An efficient method for reduction of nitroaromatic compounds to the corresponding aromatic amines with $NH_2NH_2 \cdot H_2O$ catalysed by H_2O_2 -treated activated carbon

Yuqin Jiang^a, Huajun Suo^a, Dandan Zhang^a, Xiyong Li^b, Yamin Sun^b, Baoqi Ren^a, Weiwei Zhang^{a*} and Guiqing Xu^a

^aHenan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P.R. China

^bWeihai Ocean Vocational College, Weihai, P.R. China

An efficient and green protocol for the reduction of nitroaromatic compounds to the corresponding amines has been developed. The reduction catalyst system includes NH_2NH_2 · H_2O and H_2O_2 -treated activated carbon. Without adding additional metals, the H_2O_2 -treated activated carbon could be reused for many cycles without decreasing catalytic efficiency. The aromatic amines could be obtained in good to excellent yields.

Keywords: nitro reduction, H₂O₂-treated activated carbon, hydrazine hydrate, aromatic amines

The reduction of nitroaromatic compounds is one of the most important chemical conversions for preparing the corresponding aromatic amines, which are important starting materials and intermediates for the manufacture of a great variety of chemicals.¹ Up to now, many reducing agents or systems used for the reduction of nitroaromatic compounds have been studied, such as hydrogen in the presence of metal (e.g. Fe), sodium sulfide, CO/H₂O, hydrazine hydrate (NH₂NH₂·H₂O) in the presence of metal ions and other methods.²⁻¹⁵ Among the reducing systems, NH₂NH₂·H₂O has been paid great attention. The first example using NH₂NH₂·H₂O as a catalyst for the reduction of nitro compounds was reported by Busch and Schulz in 1929.16 In the following years, a wide range of catalysts such as Pd/C, Cu, Fe, Ni, Rh/C, Ru/Ca, Raney nickel and Mo have been used in the reduction of aromatic nitro compounds to aromatic amines with NH₂NH₂·H₂O as hydrogen donor.^{17–23} Furthermore, NH₂NH₂·H₂O has also been used alone for reducing nitroaromatic compounds in the absence of metals when the reaction conditions are very harsh.24

Activated carbon (AC) is usually used as a substrate for loading active catalytic centres due to its large surface area, tunable porosity and high stability in caustic and acidic conditions.²⁵⁻²⁸ In 2006, Zeynizadeh and Setamdideh²⁹ reported a method for the reduction of nitroarenes with NaBH /charcoal in H₂O/THF. In 2012, Wang et al. reported a catalyst system for the reduction of nitroaromatics with NH₂NH₂·H₂O in the presence of mesoporous carbon.³⁰ Very recently, Zhou et al.³¹ reported that AC, which was modified by chemical treatment in aqueous solutions of HNO₃, HCl and H₂SO₄, had been used as catalyst in the reduction of nitrobenzene using NH₂NH₂·H₂O as hydrogen donor due to the formation of an oxygen structure in the treated AC. It was reported by Pradhan and Sandle that the oxygen structure on the surface of the AC could be increased by oxidation with H₂O₂.³² Considering the environmental problems, manufacturing cost and production safety, we have used H₂O₂treated AC (H₂O₂-AC) and NH₂NH₂·H₂O (see SAFETY CAUTION in Experimental Section) as the catalyst system for reduction of nitroaromatic compounds to the corresponding amines. The results showed that the catalyst system could be used successfully without adding metal and could be reused several times without decreasing the catalytic efficiency.

Results and discussion

AC (20 g) was washed with deionised water three times and stirred with H_2O_2 (30%, 50 mL) overnight. The H_2O_2 -treated AC was filtered, washed with deionised water until it gave a negative hydrogen peroxide test on starch–potassium iodide paper and then dried to powder under reduced pressure. The H_2O_2 -AC was characterised by FTIR (Fig. 1).

