

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 409-412

Zinc(II)-Mediated Inhibition of a Ribonuclease by an *N*-Hydroxyurea Nucleotide

Joshua J. Higgin,^a Gennady I. Yakovlev,^b Vladimir A. Mitkevich,^b Alexander A. Makarov^{b,*} and Ronald T. Raines^{a,c,*}

^aDepartment of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA

^bEngelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia ^cDepartment of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA

Received 6 September 2002; revised 27 October 2002; accepted 2 November 2002

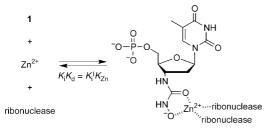
Abstract—The inhibition of ribonuclease Bi by 3'-N-hydroxyurea-3'-deoxythymidine 5'-phosphate is enhanced by 30-fold in the presence of Zn^{2+} . Thus, an N-hydroxyurea nucleotide can recruit Zn^{2+} to inhibit the enzymatic activity of a ribonuclease. This result engenders a general strategy for the inhibition of non-metalloenzymes by metal complexes. © 2002 Elsevier Science Ltd. All rights reserved.

Like proteases, ribonucleases are prevalent enzymes that are worthwhile targets for inhibitor development.^{1,2} In many laboratory procedures, RNA must be protected from degradation. Moreover, the neovascularization promoted by angiogenin relies on the ribonucleolytic activity of that enzyme.³ Indeed, variants of angiogenin with greater ribonucleolytic activity are more effective at promoting neovascularization,⁴ and inhibiting the ribonucleolytic activity of angiogenin could be an effective anti-angiogenesis strategy.⁵

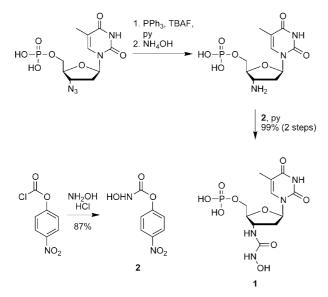
The development of ribonuclease inhibitors lags far behind that of protease inhibitors. The most potent known small-molecule inhibitor of a ribonuclease is pdUppAp, which has $K_i = 0.22 \mu$ M for the inhibition of ribonuclease A in 0.2 M Hepes buffer, pH 7.0, with no added salt.⁶ This inhibitor emerged from multiple iterations of inhibitors that closely resemble substrates.^{7,8} It is unlikely that this iterative strategy will yield substantially better ribonuclease inhibitors. UpOC₆H₄-*p*-CH₂F is a mechanism-based inactivator of ribonuclease A.⁹ Unfortunately, inactivation by UpOC₆H₄-*p*-CH₂F is not complete. Hence, new strategies for inhibiting or inactivating ribonucleases are desirable. Zinc is the second most abundant transition metal in biology and is essential for life.¹⁰ In cells, almost all zinc is bound to proteins as zinc(II).¹¹ The ability of proteins to bind Zn²⁺ ions with high affinity portends a new strategy for ribonuclease inhibition. The efficacy of this strategy has been demonstrated with serine proteases. Using X-ray diffraction analysis, Katz and co-workers discovered that a previously known inhibitor of trypsin, bis(5 - amidino - 2 - benzimidazolyl)methane (BABIM), inhibits that enzyme by inadvertently recruiting a single Zn²⁺.^{12–14} The Zn²⁺ coordinates four heteroatoms two from BABIM and two from enzymic side chains. The value of K_i for BABIM alone is 19 µM, and that for Zn²⁺ alone is 1 mM. Yet, the K_i for BABIM plus Zn²⁺ is 5 nM.¹²

The ability of metal complexes to inhibit non-metalloenzymes could extend beyond serine proteases.^{15–19} Herein, we report the first zinc(II)-mediated inhibitor of a ribonuclease. Our ligand is 3'-N-hydroxyurea-3'deoxythymidine 5'-phosphate [pdT-3'-NHC(O)NHOH; 1]. The logic of this choice is as follows. The use of a deoxynucleoside creates additional space within the active site of the enzyme–ligand complex. This space could be necessary for Zn^{2+} binding. The use of a thymidine facilitates synthesis from a commercially available starting material (vide infra). The 5'-phosphoryl group provides another interaction with a phosphoryl group-binding subsite, as in the binding of a polymeric

^{*}Corresponding authors. Tel.:+7-095-135-4095; fax: +7-095-135-1405; e-mail: aamakarov@genome.eimb.relarn.ru (A.A. Makarov); tel.:+1-608-262-8588; fax:+1-608-262-3453; e-mail: raines@biochem.wisc.edu (R.T. Raines).


