 4.45 (m, 1H). IR (KBr): 3390, 1720, 1700, 1680, 1591, 1400 cm⁻¹. HRMS(FAB) Calc. for C₂₂H₃₄N₅O₇S: 512.2179. Found: 512.2185 [M+H]⁺.

3.12.5. Compound 11f

Yield 21.5%. UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.06 (d, 3H, J = 6.6 Hz), 1.13 (d, 3H, J = 6.1 Hz), 1.87 (m, 1H), 2.46 (m, 1H), 2.51 (bs, 4H), 2.79–2.85 (m, 1H), 3.03–3.16 (bs, 4H), 3.28–3.44 (bs, 3H), 3.54–3.65 (bs, 4H), 3.69 (m, 1H), 3.85 (bs, 1H), 3.99 (bs, 1H), 4.16 (bs, 1H), 4.45 (m, 1H). IR (KBr): 3390, 1720, 1690, 1680, 1591, 1390 cm⁻¹. HRMS(FAB) Calc. for C₂₂H₃₄N₅O₆S₂: 528.1951. Found: 528.1950 [M+H]⁺.

3.12.6. Compound 11g

Yield 21.9%. UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.03 (d, 3H, J = 6.7 Hz), 1.10 (d, 3H, J = 6.2 Hz), 1.87 (m, 1H), 2.46 (m, 1H), 2.85 (m, 1H), 3.05–3.46 (bs, 10H), 3.54 (bs, 2H), 3.69 (m, 2H), 3.85 (bs, 1H), 4.02 (bs, 2H), 4.18 (m, 1H), 4.45 (m, 1H). IR (KBr): 3390, 1740, 1715, 1680, 1411 cm⁻¹. HRMS(FAB) Calc. for C₂₂H₃₅N₆O₆S: 511.2339. Found: 511.2347 [M+H]⁺.

3.12.7. Compound 11h

Yield 23.8%. UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.07 (d, 3H, J = 7.0 Hz), 1.17 (d, 3H, J = 6.2 Hz), 1.87 (m, 1H), 2.45–2.59 (m, 1H), 2.88 (bs, 3H), 3.15–3.39 (bs, 4H), 3.44–3.69 (bs, 3H), 3.80 (m, 1H), 3.91 (m, 1H), 4.06–4.12 (bs, 2H), 4.45 (m, 1H). IR (KBr): 3400, 1730, 1680, 1586, 1400 cm⁻¹. HRMS(FAB) Calc. for C₁₉H₃₀N₅O₅S₂: 472.1688. Found: 472.1692 [M+H]⁺.

3.12.8. Compound 11i

Yield 24.3%. M.p. 148–162 °C (dec.). UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.03 (d, 3H, J = 6.8 Hz), 1.11 (d, 3H, J = 6.2 Hz), 1.56 (m, 1H), 2.50–2.59 (m, 1H), 2.95–3.10 (bs, 2H), 3.12–3.24 (bs, 2H), 3.27–3.40 (bs, 2H), 3.55–3.66 (bs, 2H), 3.70 (bs, 1H), 4.16 (m, 2H), 4.41 (m, 1H), 7.68 (d, 1H J = 6.2 Hz). IR (KBr): 3397, 1756, 1685, 1655, 1401 cm⁻¹. HRMS(FAB) Calc. for C₁₈H₂₈N₅O₅S: 426.1811. Found: 426.1815 [M+H]⁺.

3.12.9. Compound 11j

Yield 22.2%. M.p. 196–205 °C (dec.). UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.10 (d, 3H, J = 7.0 Hz), 1.18 (d, 3H, J = 6.3 Hz), 1.60 (m, 1H), 2.05 (s, 3H), 2.59–2.67 (m, 1H), 2.99 (m, 1H), 3.08–3.39 (bs, 4H), 3.41–3.53 (m, 2H), 3.59 (bs, 1H), 3.73–3.89 (bs, 1H), 4.01–4.15 (bs, 2H), 4.45 (m, 1H). IR (KBr): 3490, 1740, 1700, 1650, 1400 cm⁻¹. HRMS(FAB) Calc. for C₁₉H₃₀N₅O₅S: 440.1968. Found: 440.1967 [M+H]⁺.

3.12.10. Compound 11k

Yield 20.0%. M.p. 193–205 °C (dec.). UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.02 (d, 3H, J = 7.3 Hz), 1.10 (d, 3H, J = 6.4 Hz), 1.88 (m, 1H), 2.55–2.61 (m, 1H), 3.10–3.45 (bs, 6H), 3.55 (m, 1H), 3.88 (bs, 2H), 4.03 (bs, 2H), 4.45 (m, 1H). IR (KBr): 3980, 1710, 1640, 1580, 1405 cm⁻¹. HRMS(FAB) Calc. for C₁₈H₂₉N₆O₅S: 441.1920. Found: 441.1920 [M+H]⁺.

3.12.11. Compound 111

Yield 20.1%. UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 0.98 (d, 3H, J = 7.1 Hz), 1.06 (d, 3H, J = 6.4 Hz), 1.78 (m, 1H), 2.65–2.79 (bs, 5H), 2.90–3.01 (bs, 2H), 3.05–3.38 (bs, 5H), 3.55–3.60 (bs, 3H), 3.65 (bs, 1H), 3.80–3.88 (bs, 2H), 4.03 (bs, 2H), 4.45 (m, 1H). IR (KBr): 3470, 1730, 1685, 1580, 1425 cm⁻¹. HRMS(FAB) Calc. for C₂₁H₃₃N₄O₅S₂: 485.1892. Found: 485.1894 [M+H]⁺.