As shown in Fig. 1, difference could be found between the AC before and after H_2O_2 -treatment. In Fig. 1(2), the weak peak at 3172 cm⁻¹ may be ascribed to hydroxyl groups and chemisorbed water. There is an increased relative intensity of the peak at 1605 cm⁻¹ on H_2O_2 -treatment, which may be consistent with an enhanced concentration of oxygen functional groups on the AC surface, which could improve the reduction efficiency for NH₂NH₂·H₂O.^{31,32}

The reduction of nitrobenzene was selected as the model reaction to optimise the reaction conditions (Scheme 1). For finding a suitable solvent, the reaction conditions were as follows: nitrobenzene (1.0 mmol), $NH_2NH_2 \cdot H_2O$ (2.5 equiv.) (see SAFETY CAUTION in Experimental section), H_2O_2 -AC (10 wt%, 61.5 mg), solvent (1.5 mL), reaction temperature 40 °C and reaction time 10 h. As can be seen from Table 1 (entries 1–10), 10 kinds of solvent were tested. The highest isolated yield (81%) was obtained when using DMF as the reaction

Fig. 1 FTIR spectra of ACs (1) before $\rm H_2O_2\text{-}treatment$ (2) after $\rm H_2O_2\text{-}treatment.$

^{*} Correspondent. E-mail: zhangweiwei@htu.edu.cn

$$\underbrace{ \bigvee_{NO_2} NH_2NH_2 \cdot H_2O, H_2O_2 - AC}_{NH_2} \underbrace{ \bigvee_{NH_2} NH_2}_{NH_2}$$

Scheme 1 Model reaction of reduction for optimising the reaction conditions

Table 1 Effects of solvent and temperature on the model reaction^a

Entry	Solvent	Temperature (°C)	Time (h)	Yield (%) ^b	
1	<i>n</i> -Hexane	40	10	30	
2	Toluene	40	10	43	
3	Acetonitrile	40	10	50	
4	Dichloromethane	40	10	39	
5	THF	40	10	73	
6	Ethanol	40	10	70	
7	Methanol	40	10	75	
8	Water	40	10	60	
9	1,4-Dioxane	40	10	19	
10	DMF	40	10	81	
11	DMF	60	10	87	
12	DMF	80	10	92	
13	DMF	100	10	99	

^aReaction conditions: nitrobenzene (1.0 mmol), H_2O_2 -AC (10 wt%), solvent (1.5 mL), NH_NH_·H_O (2.5 equiv.). ^bIsolated yields.

Table 2 The recyclability of H ₂ O ₂ -AC ^a								
Entry	Cycle	H ₂ O ₂ -AC (wt%)	Time (h)	Yield (%) ^b				
1	1	50	3	99				
2	2	50	3	99				
3	3	50	3	98				
4	4	50	3	99				
5	5	50	3	99				

^aReaction conditions: nitrobenzene (1.0 mmol), NH₂NH₂·H₂O (2.5 equiv.), DMF (1.5 mL), 100 °C

^bIsolated yields.

solvent (Table 1, entry 10). The lowest isolated yield (19%) was obtained when using 1,4-dioxane as the reaction solvent (Table 1, entry 9). Moderate isolated yields were obtained in THF, ethanol, methanol and water (Table 1, entries 5–8). Therefore, DMF was selected as the reaction solvent. Then, the model reaction was carried out in DMF at 60 °C, 80 °C and 100 °C for 10 h and the corresponding isolated yields were 87, 92 and 99% respectively. This indicated that the higher the reaction temperature, the faster the reaction rate and the higher the isolated yield. Finally, 100 °C was selected as the optimised reaction temperature.

For investigating the most suitable amount of H₂O₂-AC, the model reaction was carried out in DMF at 100 °C for 3 h catalysed by different amounts of H₂O₂-AC (0 wt%, 10 wt%, 20 wt%, 30 wt%, 40 wt%, 50 wt% and 60 wt%). As shown in Fig. 2, in the range from 0 to 50%, the more H_2O_2 -AC used, the higher the isolated yield obtained. The result could be ascribed to increased oxygen structure in the catalyst. When 0 wt% H₂O₂-AC was used, there was no reaction. On continuously increasing the amount of H₂O₂-AC from 10 wt% to 20 wt%, 30 wt%, 40 wt% and 50 wt%, the obtained yields were 20, 47, 73, 85 and 99% respectively. When 60 wt% H₂O₂-AC was used, the same yield was obtained as that from 50 wt% H₂O₂-AC. When 50 wt% of unactivated carbon was used, the obtained yield was only 9%. Therefore, 50 wt% H₂O₂-AC was selected as the suitable catalyst loading.