RNA substrate. Finally, hydroxamic acids are exceptional bidentate chelators of Zn^{2+} .¹⁹

As a model ribonuclease, we chose ribonuclease Bi (binase; EC 3.1.27.3). Binase is a secretory ribonuclease from *Bacillus intermedius* that catalyzes the cleavage of RNA without a need for metal ions or cofactors. The structure of crystalline binase is known at a resolution of 1.65 Å.²⁰ Analysis of this structure, along with that of a complex with a nucleoside 3'-phosphate,²⁰ suggests that Glu73 and His102 of binase act as a base and acid, respectively, during catalysis of RNA cleavage. The carboxylate and imidazole groups in the side chains of these residues could also serve as the enzymic ligands for Zn²⁺ (Scheme 1).


N-Hydroxyurea **1** was synthesized by the route shown in Scheme 2, which begins with the commercial reagent 3'-azido-3'-deoxythymidine 5'-monophosphate (AZT monophosphate).²¹ The ability of *N*-hydroxyurea **1** to inhibit the ribonucleolytic activity of binase was assessed in the absence and presence of Zn^{2+} .²²

The results of measurements of the binase activity inhibition by *N*-hydroxyurea **1** at different concentrations of Zn^{2+} ions are shown in Figure 1. The intercept of the lines on the ordinate is indicative of competitive inhibition.

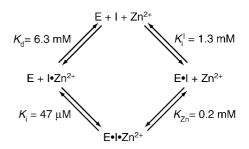
The data in Figure 1 were used to evaluate the inhibition by *N*-hydroxyurea 1 and Zn^{2+} by using eq 1:

Scheme 1. Basis for the zinc(II)-mediated inhibition of a ribonuclease by *N*-hydroxyurea 1.

Scheme 2. Route for the synthesis of *N*-hydroxyurea 1.²¹

$$v = \frac{[\mathrm{E}]_{\mathrm{T}}[\mathrm{S}]k_{\mathrm{cat}}}{[\mathrm{S}] + K_{\mathrm{M}}^{\mathrm{obs}}} \tag{1}$$

where


$$K_{\rm M}^{\rm obs} = K_{\rm M} \left(1 + \frac{[\mathbf{I}]}{K_{\rm i}^{\rm I}} + \frac{[\mathbf{I} \cdot \mathbf{Z} n^{2+}]}{K_{\rm i}} \right)$$
(2)

In eqs 1 and 2, [E]_T, [S], [I], and $[I \cdot Zn^{2+}]$ are the total concentrations of the enzyme, substrate, inhibitor (*N*-hydroxyurea 1), and $I \cdot Zn^{2+}$ complex, respectively; $K_{\rm M}$ is the Michaelis constant for the hydrolysis of poly(I); $K_{\rm i}^{\rm I}$ is the inhibition constant for the inhibitor alone; and $K_{\rm i}$ is the inhibition constant for the $I \cdot Zn^{2+}$ complex. The relationship between these two inhibition constants and $K_{\rm d}$ and $K_{\rm Zn}$ (which are the equilibrium dissociation constants of Zn^{2+} from the $I \cdot Zn^{2+}$ and $E \cdot I \cdot Zn^{2+}$ complexes, respectively) are depicted in Scheme 3. In the data analysis, the values of [I] and $[Zn^{2+}]$ were assumed to be equal to the total concentration of inhibitor and Zn^{2+} , respectively, because the concentration of enzyme was much lower than that of inhibitor or Zn^{2+} .

The values of k_{cat} and K_M for the hydrolysis of poly(I) were 162 s⁻¹ and 79 μ M, which are similar to those reported previously.^{23,24} The inhibition constant for *N*-hydroxyurea **1** alone (that is, in the absence of Zn²⁺) was $K_i^{I} = 1.3$ mM. In contrast, no inhibition of enzymatic activity was observed by Zn²⁺ alone in assays performed with [Zn²⁺] ≤ 5 mM (data not shown).