3.12.12. Compound 11m

Yield 16.9%. M.p. 166–175 °C (dec.). UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.02 (d, 3H, J = 7.1 Hz), 1.08 (d, 3H, J = 6.4 Hz), 1.88 (m, 1H), 2.45–2.49 (m, 1H), 2.60–2.69 (bs, 4H), 3.07–3.15 (bs, 4H), 3.25–3.39 (bs, 4H), 3.66–3.78 (m, 2H), 3.89 (m, 2H), 4.03 (m, 2H), 4.26 (m, 1H), 4.45 (m, 1H). IR (KBr): 3370, 1755, 1690, 1580, 1430 cm⁻¹. HRMS(FAB) Calc. for C₂₁H₃₄N₅O₅S: 468.2281. Found: 468.2280 [M+H]⁺.

3.13. (1R,5S,6S)-6-[(1R)-hydroxyethyl]-2-[5-(2-(1methylthiomorpholin-1yl)ethylcarbamoyl)]pyrrolidin-3ylthio]-1-methylcarbapen-2-em-3-Carboxylic acid (111Q)

A mixture of **10I** (1.2 g, 2.0 mmol) and methyl iodide (4.1 g, 40.0 mmol) in acetone (20 mL) was stirred at r.t. for 20 h. Evaporation of the solvent in vacuo gave a

crude residue, which was used without further purification. The **11IQ** was prepared by the deprotection procedure described for **11a**. Yield 20.1%. UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.02 (d, 3H, J = 7.0 Hz), 1.07 (d, 3H, J = 6.3 Hz), 1.85 (m, 1H), 2.61–2.70 (m, 2H), 2.88–3.00 (bs, 3H), 3.01 (s, 3H), 3.10–3.28 (bs, 3H), 3.35–3.44 (bs, 3H), 3.55–3.68 (bs, 5H), 3.73 (m, 1H), 3.83–3.88 (bs, 2H), 4.03 (bs, 1H), 4.45 (m, 1H). IR (KBr): 3470, 1730, 1685, 1580, 1425 cm⁻¹.

Compound **11mQ** was also prepared as described for the preparation of **111Q**.

Yield 24.7%. UV λ_{max} : 298 nm. ¹H-NMR (D₂O) δ 1.04 (d, 3H, J = 7.1 Hz), 1.09 (d, 3H, J = 6.4 Hz), 1.88 (m, 1H), 2.65–2.69 (bs, 1H), 3.01 (s, 3H), 3.05–3.19 (bs, 4H), 3.25–3.39 (bs, 4H), 3.63–3.78 (m, 2H), 3.85 (m, 2H), 4.01 (m, 2H), 4.26 (m, 1H), 4.45 (m, 1H). IR (KBr): 3370, 1755, 1690, 1580, 1430 cm⁻¹.

References

- For a recent review on the current state of carbapenem antibiotics, see: S. Coultion, E. Hunt, in: G.P. Ellis, D.K. Luscombe (Eds.), Progress in Medicinal Chemistry, vol. 33, Elsevier, 1996, pp 99–145.
- [2] (a) H. Hanaki, H. Akagi, S. Nomura, N. Unemi, J. Antibiot. 49 (1996) 402–404;
 (b) O.K. Kim, Y. Udea, M. Mansuri, J.W. Russel, Bioorg. Med. Chem. Lett. 7 (1997) 1945–1950.
- [3] (a) L.C. Waddel, R.W. Ratcliffe, S.P. Szumiloski, K.J. Wildonger, J. Kohler Huber, G.G. Hamond, Bioorg. Med. Chem. Lett. 5 (1995) 1427-1432;
 (b) H. Shinagawa, H. Yamaga, H. Houchigai, Y. Sumita, M. Sunaga, Bioorg. Med. Chem. 5 (1997) 601-621.
- [4] Y. Fukasawa, T. Okuda, J. Antibiot. 43 (1990) 314-320.
- [5] M. Sunagawa, H. Matsumure, T. Inoue, M. Fukasawa, M. Kato, J. Antibiot. 43 (1990) 519–532.
- [6] T. Miyadera, T. Sugimura, T. Hasimoto, T. Tanaka, K. Iino, S. Sugawara, J. Antibiot. 36 (1983) 1034–1039.
- [7] C.-H. Oh, J.-H. Cho, J. Antibiot. 47 (1994) 126–128.
- [8] K.-H. Nam, C.-H. Oh, J.K. Cho, K.-S. Lee, J.-H. Cho, Arch. Pharm. Pharm. Med. Chem. 329 (1996) 289–291.
- [9] C.-H. Oh, Y.H. Ham, K.-S. Lee, J.-H. Cho, Arch. Pharm. Pharm. Med. Chem. 330 (1997) 268–270.
- [10] C.B. Jin, I.S. Jung, H.-J. Ku, J.W. Yook, D.-H. Kim, J.-H. Cho, M.S. Kim, C.-H. Oh, Toxicology 138 (1999) 59–67.
- [11] C.-H. Oh, H.-W. Cho, I.-K. Lee, J.-Y. Gong, J.-H. Choi, J.-H. Cho, Arch. Pharm. Pharm. Med. Chem. 335 (2002) 152–158.
- [12] C.-H. Oh, H.-G. Dong, H.-W. Cho, S.J. Park, J.H. Hong, J.-H. Cho, Arch. Pharm. Pharm. Med. Chem. 335 (2002) 200–206.
- [13] C.-H. Oh, H.-W. Cho, J.-H. Cho, Eur. J. Med. Chem. 37 (2002) 743–754.