In connection with the economic and environmental aspects, the lifetime and level of reusability of the H₂O₂-AC are very

Fig. 2 Effects of amount of H₂O₂-AC on the yield of the model reaction in 3 h.

Table 3 Reduction of nitro compounds^a

 \mathbb{R}^4

	R ⁴			R ⁴			
Í	×"	NH ₂ NH ₂ ·H ₂	20' H ₂ O ₂ AC		\uparrow NH ₂		
R ³	R	1		R ³	$\downarrow_{\mathbb{R}^1}$		
	R ²			Ŕ ²			
Entry	R ¹	R ²	R ³	R ⁴	Time (h)	Yield (%)	
1	Н	Н	Н	Н	3	100	
2	Me	Н	Н	Н	3	98	
3	Н	Н	Me	Н	3	100	
4	CI	Н	Н	Н	3.5	97	
5	Н	CI	Н	Н	3.5	98	
6	Н	Н	Br	Н	3.5	96	
7	CI	Н	CI	CI	6	97	
8	Me	Н	Н	Me	4	97	
9	Н	OH	Н	Н	5	99	
10	Н	Н	OH	Н	5	98	
11	Н	Н	COOH	Н	3	98	
12	NH_2	Н	Н	Н	5	92	
13	Η	Н	NH ₂	Н	5	93	
14	Н	4-(3-Pyridyl) pyrimidine- 2-amino	Me	Н	3	100	
15	Н	$\rm OCH_2CH_2OCH_3$	$OCH_{\scriptscriptstyle 2}CH_{\scriptscriptstyle 2}OCH_{\scriptscriptstyle 3}$	$\rm COOC_2H_5$	3	99	

^aReaction conditions: nitro compounds (1 mmol), NH₂NH₂·H₂O (2.5 equiv.), H₂O₂-AC (50 wt%), DMF (1.5 mL), 100 °C.

^bIsolated yields.

significant factors. The reusability of the H₂O₂-AC (50 wt%) was investigated by adopting the following procedure under the optimised conditions. After the completion of the reaction, the H₂O₂-AC was recovered by simple filtration and introduced into fresh DMF (1.5 mL) containing nitrobenzene (1.0 mmol) and $NH_2NH_2 \cdot H_2O$ (2.5 equiv.) for another reaction cycle. As can be seen from Table 2, the activity of the H₂O₂-AC was consistent after five cycles. No significant loss of H_2O_2 -AC was observed.

Finally, to extend the general applicability of this protocol, a series of aromatic amines was synthesised using the optimised reaction conditions (Table 3). As can be seen from Table 3, the catalyst system had excellent selectivity and yields for the chemoselective reduction of various functionalised nitroaromatics under the optimised conditions. Interestingly,

2-methylphenyl)-4-(3-pyridyl)pyrimidine-2-amine (Table 3, entry 14), which is an important intermediate in the manufacture of an anti-cancer drug named Imatinib. Our catalyst system has the advantage of higher purity, better yield and lower cost than other methods.^{33–36}

Conclusion

In summary, an efficient and green protocol for the synthesis of aromatic amines from the corresponding nitroaromatic compounds with $NH_2NH_2 \cdot H_2O$ catalysed by H_2O_2 -treated AC in DMF at 100 °C has been developed.