The application of eq 1 to the data in Figure 1 enabled the calculation of K_iK_d values for different [I] and $[Zn^{2+}]$. As listed in Table 1, these values were approximately constant at $K_iK_d = 3 \times 10^{-7} \text{ M}^2$ if $[I][Zn^{2+}] \le 10^{-7}$ M^2 . When $[I][Zn^{2+}]$ was increased to $1.7 \times 10^{-6} \text{ M}^2$, the K_iK_d value increased by 10-fold (Table 1). Most likely, this increase is indicative of improper usage of the total concentration of inhibitor and Zn^{2+} rather than the actual concentration. For this reason, no assays were performed with $[Zn^{2+}] \ge 5 \text{ mM}$.

The affinity of the $I \cdot Zn^{2+}$ complex for the enzyme was discerned from the value of K_iK_d . The value of K_d reports on the affinity of I for Zn^{2+} in the assay mixture. The pK_a of a model hydroxamic acid, acetohydroxamic acid (CH₃C(O)NHO<u>H</u>), is 9.4,²⁵ indicating

Scheme 3. Scheme for zinc(II)-mediated inhibition of enzymatic activity. Values are for inhibition of ribonuclease Bi by *N*-hydroxy-urea 1.

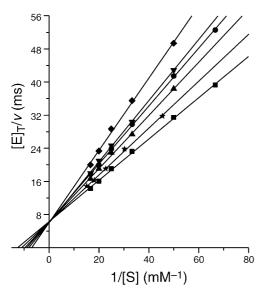


Figure 1. Lineweaver–Burk plot for the inhibition of binase by *N*-hydroxyurea 1 in the absence and presence of Zn²⁺. Assays were performed at 25 °C in 0.10 M sodium citrate buffer, pH 6.2, containing NaCl (0.10 M), binase (4.4×10⁻¹⁰ M), poly(I), *N*-hydroxyurea 1, and Zn²⁺. ■, [I]=0, [Zn²⁺]=0 (data with [Zn²⁺]≤5 mM were identical); ★, [I]=0.93×10⁻⁴ M, [Zn²⁺]=0.25 mM; ▲, [I]=3.5×10⁻⁴ M, [Zn²⁺]=0; ●, [I]=1.0×10⁻⁴ M, [Zn²⁺]=1.0 mM; ▼, [I]=3.5×10⁻⁴ M, [Zn²⁺]=0.25 mM; ◆, [I]=3.5×10⁻⁴ M, [Zn²⁺]=5 mM.²²

that 0.063% of acetohydroxamic acid is deprotonated at pH 6.2. Only the conjugate base of a hydroxamic acid has high affinity for Zn^{2+} ,¹⁹ and the acetohydroxamate· Zn^{2+} complex has an equilibrium dissociation constant near $10^{-5.4}$ M.^{26,27} Thus, the value of $K_d = 10^{-5.4}$ M/(0.063%) = 6.3 mM for acetohydroxamic acid at pH 6.2. Using this value of K_d as an approximation for that of the *N*-hydroxyurea $1 \cdot Zn^{2+}$ complex, the value of $K_i = K_i K_d / K_d = 3 \times 10^{-7}$ M²/6.3 mM = 47 µM. Thus, the enzyme has approximately 30-fold more affinity for the I· Zn^{2+} complex ($K_i = 47$ µM) than for I alone ($K_i^{I} = 1.3$ mM).

The affinity of Zn^{2+} for the enzyme was discerned likewise. From Scheme 3, $K_{Zn} = K_i K_d / K_i^I = 3 \times 10^{-7} \text{ M}^2 / 1.3 \text{ mM} = 0.2 \text{ mM}$. Because no inhibition of enzymatic activity was observed with $[Zn^{2+}] \le 5 \text{ mM}$, the enzyme Zn^{2+} complex had an equilibrium dissociation constant of >5 mM. Thus, Zn^{2+} has >25-fold more affinity for the E-I complex than for the enzyme alone. This increase is consistent with the participation of enzymic ligands in the binding of Zn^{2+} to the E-I complex, as is depicted in Scheme 1.

In conclusion, we have demonstrated the efficacy of a new strategy for the inhibition of ribonucleases. This strategy was inspired by the inadvertent recruitment of zinc by a known protease inhibitor.^{12–14} In contrast, ribonuclease inhibition herein relies on the intentional recruitment of Zn^{2+} by an *N*-hydroxyurea moiety attached covalently to a nucleotide. The *N*-hydroxyurea moiety can present Zn^{2+} to the active-site residues of the ribonuclease, and thereby enhance binding beyond that for the inhibitor or Zn^{2+} alone. We anticipate that this strategy can be optimized further and used for the inhibition of a variety of ribonucleases, as well as other types of enzymes.

Table 1. Parameters for inhibition of ribonuclease Bi catalysis by N-hydroxyurea 1 and Zn^{2+a}

[I] (10 ⁻⁴ M)	[Zn] (10 ⁻³ M)	$K_{\rm M}^{\rm obs}$ (10 ⁻⁴ M)	$\begin{array}{c} K_{\rm i} \left[{\rm I} {\cdot} {\rm Zn}^{2+} \right] \\ ({\rm M})^2 \end{array}$	$\frac{K_{\rm i}K_{\rm d}}{(10^{-7}~{ m M}^2)}$
0.93	0.25	0.91	12.4	2.9
1.0	1.0	1.12	2.9	2.9
3.5	0.25	1.21	3.8	3.3
3.5	5.0	1.43	1.85	32

^aData are for those assays depicted in Figure 1 performed in the presence of Zn^{2+} .

Acknowledgements

We thank J. A. Hodges for contributive discussions. This work was supported by Grants GM44783 (NIH to R.T.R.), TW01058 (NIH to A.A.M), 02-04-48259 (RFBR to A.A.M), and 02-04-49110 (RFBR to G.I.Y).

References and Notes

- 1. D'Alessio, G., Riordan, J. F., Eds. Ribonucleases: Struc-
- tures and Functions. Academic Press: New York, 1997.
- 2. Raines, R. T. Chem. Rev. 1998, 98, 1045.
- 3. Shapiro, R.; Vallee, B. L. Biochemistry 1989, 28, 7401.
- 4. Harper, J. W.; Vallee, B. L. Proc. Natl. Acad. Sci. U.S.A. 1988, 88, 7139.
- 5. Folkman, J. Nature Med. 1995, 1, 27.
- 6. Russo, N.; Shapiro, R. J. Biol. Chem. 1999, 274, 14902.
- 7. Leonidas, D. D.; Shapiro, R.; Irons, L. I.; Russo, N.; Acharya, K. R. *Biochemistry* **1997**, *36*, 5578.
- 8. Russo, N.; Shapiro, R.; Vallee, B. L. Biochem. Biophys. Res. Commun. 1997, 231, 671.
- 9. Stowell, J. K.; Widlanski, T. S.; Kutateladze, T. G.; Raines, R. T. J. Org. Chem. **1995**, *60*, 6930.
- 10. Vallee, B. L. Biofactors 1988, 1, 31.
- 11. Outten, C. E.; O'Halloran, T. V. Science 2001, 292, 2488.
- 12. Katz, B. A.; Clark, J. M.; Finer-Moore, J. S.; Jenkins, T. E.; Johnson, C. R.; Ross, M. J.; Luong, C.; Moore, W. R.; Stroud, R. M. *Nature* **1998**, *391*, 608.
- 13. Katz, B. A.; Luong, C. J. Mol. Biol. 1999, 292, 669.
- 14. Janc, J. W.; Clark, J. M.; Warne, R. L.; Elrod, K. C.;
- Katz, B. A.; Moore, W. R. Biochemistry 2000, 39, 4792.
- 15. Schirmeister, T. Angew. Chem. Int. Ed. 1998, 37, 1830.
- 16. Thorp, H. H. Chem. Biol. 1998, 5, R125.
- 17. Louie, A. Y.; Meade, T. J. Chem. Rev. 1999, 99, 2711.
- 18. Nguyen, R.; Huc, I. Angew. Chem. Int. Ed. 2001, 40, 1774.
- 19. Farkas, E.; Buglyó, P. J. Chem. Soc., Dalton Trans. 1990, 1549.