Experimental

All the chemicals were obtained from Tianjin Kermel Chemical Reagent Co. Ltd and were used as received. The H_2O_2 -treated AC was characterised using FTIR (Thermo Nicolet Corporation NEXUS). The reactions were monitored by LC–MS (Waters/WATERS UPLC-TQD, Table 3, entries 2–6 and 8-15) and GC–MS (GCMS-QP2010 SE, Table 3, entries 1 and 7). The products were characterised using ¹H NMR (Bruker Avance/400 and Bruker Avance III HD/600) using CDCl₃ or DMSO- d_6 as the solvent and TMS as internal standard. Data are represented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad) and coupling constants (J) in Hertz (Hz).

Preparation of activated carbon

AC (20 g) was washed with deionised water three times and stirred with 30% H_2O_2 (50 mL) overnight. Then the H_2O_2 -treated AC was filtered off, washed with deionised water until it gave a negative hydrogen peroxide test on starch–potassium iodide paper and dried to powder under reduced pressure. Finally, 19.8 g of H_2O_2 -treated AC was obtained.

CAUTION: Due precautions were taken with the handling and use of hydrazine hydrate (NH,NH,·H,O) due to its toxicity.

A mixture of the organic nitro compound (1.0 mmol), $NH_2NH_2\cdot H_2O$ (2.5 equiv.) and H_2O_2 -treated AC powder (50 wt%) in DMF (1.5 mL) was stirred vigorously magnetically at 100 °C. The reaction was monitored by LC–MS or GC–MS. On completion the reaction mixture was filtered to remove the catalyst. The combined organic mixture material was dried using anhydrous Na_2SO_4 and filtered. The solvent was removed under reduced pressure to obtain the products. All the compounds were known and characterised by their ¹H NMR and MS spectra and comparison with literature data.

Aminobenzene (Table 3, entry 1):³⁷ Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.17 (t, J = 8.0 Hz, 2H), 6.77 (t, J = 8.0 Hz, 1H), 6.70 (d, J = 8.0 Hz, 2H), 3.58 (s, 2H); GC–MS: [M]⁺, m/z 93.

o-*Toluidine* (*Table 3, entry* 2):³⁸ Light-brown liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.06 (t, *J* = 8.0 Hz, 2H), 6.75 (t, *J* = 8.0 Hz, 2H), 4.18 (s, 2H), 2.20 (s, 3H); MS (ESI): [M + H]⁺, *m/z* 108.

p-Aminotoluene (Table 3, entry 3):³⁹ Yellow-orange solid; m.p. 44-45 °C (lit.³⁹ 40–44 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.01 (d, J = 8.0 Hz, 2H), 6.64 (d, J = 8.0 Hz, 2H), 3.54 (s, 2H), 2.28 (s, 3H); MS (ESI): [M + H]⁺, m/z 108.

o-*Chloroaniline (Table 3, entry 4*):⁴⁰ Red oil; ¹H NMR (400 MHz, CDCl₃): δ 7.26 (d, J = 8.0 Hz, 1H), 7.07 (t, J = 8.0 Hz, 1H), 6.77 (d,

J = 8.0 Hz, 1H), 6.70 (t, J = 8.0Hz, 1H), 4.04 (s, 2H); MS (ESI): [M(³⁵Cl) + H]⁺, m/z 128.

3-*Chloroaniline (Table 3, entry 5*):³⁷ Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.06 (t, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.67 (s, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 3.71 (s, 2H); MS (ESI): [M(³⁵Cl) + H]⁺, *m/z* 128.

4-Bromoaniline (Table 3, entry 6):⁴¹ Brown solid; m.p. 65–68 °C (lit.⁴¹ 60–62 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 8.0 Hz, 2H), 3.64 (s, 2H); MS (ESI): [M(⁷⁹Br) + H]⁺, m/z 172.

2,4,6-Trichloroaniline (Table 3, entry 7):⁴² Colourless solid; m.p. 72–74 °C (lit.⁴² 68–70 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.19 (s, 2H), 4.40 (s, 2H); GC–MS: [M(³⁵Cl)]⁺, *m/z* 195.

2,6-Dimethylaniline (Table 3, entry 8):³⁷ Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 6.96 (d, J = 8.0 Hz, 2H), 6.67 (t, J = 8.0 Hz, 1H), 4.01 (s, 2H), 2.21 (s, 6H); MS (ESI): [M + H]⁺, m/z 122.

m-*Aminophenol (Table 3, entry* 9):³⁹ Tan solid; m.p. 115–118 °C (lit.³⁹ 119–120 °C); ¹H NMR (400 MHz, DMSO- d_6): δ 8.89 (s, 1H), 6.81 (t, J = 8.0 Hz, 1H), 6.04 (d, J = 8.4 Hz, 2H), 5.97 (d, J = 7.6 Hz, 1H), 4.86 (s, 2H); MS (ESI): [M + H]⁺, m/z 110.

p-*Aminophenol (Table 3, entry 10*):^{37,43} Brown solid; m.p. 193–196 °C (lit.⁴³ 192–194 °C); ¹H NMR (400 MHz, DMSO- d_6): δ 8.34 (s, 1H), 6.46 (d, *J* = 8.0Hz, 2H), 6.40 (d, *J* = 8.0 Hz, 2H), 4.38 (s, 2H); MS (ESI): [M + H]⁺, *m/z* 110.

4-Aminobenzoic acid (Table 3, entry 11):^{37,44} Pale yellow solid; m.p. 185–187 °C (lit.⁴⁴ 186 °C); ¹H NMR (400 MHz, DMSO- d_6): δ 11.96 (s, 1H), 7.61 (d, *J* = 8.2 Hz, 2H), 6.54 (d, *J* = 8.2 Hz, 2H), 5.87 (s, 2H); MS (ESI): [M + H]⁺, *m*/z 138.

o-Phenylenediamine (Table 3, entry 12):^{45,46} Colourless solid; m.p. 101–104 °C (lit.⁴⁶ 98–100 °C); 'H NMR (400 MHz, DMSO- d_6): δ 6.52 (s, 2H), 6.39 (s, 2H), 4.39 (s, 4H); MS (ESI): [M + H]⁺, m/z 109.

p-*Phenylenediamine (Table 3, entry 13*):³⁹ Purple solid; m.p. 142–145 °C (lit.³⁹ 141 °C); ¹H NMR (400 MHz, CDCl₃): δ 6.57 (s, 4H), 3.34 (s, 4H); MS (ESI): [M + H]⁺, *m/z* 109.

N-(5-amino-2-methylphenyl)-4-(3-pyridyl)pyrimidine-2-amine (Table 3, entry 14):⁴⁷ Yellow solid; m.p. 145–148 °C (lit.⁴⁷ 138–140 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.26 (s, 1H), 8.71 (d, *J* = 4.0 Hz, 1H), 8.49 (d, *J* = 4.0 Hz, 1H), 8.34 (d, *J* = 8.0 Hz, 1H), 7.60 (s, 1H), 7.42 (q, *J* = 4.0 Hz, 1H), 7.14 (d, *J* = 4.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.41 (d, *J* = 8.0 Hz, 1H), 3.30 (s, 2H), 2.24 (s, 3H); MS (ESI): [M + H]⁺, m/z 278. Ethyl 2-amino-4,5-bis(2-methoxyethoxy)benzoate (Table 3, entry 15):⁴⁸ Brown oil; ¹H NMR (600 MHz, CDCl₃): δ 7.45 (s, 1H), 6.14 (s, 1H), 5.58 (br, 2H), 4.31–4.26 (m, 2H), 4.14–4.11 (m, 2H), 4.08 (t, *J* = 4.5 Hz, 2H), 3.78 (t, *J* = 4.2 Hz, 2H), 3.72 (t, *J* = 4.5 Hz, 2H), 3.45 (d, *J* = 2.9 Hz, 6H), 1.36 (t, *J* = 7.1 Hz, 3H); MS (ESI): [M + H]⁺, m/z 314.