20. Polyakov, K. M.; Lebedev, A. A.; Okorokov, A. L.; Panov, K. I.; Schulga, A. A.; Pavlovsky, A. G.; Dodson, G. G. *Acta Crystallogr.* **2002**, *D58*, 744.

21. 3'-Amino-3'-deoxythymidine 5'-monophosphate. 3'-Azido-3'-deoxythymidine 5'-monophosphate (50 mg, 135 µmol), triphenylphosphine (50 mg, 192 µmol), and tetrabutylammonium fluoride (0.10 g, 0.36 mmol) was stirred in pyridine (20 mL) overnight at 20 °C. Aqueous NH₃ (5% v/v; 30 mL) was added, and the resulting solution was stirred for 2 h. The mixture was co-evaporated with ethanol and dried under vacuum. The mixture was used without purification directly in the next step.

4-Nitrophenyl *N*-hydroxycarbamate. 4-Nitrophenyl *N*-hydroxycarbamate was synthesized by the route reported for the synthesis of phenyl *N*-hydroxycarbamate (Stewart, A. O.; Brooks, D. W. J. Org. Chem. **1992**, *57*, 5020).

3'-N-Hydroxyurea-3'-deoxythymidine 5'-monophosphate. 4-

Nitrophenyl N-hydroxycarbamate (0.10 g, 0.50 mmol) and tetrabutylammonium fluoride (0.20 g, 0.72 mmol) was added to the crude 3'-amino-3'-deoxythymidene 5'-monophosphate and stirred overnight in pyridine (20 mL) at 20 °C. The reaction was quenched with H₂O (20 mL). The mixture was coevaporated with ethanol and dried under vacuum. The residue was taken up in H₂O (3 mL) and purified by reversed-phase HPLC using an H₂O/acetonitrile gradient and lyophilized to give 54 mg (99% overall) of fluffy white solid. ¹H NMR (300 MHz, D₂O) d 1.82 (s, 3H), 2.28 (m, 2H), 4.03 (m, 2H), 4.08 (m, 1H), 4.36 (m, 1H), 6.19 (t, 1.3H, NH), 7.78 (s, 1H). MS (ESI) m/z calcd for C₁₁H₁₆N₄O₉P (M-H) 379.07, found 379.00. 22. Enzyme kinetics. Assays of ribonucleolytic activity were performed by using UV spectroscopy to measure the cleavage of poly(inosinic acid) [poly(I)] at 25 °C in 0.10 M sodium citrate buffer, pH 6.2, containing NaCl (0.10 M), as described previously.^{23,24} Concentrations of *N*-hydroxyurea **1** were determined by its absorbance at 267 nm using the extinction coefficient for pdT, which is $\varepsilon = 9.6 \text{ mM}^{-1} \text{ cm}^{-1}$. Dawson, R. M. C.; Elliott, W. H.; Elliott, D. C. *Data for Biochemical Research*, 3rd Edition; Clarendon Press: New York, 1989.

23. Yakovlev, G. I.; Moiseyev, G. P.; Struminskaya, N. K.; Borzykh, O. A.; Kipenskaya, L. V.; Znamenskaya, L. V.; Leschinskaya, I. B.; Chernokalskaya, E. B.; Hartley, R. W. *FEBS Lett.* **1994**, *354*, 305.

24. Yakovlev, G. I.; Struminskaya, N. K.; Znamenskaya, L. V.; Kipenskaya, L. V.; Leschinskaya, I. B.; Hartley, R. W. *FEBS Lett.* **1998**, *428*, 57.

25. Wise, W. W.; Brandt, W. W. J. Am. Chem. Soc. 1954, 77, 1058.

26. Chang, C. A.; Sekhar, V. C.; Garg, B. S.; Guziec, F. S.,

Jr.; Russo, T. C., Jr. Inorg. Chim. Acta 1987, 135, 11.

27. Farkas, E.; Enyedy, E. A.; Csóka, H. J. Inorg. Biochem. 2000, 79, 205.