Acknowledgements

This work was supported financially by the Key Scientific and Technological Project of Henan Province (Nos 152102210285 and 152102310312), Innovative Talents Programme of Henan Province (Nos 164100510015 and 174100510025), Production-Learning-Research Cooperation Project of Henan Province (Nos 122107000014, 142107000081 and 122107000014), Foundation of Henan Educational Committee (Nos 18A150030, 14A350005 and 16A350015), the Scientific Research Foundation for Doctors (No. qd16106) and the Youth Foundation of Henan Normal University (No. 2016QK09).

Electronic Supplementary Information

The ESI (¹H NMR spectra of the products) is available through http://ingentaconnect.com/content/stl/jcr/2017/00000041/00000009

Received 11 February 2017; accepted 5 July 2017 Paper 1704595 https://doi.org/10.3184/174751917X15005518143041 Published online: 22 August 2017

512 JOURNAL OF CHEMICAL RESEARCH 2017

References

- 1 M. Lauwiner, P. Rys and J. Wissmann, Appl. Catal., A, 1998, 172, 141.
- 2 F.A. Westerhaus, I. Sorribes, G. Wienhöfer, K. Junge and M. Beller, *Synlett*, 2015, **26**, 313.
- 3 O. Beswick, I. Yuranov, D.T.L. Alexander and L. Kiwi-Minsker, Catal. Today, 2015, 249, 45.
- 4 Z. Zhao and H. Yang, J. Mol. Catal. A: Chem., 2015, 398, 268.
- 5 K.M. Korch, C. Eidamshaus, D.C. Behenna, S. Nam, D. Horne and B.M. Stoltz, *Angew. Chem., Int. Ed.*, 2015, 54, 179.
- 6 Z. Zhao, H. Yang, Y. Li and X. Guo, Green Chem., 2014, 16, 1274.
- 7 X.D. Le, Z.P. Dong, W. Zhang, X.L. Li and J.T. Ma, J. Mol. Catal. A: Chem., 2014, **395**, 58.
- 8 R.K. Sharma, <u>Y. Monga</u> and A. Puri, J. Mol. Catal. A: Chem., 2014, 393, 84.
- 9 R.J. Ingham, E. Riva, N. Nikbin, I.R. Baxendale and S.V. Ley, Org. Lett., 2012, 14, 3920.
- 10 S. Gowda, B.K.K. Gowda and D.C. Gowda, Synth. Commun., 2003, 33, 281.
- 11 B. Zeynizadeh and K. Zahmatkesh, J. Chin. Chem. Soc., 2003, 50, 267.
- 12 F. Mahdavi, T.C. Bruton and Y.Z. Li, J. Org. Chem., 1993, 58, 744.
- P. Zuman and Z. Fijalek, J. Electroanal. Chem. Interfacial Electrochem., 1990, 296, 583.
- 14 T. Miyata, K. Kondo, S. Murai, T. Hirashima and N. Sonoda, Angew. Chem., Int. Ed. Engl., 1980, 19, 1008.
- 15 D.S. Wulfman and C.F. Cooper, Synthesis, 1978, 12, 924.
- 16 M. Busch and K. Schulz, Chem. Ber., 1929, 62, 1458.
- 17 V.M. Mokhov, Y.V. Popov and D.N. Nebykov, Russ. J. Gen. Chem., 2014, 84, 1515.
- 18 M. Kumarraja and K. Pitchumani, Appl. Catal., A, 2004, 265, 135.
- 19 P.S. Kumbhar, J.S. Valente, J.M.M. Millet and F. Figueras, J. Catal., 2000, 191, 467.
- 20 S.H. Pyo and B.H. Han, Bull. Korean Chem. Soc., 1994, 15, 1012.
- 21 R.A.W. Johnstone and A.H. Wilby, Chem. Rev. (Washington, DC, U.S.), 1985, 85, 129.
- 22 A. Furst, R.C. Berlo and S. Hooton, Chem. Rev. (Washington, DC, U.S.), 1965, 65, 51.
- 23 D. Balcom and A. Furst, J. Am. Chem. Soc., 1953, 75, 4334.
- 24 H.S. Kakati and D.C. Deka, Indian J. Chem. Technol., 2003, 10, 60.
- 25 H.M. Yang, X.J. Cui, X.C. Dai, Y.Q. Deng and F. Shi, *Nat. Commun.*, 2015, 6, 6478.

- 26 M.A.A. Montero, L.M.G. Sainero, A. Mayoral, I. Diaz, R.T. Baker and J.J. Rodriguez, J. Catal., 2011, 279, 389.
- 27 P.R. Shukla, S.B. Wang, H.Q. Sun, H.M. Ang and M. Tadé, *Appl. Catal.*, B, 2010, **100**, 529.
- 28 Q. Xie, X.L. Zhang, Q.R. Chen and G.Z. Gong, Xinxing Tan Cailiao (New Carbon Mater.), 2003, 18, 203.
- 29 B. Zeynizadeh and D. Setamdideh, Synth. Commun., 2006, 36, 2699.
- 30 H.-C. Wang, B.-L. Li, Y.-J. Zheng and W.-Y. Wang, Bull. Korean. Chem. Soc., 2012, 33, 2961.
- 31 H. Zhou, L. Shi and Q. Sun, Chin. J. Catal., 2012, 33, 1463.
- 32 B.K. Pradhan and N.K. Sandle, Carbon, 1999, 37, 1323.
- 33 S.R. Patil, J.P. Nandre, D. Jadhav, S. Bothra, S.K. Sahoo, M. Devi, C.P. Pradeep, P.P. Mahulikar and U.D. Patil, *Dalton Trans.*, 2014, 43, 13299.
- 34 F. Arioli, S. Borrelli, F. Colombo, F. Falchi, I. Filippi, E. Crespan, A. Naldini, G. Scalia, A. Silvani, G. Maga, F. Carraro, M. Botta and D. Passarella, *ChemMedChem.*, 2011, 6, 2009.
- 35 H. Liu, W. Xia, Y. Luo and W. Lu, Monatsh. Chem., 2010, 141, 907.
- 36 Y.-F. Liu, C.-L. Wang, Y.-J. Bai, N. Han, J.-P. Jiao and X.-L. Qi, Org. Process. Res. Dev., 2008, 12, 490.
- 37 W.-G. Jia, H. Zhang, T. Zhang, D. Xie, S. Ling and E.-H. Sheng, Organometallics, 2016, 35, 503.
- 38 S.S. Kampmann, N.T. Man, A.J. Mckinley, G.A. Koutsantonis and S.G. Stewart, Aust. J. Chem., 2015, 68, 1842.
- 39 R.J. Rahaim and R.E. Maleczka, Synthesis, 2006, 3316.
- 40 Y. Chen, B. Gutmann and C.O. Kappe, J. Org. Chem., 2016, 81, 9372.
- 41 A. Kamal, N. Markandeya, N. Shankaraiah, C.R. Reddy, S. Prabhakar, C.S. Reddy, M.N. Eberlin and L.S. Santos, *Chem. - Eur. J.*, 2009, **15**, 7215.
- 42 M.C. Davis, Synth. Commun., 2009, 39, 1100.
- 43 S.R. Kanth, G.V. Reddy, V.V.N.S.R. Rao, D. Maitraie, B. Narsaiah, P.S. Rao, Synth. Commun., 2002, 32, 2849.
- 44 W.L. Lewis and H.C. Cheetham, J. Am. Chem. Soc., 1921, 9, 2117.
- 45 H.S. Jung, T. Yun, Y. Cho and H.B. Jeon, Tetrahedron, 2016, 72, 5988.
- 46 C.-R. Zhang, Y.-L. Wang and J.-Y. Wang, J. Chin. Chem. Soc., 2004, <u>51</u>, 569.
- 47 A. Kamal, D. Dastagiri, M.J. Ramaiah, J.S. Reddy, E.V. Bharathi, M.K. Reddy, M.V.P. Sagar, T.L. Reddy, S.N.C.V.L. Pushpavalli and M. Pal-Bhadra, *Eur. J. Med. Chem.*, 2011, **46**, 5817.
- 48 A. Lüth and W. Löwe, Eur. J. Med. Chem., 2008, 43, 1478.